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Context

e Accurate prediction of vibrational spectra of molecules using perturbation
theory require

0 Anharmonic approximation of potential energy surface
O First and second order corrections to energy
O First and second order corrections to frequencies per d.o.f

e Energy and frequency corrections are formulated as non singular integrals which
can be high order and multi-centered

QUEST

improve integration efficiency and scalability via
advanced UQ methods.
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First Order Corrections

h = [ ®o(x)AV/(x)Po(x)A1(x)dx

AV(x) = V(x) = Vet — %;w,-zx,?
e V/(x): Potential energy (PE) containing up to n-th order force constants. As a default
scenario, n = 4.
® Vi the minimum/reference PE, i.e. at the equilibrium geometry.
e w;: the i-th mode frequency of a reference mean-field theory. Found by solving Dyson
equation.

2
wix;

®o(x) =Hno(x,-); Moy (x1) = Cniywi)e ™2 hny(v/ewrx)

e m: vibrational degrees of freedom. For H>O (water), m = 3 and H>CO
(formaldehyde), m=6.

® 1, (xi): the harmonic-oscillator wave function with quantum number n; along the i-th
normal mode x;.

e h,: Hermite polynomial of degree n;
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- __________________________________________________
First Order Corrections (contd..)

h = [ ®o(x)AV/(x)Po(x)A1(x)dx

A N = 117 M)
Energy (E1) AM(x)=1,1<i<m
Frequencies (T4) | Ab(x) = 22t N7 — 1

Quadrature based Integration

e First order correction integrands can be reformulated as Gaussian times
polynomials

b= / [T e " N(x)AV(x)dx
X j=1

e Use of Gauss Hermite quadrature (with appropriate scaling)
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E; Using Quadrature

HQO (m:3) HzCO (m:6)
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Quadrature based integration, in general, is not scalable
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Second Order Corrections

b= [ [, ®o(x)AV(x)Ga(x,x")AV(X')Po(x") A2(x, x) dxdx’

using real-space Green's function
anax ¢N x )
— E (0 (0) E(O) ’

Py (x) = Hnm(Xi)? £~ EY = - Z niwi
i=1 i=1

Relation between N and n; is given by the mapping

I:(nl)"'anm)e X:‘ll{la nmax}%Ne{O tt max ]-—Nmax}
Ga(x,X') = == T €0, X)) H' (xi, x])

. (W2 02
e'(xi,x!) = e~ i) Hi(x;, x!) ZC nj, i) Ay (v/@ixi ) Ao, (\/wix; )
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Second Order Corrections (contd...)

b= [ [, ®o(x)AV(x)Ga(x,x")AV(x") o (x") Aa(x, ") dxdx’

L Ao (x,x) =TTy Ao (xi: X))
Energy (£2) M, x) =1
. . n: 1/2 n: 1/2, 2 X-/ ..
Frequencies (Z’2p) S(xi,x!) = (ni+2) (7;:(2) Mn;+2( /)’)\/275/ —1
: i i (ni+1)ny, i(xi-) i1 (<) \jAT
Frequencies (¥X5,) As(xi, x!) = ni+1)n ?7+n,-(><,-’)n + ,)\1275 1

Second order correction integrands can also be formulated as Gaussian times
polynomials

Es = [, [, e(x, X )AV(x)H(x,X') AV (X') Ao (x, X')dxdx’

H(X7XI) *Zm n;w;
i=1 "
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.
Separated Integration

Integration Problem

1) = [ wxp(c)ax o u(x) = u(a. )
* p(x) = p(x) - p(xm)
Low rank approximation of u(x)

r

u(x) = v(Xt, ...y Xm) = Z V;(Xl) v (xm)

p=1

Separated Integration

i)~ 1) =3 (] vitartardn - [ aradpton)a )

m
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Application: Second Order Energy Correction in Quantum Chemistry

b= [ [.,e(x,x)AV(x)H(x,x)AV(X")X2(x,x")dxdx’,

where

He (X,, x!) (x,,x)_e r(Xf2+Xi/2)7

~ > [[avi

p1=1i=1
ra m
§ | | () /
) = Huz(x"vxf)v
p2=1i=1

x') =[] Xalxi, %)
i=1
12 ~ E:;l Elrjz er—:s H7=1 fx,- fxl’ ei(xi7 XII)AVAIM( ) K2 (XH )Avl ( 4/))‘,2()('1 Xi/)dXdX/'
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.
Tensor Approximation of AV/(x)

Tensor Representation
8¥ = {V(f)(xi) = v (x); v € R} :
k=1

If gbf(” = xF, then AV(x) €8 =8W @---@8™. Vv € § can be identified as

V7 — Z Z Vig...ky Py (X0) * * Pl (Xim)-

k=1  kp=1

Canonical Subset
R = { = S TT000 v200) = (2, 80(x) € s<f>} .
p=1i=1

Given fixed ¢'s, we just need coefficients i.e. v = Fg,(v},...,v™), v/ € R™mxm
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Alternating Least Squares Approximation

Least squares problem

Q
min o Fr, (6 v with o vih = 3 () — i)
gt
where xg is ¢t sample, g =1,..., Q.
Alternating least squares (ALS)
e Forre{l,...,R}
O For 1 < k < m and for fixed v/, j # k
n‘jin lu—Fr,(v',. .. Vo v

o Select optimal rank using cross validation
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Results: Approximation of AV

H20 (m:3) HzCO (m:6)
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Tensor Approximation of H(x, x')

b= [ [.,e(xx)AV(x)H(x,x)AV(X")Xa(x,x")dxdx’,

where I H A
H(xi, x;
/ i=1 "
H(x,x") = 721 e

Tensor representation of H(x, x’)

k=1

Nmax
ng" ) = {v(i)(x;,x,-') = Z vkgbf(” i, %) vic € R}

When ¢(kii (xi, /) = hi(y/wixi)he(y/wix}), then H(x,x") € 85 = ®7,80") and can be
identified with a coefficient tensor

e ) 1 C2(n,,w,)
> niwi

H can be approximated in R,

H(ni,...,nm) =
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H>0

Rel. Approx Error

Second order Energy Corrections
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Second order Frequency (X,,) Corrections

H>0

Rel. Approx Error
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Second order Frequency (X,5) Corrections Contd..

H>0O
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Results
Method | Tensor Ref
Method | Tensor MC Ref £ -1.045 1 -1.006
E> -77.68 -77.72
E; 51.6 51.3 +1.1 51.6
12 1166.18 | 1166.44
E> -120.5 -119.1+0.7 -120.6
Vo 1243.05 | 1242.97
12z 1566.9 | 1566.3 £2.1 | 1566.9
V3 1506.41 | 1506.25
Vs 3645.2 | 3646.9 +4.5 | 3645.1
3767.4 | 3768.5 +£3.2 | 3767.4 | | 1723.26 1 1723.34
s : D 2 : vs 2810.64 | 2810.73
| #AV | 150 | 67500 [ - Ve 2870.81 | 2870.77
Table: H,O | #AV 4000 -
Table: H,CO
Frequency corrections v;, i = 1,..., m are obtained by solving non recursive

inverse Dyson equation from Zi,zgp and X5,
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Summary and Perspectives

Conclusion
e Tensor approximations provides a good framework to handle high dimensional
Quantum Chemistry integrals

e Approximation of PES can be formulated as a sampling based tensor
approximation problem thus leading to low dimensional integrals using separated
representation

e Significant cost savings as compared to Monte Carlo and its variants

Perspectives

e Use of other tensor formats (TT, HT) for PES approximation

o Better exploitation of structure of PES using gradient based information for
dealing with even larger molecules
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