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Context

• Accurate prediction of vibrational spectra of molecules using perturbation
theory require
� Anharmonic approximation of potential energy surface
� First and second order corrections to energy
� First and second order corrections to frequencies per d.o.f

• Energy and frequency corrections are formulated as non singular integrals which
can be high order and multi-centered

QUEST

improve integration efficiency and scalability via
advanced UQ methods.
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First Order Corrections

I1 =
∫

Φ0(x)∆V (x)Φ0(x)λ1(x)dx

∆V (x) = V (x)− Vref −
1
2

m∑
i=1

ω2
i x

2
i

• V (x): Potential energy (PE) containing up to n-th order force constants. As a default
scenario, n = 4.

• Vref: the minimum/reference PE, i.e. at the equilibrium geometry.
• ωi : the i-th mode frequency of a reference mean-field theory. Found by solving Dyson

equation.

Φ0(x) =
m∏
i=1

η0(xi ); ηni (xi ) = C(ni , ωi )e
−ωi x

2
i

2 hni (
√
ωixi )

• m: vibrational degrees of freedom. For H2O (water), m = 3 and H2CO
(formaldehyde), m=6.

• ηni (xi ): the harmonic-oscillator wave function with quantum number ni along the i-th
normal mode xi .

• hni : Hermite polynomial of degree ni
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First Order Corrections (contd..)

I1 =
∫

Φ0(x)∆V (x)Φ0(x)λ1(x)dx

I1 λ1(x) =
∏m

i=1 λ1(xi )

Energy (E1) λi
1(xi ) = 1, 1 ≤ i ≤ m

Frequencies (Σi
1) λi

1(xi ) = 21/2η2(xi )
η0(xi )

, λj 6=i
1 = 1

Quadrature based Integration

• First order correction integrands can be reformulated as Gaussian times
polynomials

I1 =

∫
x

m∏
i=1

e−ωi x
2
i λi

1(xi )∆V (x)dx

• Use of Gauss Hermite quadrature (with appropriate scaling)
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E1 Using Quadrature
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H2CO (m = 6)
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Quadrature based integration, in general, is not scalable
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Second Order Corrections

I2 =
∫
x

∫
x′ Φ0(x)∆V (x)G2(x, x′)∆V (x′)Φ0(x′)λ2(x, x)dxdx′

using real-space Green’s function

G2(x, x′) =
Nmax∑
N=1

ΦN(x)ΦN(x′)

E
(0)
0 − E

(0)
N

,

ΦN(x) =
m∏
i=1

ηni (xi ); E
(0)
0 − E

(0)
N = −

m∑
i=1

niωi

Relation between N and ni is given by the mapping

I : (n1, . . . , nm) ∈ ×m
i=1{1, . . . , nmax} → N ∈ {0, . . . , nmmax − 1 = Nmax}

G2(x, x′) = 1
−

∑m
i=1 niωi

∏m
i=1 e

i (xi , x
′
i )H

i (xi , x
′
i )

e i (xi , x
′
i ) = e−ωi (x

2
i +x′2i ); H i (xi , x

′
i ) =

nmax∑
ni

C 2(ni , ωi )hni (
√
ωixi )hni (

√
ωix
′
i )
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Second Order Corrections (contd...)

I2 =
∫
x

∫
x′ Φ0(x)∆V (x)G2(x, x′)∆V (x′)Φ0(x′)λ2(x, x′)dxdx′

I2 λ2(x, x′) =
∏m

i=1 λ
i
2(xi , x

′
i )

Energy (E2) λi2(xi , x
′
i ) = 1

Frequencies (Σi
2p) λi2(xi , x

′
i ) =

(ni+2)1/2(ni+1)1/2ηni +2(x′i )

ηni (x
′
i ) , λj 6=i

2 = 1

Frequencies (Σi
2b) λi2(xi , x

′
i ) =

(ni+1)ηni +1(xi )ηni +1(x′i )

ηni (x
′
i ) , λj 6=i

2 = 1

Second order correction integrands can also be formulated as Gaussian times
polynomials

E2 =
∫
x

∫
x′ e(x, x′)∆V (x)H(x, x′)∆V (x′)λ2(x, x′)dxdx′

H(x, x′) =

∏m
i=1 H(xi , x

′
i )

−
∑m

i=1 niωi
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Separated Integration

Integration Problem

I (u) =

∫
Ω

u(x)ρ(x)dx • u(x) = u(x1, . . . , xm)

• ρ(x) = ρ(x1) · · · ρ(xm)

Low rank approximation of u(x)

u(x) ≈ v(x1, . . . , xm) =
r∑

µ=1

v1
µ(x1) · · · vm

µ (xm)

Separated Integration

I (u) ≈ I (v) =
r∑

µ=1

(∫
Ω1

v1
µ(x1)ρ(x1)dx1 · · ·

∫
Ωm

vm
µ (xd)ρ(xm)dxm

)
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Application: Second Order Energy Correction in Quantum Chemistry

I2 =
∫
x

∫
x′ e(x, x′)∆V (x)H(x, x′)∆V (x′)λ2(x, x′)dxdx′,

where

e(x, x′) =
m∏
i=1

e(i)(xi , x
′
i ); e(i)(xi , x

′
i ) = e−ωi (x

2
i +x′i

2),

∆V (x) ≈
r1∑

µ1=1

m∏
i=1

∆V (i)
µ1 (xi ),

H(x, x′) ≈
r2∑

µ2=1

m∏
i=1

H(i)
µ2(xi , x

′
i ),

λ2(x, x′) =
m∏
i=1

λi
2(xi , x

′
i )

I2 ≈
∑r1
µ1

∑r2
µ2

∑r1
µ3

∏d
i=1

∫
xi

∫
x′i
e i (xi , x

′
i )∆V i

µ1(xi )H
i
µ2(xi , x

′
i )∆V i

µ3(x ′i )λi
2(xi , x

′
i )dxdx ′.
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Tensor Approximation of ∆V (x)

Tensor Representation

S
(i) =

{
v (i)(xi ) =

nmax∑
k=1

vkφ
(i)
k (xi ); vk ∈ R

}
.

If φ(i)
k = xk

i , then ∆V (x) ∈ S = S(1) ⊗ · · · ⊗ S(m). ∀v ∈ S can be identified as

v =

nmax∑
k1=1

· · ·
nmax∑
km=1

vk1...kdφk1(x1) · · ·φkm (xm).

Canonical Subset

Rr =

{
v =

r∑
µ=1

m∏
i=1

v (i)
µ (xi ); v (i)

µ (xi ) = 〈v(i)
µ ,φ

(i)(xi )〉 ∈ S
(i)

}
.

Given fixed φ’s, we just need coefficients i.e. v = FRr (v
1, . . . , vm), vi ∈ Rnmax×m
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Alternating Least Squares Approximation

Least squares problem

min
v1,...,vm

‖u − FRr (v
1, . . . , vm)‖2Q with ‖u − v‖2Q =

Q∑
q=1

|u(xq)− v(xq)|2

where xq is qth sample, q = 1, . . . ,Q.

Alternating least squares (ALS)

• For r ∈ {1, . . . ,R}
� For 1 ≤ k ≤ m and for fixed vj , j 6= k

min
vk
‖u − FRr (v

1, . . . , vk , . . . , vm)‖2Q

• Select optimal rank using cross validation
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Results: Approximation of ∆V

H2O (m = 3)
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Tensor Approximation of H(x, x′)

I2 =
∫
x

∫
x′ e(x, x′)∆V (x)H(x, x′)∆V (x′)λ2(x, x′)dxdx′,

where

H(x, x′) =

∏m
i=1 H(xi , x

′
i )

−
∑m

i=1 niωi

Tensor representation of H(x, x′)

S
(ii′)
δ =

{
v (i)(xi , x

′
i ) =

nmax∑
k=1

vkφ
(ii′)
k (xi , x

′
i ); vk ∈ R

}

When φ(ii′)
k (xi , x

′
i ) = hk(

√
ωixi )hk(

√
ωix
′
i ), then H(x, x′) ∈ Sδ = ⊗m

i=1S
(ii′) and can be

identified with a coefficient tensor

H(n1, . . . , nm) =
−
∏m

i=1 C
2(ni , ωi )∑m

i=1 niωi
.

H can be approximated in Rr

13 / 19



Second order Energy Corrections
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Second order Frequency (Σ2p) Corrections
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Second order Frequency (Σ2b) Corrections Contd..
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Results

Method Tensor MC Ref
E1 51.6 51.3 ±1.1 51.6
E2 -120.5 -119.1±0.7 -120.6
ν1 1566.9 1566.3 ±2.1 1566.9
ν2 3645.2 3646.9 ±4.5 3645.1
ν3 3767.4 3768.5 ±3.2 3767.4
#∆V 150 67500 -

Table: H2O

Method Tensor Ref
E1 -1.045 -1.006
E2 -77.68 -77.72
ν1 1166.18 1166.44
ν2 1243.05 1242.97
ν3 1506.41 1506.25
ν4 1723.26 1723.34
ν5 2810.64 2810.73
ν6 2870.81 2870.77
#∆V 4000 -

Table: H2CO

Frequency corrections νi , i = 1, . . . ,m are obtained by solving non recursive
inverse Dyson equation from Σi

1,Σ
i
2p and Σi

2b
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Summary and Perspectives

Conclusion

• Tensor approximations provides a good framework to handle high dimensional
Quantum Chemistry integrals

• Approximation of PES can be formulated as a sampling based tensor
approximation problem thus leading to low dimensional integrals using separated
representation

• Significant cost savings as compared to Monte Carlo and its variants

Perspectives

• Use of other tensor formats (TT, HT) for PES approximation

• Better exploitation of structure of PES using gradient based information for
dealing with even larger molecules
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