SANDIA REPORT

SAND2017-3771
Unlimited Release
Printed April 13, 2017

Guide to Using Sierra

Ryan P. Shaw, Anthony M. Agelastos, Joel D. Miller

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2017-3771
Unlimited Release
Printed April 13, 2017

Guide to Using Sierra

Ryan P. Shaw, Anthony M. Agelastos, Joel D. Miller
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

sierra-help@sandia.gov

Abstract

Sierra is an engineering mechanics simulation code suite supporting the Nation’s Nuclear
Weapons mission as well as other customers. It has explicit ties to Sandia National Labs’
workflow, including geometry and meshing, design and optimization, and visualization. Dis-
tinguishing strengths include “application aware” development, scalability, SQA and V&V,
multiple scales, and multi-physics coupling. This document is intended to help new and
existing users of Sierra as a user manual and troubleshooting guide.


mailto:sierra-help@sandia.gov

Acknowledgments

This document’s authors acknowledge Mike Glass for the original idea of a Sierra trou-
bleshooting guide and Justin Lamb and others for proofreading this manual.

The following teams were very helpful in content for the following sections:

Compsim Devops Code versions (Chapter 6)

Sierra Solid Mechanics Restart (Section 5.4)



Contents

Contents 5
List of Figures 9
List of Tables 9
Nomenclature 10
1 Introduction 13
2 Frequently Asked Questions 15
3 Before Asking for Help 19
3.1 Documentation . ... ... ... ... 19
3.2 Additional Non-Sierra Resources . ............ . ... .. . . . . . i 20
3.2.1 computing.sandia.gov . .. ... ... 20

3.2.2 <machine>-help .. ... ... .. . 21

3.2.3 Post-processing Help . ...... ... . . 21

3.3 Information to Give Sierra Help ....... .. ... ... .. ... ... .. ... ... ...... 21
3.3.1 Code Version. . . ... 23

3.3.2  Running Environment .......... ... ... . . . . . 23

3.3.3 Number of Processors. ........... .. .. 23

3.3.4  Files. ..o 23

3.3.5 Funding Program ........... .. . . .. .. 24

3.3.6 Additional Considerations .................. ... 24



3.4 PermisSSiOns . . .. oo oo 24

User Environment 29
4.1 Necessary Accounts . ... . ... ... 29
4.2 WCID Process and Usage .. ... 29
4.3 .xrc Configuration Files .. ... ... . ... . . . . 31
4.4 Modules. . ... 31
4.4.1 Just-in-Time Module Loading .. ........ ... ... ... .. ... ... ... 33
4.5 Stale Environments ... ... ... .. 34
Running Sierra 35
5.1 Commandline Invocation . ........ ... .. .. . . .. . . 35
5.2 sierra SCripb . ..o 35
5.3 Pre- and Post-processing .. .......... .. 37
531 Signals . ..o 38
D4 Restart . ... 38
5.4.1 Automatic Restart .. ....... ... .. ... .. 39
5.4.2 Time-specified Restart .. ... ... ... . ... . ... . . 43
5.5 User SUbroutines . .. ..... ... 46
5.6 Memory Considerations . . ... ........ .. 47
S I P 48
5.7.1 Good Citizenship ....... ... . . . . 48
D.7.2 0 SETIPING . o oo 49
5.8 Interpreting Terminal Output ........ ... .. ... ... . ... . . . . . ... . ... ... 50
5.81 Log File. ... . oo 51
5.8.2 STDOUT and slurm-* Files .. ....... ... ... . . . . ..., 52
5.9 Other Tools. .. ... 53



5.9.1
5.9.2
5.9.3
5.9.4
2.9.5
5.9.6

SEACAS

Percept . ...

Catalyst. . ...

Sandia Analysis Workbench (SAW) ... .. ... ... ... .. .. ...

More Information . .. ...

5.10 Coupling within Sierra and with Non-Sierra Codes . .....................

5.10.1

5.10.2

6 Versioning

6.1.1
6.2 End-of-

6.3 Master

Multi-physics Coupling .. ... ... ..

Dakota: Optimization & Solution Verification ....................

Default Version . .. ...

Sprint (EOS) Snapshot ........ .. .. .. ...

6.4 Personal Versions . ... .. ...

6.5 DiIstribution . . ... ...

7 Developme

nt Process

7.1 SCRUM Agile Development. .. ... i
7.2 Process for Adding New Capabilities ........... ... ... .. ... . ... .. ....
Appendix

A Guide of D

ocument Conventions

B Build Documentation

C Example Input File

57
o8
59
99
29
60

61

63
63

64

67

71

73



D Example .bashrc and .bash_profile files

E Example .cshrc file

References

79

81

83



List of Figures

3.1 Diagram of overall Sierra Help process. ........ ... .. ... .. ... .. ... ...... 22

4.1 Example showing WebCARS high performance computing accounts, including
those necessary to use Sierra . ........... ... 30

6.1 Illustration of Sierra release process. ... ... ... ... .. o7

List of Tables

3.1 Octal bit representations for permissions triplets........................ 26



Nomenclature

Acronyms
ASC
ATS
BASH
CEE
CSH
DOE
EOS
FCT
HPC
I/0
JIT
LDRD
MPI
MPMD
NNSA
NTK
OST
019[0)
PO
POSIX
SAW
SCN

NNSA’s Advanced Simulation and Computing Program
Advanced Technology Systems

Bourne Again SHell

Common Engineering Environment

C SHell

U.S. Department of Energy

End-of-Sprint

Feature Coverage Tool

High-performance Computing

Input/Output

Just-in-Time

Laboratory-directed Research & Development
Message Passing Interface

Multiple Program Multiple Data

DOE’s National Nuclear Security Administration
Need-to-Know

Object Storage Target

Official Use Only

Product Owner

Portable Operating System Interface

Sandia Analysis Workbench

Sandia Classified Network

10



SEACAS Sandia National Laboratories Engineering Analysis Code Access System

SNL Sandia National Laboratories
SQA Software Quality Assurance
SRN Sandia Restricted Network
V&V Verification & Validation
VOTD Version of the Day

WCID Workload Characterization 1D
WFO Work For Others

Other Terms

CompSim Sierra Computational Simulation website
DevOps Development Operations
master Version of the Day

STDOUT Standard Output

Major Sierra Applications

Adagio Sierra/SolidMechanics or Sierra/SM

Aero Sierra/Aero

Aria Sierra/Thermal Multiphysics

Fuego Sierra/Low Mach Fluids

Presto Sierra/SolidMechanics or Sierra/SM (only in ITAR Sierra)
Salinas Sierra/Structural Dynamics or Sierra/SD

STK Sierra ToolKit

11



12



Chapter 1

Introduction

This document is a troubleshooting guide for common problems encountered by Sierra ana-
lysts. Note that while much of this document can be applied to all Sierra users, some sections
are only applicable to internal Sandia users of Sierra. Items and Sections applicable only to
Sandia users are marked by the Sandia National Labs Thunderbird logo:

A list of chapters and their descriptions is given below.

Chapter 2. Frequently Asked Questions
This chapter contains several frequently asked questions and issues that Sierra Help
has dealt with in the past. It is recommended to look here to determine whether your
issue has been encountered and solved in the past.

Chapter 3. Before Asking for Help
This is a good chapter to go through before contacting Sierra user support or Sierra
developers since it helps the reader prepare their help request along with providing
guidance on common problems.

Chapter 4. User Environment
This chapter provides the steps and information necessary to initially use Sierra, which
is helpful for those new to Sierra, and to set up their environment to properly utilize
Sierra on the HPC and CEE resources, which is helpful to all users.

Chapter 5. Running Sierra
This chapter provides background to users regarding how to execute Sierra on the
command line as well as within job scripts including advanced topics such as building
user subroutines, initiating checkpoint/restart files, utilizing memory effectively, and
code coupling.

Chapter 6. Versioning
This chapter outlines Sierra’s versioning system and details useful information regard-

13



ing the number of versions that are officially supported, how to use different versions,
and the considerations to make before using certain versions of Sierra.

Chapter 7. Development Process
The chapter gives information about the Sierra development process, which is especially
useful to know when requesting new features for one of the Sierra application codes.

There are some additional references within the appendices as well. Appendix A contains
a document convention guide to help interpret the different styles in this manual. Appendix B
contains information about how to obtain and build this document. Appendix C contains an
example Sierra input file along with tips for how to properly format it. Appendix D contains
example .bashrc and .bash_profile files. Appendix E lists an equivalent example .cshrc

file.

14



Chapter 2

Frequently Asked Questions

What does this command line error mean: “Sierra modules loaded, but no in-
stalled <version> applications were found to put in PATH.”?
This error occurs when a Sierra module, but the applications specific to that version of
Sierra do not exist on the system. This most often occurs when a user loads the sierra
/master module, since the master builds may not happen daily due to development
volatility (see Section 6.3). If this error occurs for some other version of the code, there
is likely some installation issue and you should alert Sierra Help so that the issue can
be resolved.

I cannot load any sierra modules.
This typically occurs for two different reasons:

1. you do not have the correct accounts in WebCARS to allow loading the module.
See Section 4.1 to acquire the proper accounts.

2. The terminal environment is stale - refresh the environment by opening a new
terminal or logging out and back in (see Section 4.5).

Help debugging error: “error while loading shared libraries: 1lib*.so: cannot
open shared object file.”
This type of error occurs when the user environment is incorrect (i.e., incompatible
with the Sierra executable’s build environment), which may arise for several reasons:

1. Trying to run in a stale environment (see Section 4.5)

2. Attempting to run with a user subroutine that was compiled with a different
version of the code (see Section 5.5)

3. Loading many different modules concurrently in the same terminal (see Sec-
tion 4.4.1)

Where are user manuals located in a Sierra distribution?
Please see Section 3.1.

I get an error at the end of my run about the Feature Coverage Tool.
The Feature Coverage Tool (FCT) is an application created by the Verification &
Validation team to help determine the level of testing for the features in your model.
This tool is automatically run after all successful runs, but there are sometimes issues

15



with the FCT. If you see errors related to this, typically your run was successful and
you can still post-process the results. Please let Sierra Help know about these FCT
issues so that they can be addressed in a timely manner.

How can I use the sierra script to only perform the pre- or post-processing
step?
The sierra script (Section 5.2) provides the command line options --pre and --
post, which will perform the pre- or post-processing steps, respectively, instead of
performing all three pre, run, and post steps. For more information about these steps,
see Section 5.3.

How can I run Sierra using the sierra script on an HPC interactive node without
submitting to the queue?
It is sometimes desirable to request an HPC interactive node to perform quick de-
bugging on HPC platforms. For example, to request 1 interactive node on SNL. HPC
platforms for 4 hours, one might do the following:

$ salloc -N1 --time=4:00:00 --account=your_WC_ID

After obtaining access to the interactive node, one can then use the sierra script
without submitting to the HPC queue as follows:

$ module load sierra
$ export NO_SUBMIT=true
$ sierra --np 16 adagio -i input.i

See Section 5.2 for more information on the sierra script and usage.

How does one overcome this error: ACCOUNT: Setting ACCOUNT is required for
submitting to queue.

@ This error occurs on HPC platforms when a valid WCID is not specified (see Sec-
tion 4.2). To overcome this, follow the steps in the aforementioned section, and if you
already have a valid WCID, then pass the --account option to the sierra script. If
you only have one WCID, then another option is to set the ACCOUNT environmental
variable to your WCID, which will automatically set the WCID for that environment.

How can I tell which version of Sierra I am using?
There are several different methods for determining the version of Sierra in your current
environment, listed in order from most to least effective:

$ which <SIERRA_APPLICATION>

@ $ module list # See Section 4.4

$ <SIERRA_APPLICATION> --version

16



How many versions of Sierra are supported?
Sierra supports two major releases at any time, as well as two End-of-Sprint snapshots.
For more information regarding Sierra’s versioning system, see Chapter 6.

17



18



Chapter 3

Before Asking for Help

When you first encounter an issue, there are some resources you can investigate before
submitting a help ticket.

3.1 Documentation

Invariably, many syntax questions can be solved by a quick scan of the available documenta-
tion. The central repository of all available Sierra documentation can be found on the Sierra
Computational Simulation (CompSim) website, which can be accessed at the following URL
(for Sandia users only):

http://compsim.sandia.gov/compsim/

To find documentation on this site, navigate to “Support & Services” — “Documentation.”

On this site, one can find documentation for current and previous releases as well as master

(a.k.a. Version of the Day) documentation. Master documentation is located under the
“Pre-Release” section.

For external Sierra users, manuals can be found at the following location in each release
distribution:

X.YY.Z/release-manuals/Docs/Sierra/X.YY/GeneralRelease/

Users who navigate to this directory may open up individual documents specific to their
model, or they may open the index.html file in that location to see a tree of all Sierra
documents.

The following is a representative list of documentation that one might find at the afore-
mentioned documentation locations:

e Theory manuals
e User manuals

e Command summaries

19



http://compsim.sandia.gov/compsim/

Release notes

Training/ Tutorials

Verification problems

Example problems

Miscellaneous reports

Other items may be found on the CompSim website, including “Getting Started” documenta-
tion, application code summaries, and contact information, among other useful information.

)

Much of the documentation that is contained in the “Version of the Day” section of
CompSim is kept up-to-date via automated processes that are checked daily to ensure correct
documentation. Sierra Help has also placed Version of the Day (VOTD) documentation on
the CEE LAN (both on the unclassified and classified networks) and on Sandia’s high-
performance computing (HPC) platforms:

/projects/sierra/doc

3.2 Additional Non-Sierra Resources

Sierra users will inevitably utilize Sierra on a variety of computational platforms and will
need to perform advanced platform-specific operations. When issues arise, one can turn to
several resources which are described below.

3.2.1 computing.sandia.gov

The Sandia website for Scientific, Engineering, and High Performance Computing can be
found at the following URL https://computing.sandia.gov/ This website contains much
useful information, including the following:

Platform specifications

Application information

e Queuing and filesystem pointers

Data storage options

Current HPC news and notifications

System policies

20



https://computing.sandia.gov/

e Example run scripts

This website is a good place to start when beginning high performance computing or when
doing something unfamiliar on these systems.

3.2.2 <machine>-help

For issues that seem to be related to the current system being utilized rather than those
arising directly from a Sierra application, send an e-mail to that platform’s help e-mail
address. For example, for issues on Sky Bridge, one may email skybridge-help@sandia.gov.
The personnel who man these e-mail groups will be better equipped to help you with issues
related to platforms, filesystems, etc. If one is unsure of the specific platform or HPC issue,
one may simply send an e-mail to hpc-help@sandia.gov. The members of Sierra Help are
also happy to relay such messages to the appropriate team.

3.2.3 Post-processing Help

Many computational models run with Sierra are complex and require complex post-processing.

As such, issues may arise when using such post-processing tools as ParaView [1| and En-
Sight [2]. Each of these software tools has a corresponding help e-mail: paraview-help@sandia.gov
and ensight-help@sandia.gov, respectively.

3.3 Information to Give Sierra Help

At some point, you will have exhausted all possible resources and will put your question to
Sierra Help, who can be reached at the following e-mail address: sierra-help@sandia.gov An
overview of the general Sierra Help process can be seen in Figure 3.1. An understanding of
this process can be useful in understanding support ticket progress and how best to interface
with members of Sierra Help.

In order to quickly and efficiently solve your problem, certain information is required and
will be explained below:

e Code version
e User environment

e Number of processors

Files required to replicate issue

Funding program

21


mailto:skybridge-help@sandia.gov
mailto:hpc-help@sandia.gov
mailto:paraview-help@sandia.gov
mailto:ensight-help@sandia.gov
mailto:sierra-help@sandia.gov

Sierra User-Supp

User-support request arrives via e-mail
to Sierra-Help@sandia.gov

v

Ticket is entered in Sierra-Trac system
for tracking and archival purposes

External
customer request?

ort Process

START

Get relevant program information, e.g.,
what Sandia program is involved?

4

information provided?

<

Gain sufficient information from user to
identify support request needs

5

YES*‘

Characterize the type of request for
dispatch to appropriate party

v . v v v
Enhancement Software Documentation Usage
Request Defect Request Question
¢ Developers ¢ Support Staff * |
Add story to Resolve Answer
backlog Request Question

Solution
verified with user?

YES¢

Close tracking ticket: user-support
request is now resolved

Figure 3.1. Diagram of over

22

Iterate over dispatch process towards
ultimate problem resolution

all Sierra Help process.



3.3.1 Code Version

Sierra supports the use of many different code versions, as explained in Chapter 6. As such,
each problem may perform differently when using different code versions, and the problem
you are encountering may not even occur using a different code version. In order for us to
troubleshoot the problem, we must use the same version in order to replicate and solve the
problem or suggest the use of an improved version.

3.3.2 Running Environment

“Running environment” here refers to the environment in which you are running Sierra when
you encounter a problem. This includes such information as follows:

Machine (e.g., personal blade/workstation, specific HPC platform)

Loaded modules (See Section 4.4)

Non-default .*rc files (See Section 4.3)

Custom run scripts

This information will allow Sierra Help to troubleshoot the environment, if that is the issue,
or to replicate the environment for future investigation.

3.3.3 Number of Processors

Some issues that arise can be dependent upon whether a model is run in serial (single
processor) or parallel (multiple processors) and even the number of processors used. As
such, this information is very important in determining the source of the issue, such as code
bugs, memory usage, and mesh decomposition.

3.3.4 Files

In the event that an issue arises when running a specific model, the best thing to do is to
either attach all files necessary to run the model, or point members of Sierra Help to the
location of the model files (see Section 3.4 for information on proper file permissions). Some
HPC platforms support the use of give and take utilities, and use of these tools should be
communicated with Sierra Help so they can act accordingly. Please also let us know of any
special considerations, e.g., Official Use Only (OUO) requirements.

23



If the model under question is classified, do not send classified files to sierra-
help@sandia.gov, as this is on an unclassified domain. Also realize that debugging classified
problems often takes much longer due to limited resources. If at all possible, please make a
simplified unclassified problem that exhibits the same issue so that time to solution can be
shortened.

3.3.5 Funding Program

For tracking purposes, please identify the name of the Sandia program that is associated
with your request. This information helps with user support cost recovery and metrics
tracking. Some examples of program names include the following:

e ASC
e B61
e B83
e LDRD
o W88
e WFO

3.3.6 Additional Considerations

If there are any any additional pieces of information that could be relevant to the problem,
please include this information. Sierra Help will open a ticket in order to resolve the issue
quickly and efficiently.

3.4 Permissions

A common problem when sharing files is that permissions are not properly set, which then
requires more communication to fix permissions. Due to the importance of security in the
workplace, a good knowledge of UNIX file permissions will allow for better security. Here is
an example of a listing of a representative set of files:

$ 1s -1

total 8

-rwxr-x--- 1 jdoe jdoe 44267 Sep 14 22:49 binary
drwxr-xr-x 2 jdoe jdoe 4096 Aug 3 15:23 dirl

drwxr-s--- 2 jdoe wg-sierra-users 4096 Jan 29 01:33 dir2

24



mailto:sierra-help@sandia.gov
mailto:sierra-help@sandia.gov

-rw-r--r-- 1 jdoe jdoe 163402 Jun 5 2012 filel
-rw------- 1 jdoe jdoe 498 Dec 12 13:01 file2

The first ten characters in lines 3 through 7 denote different permissions-related aspects,
or bits, of an object. The first entry classifies the object: d for a directory, 1 for a link, or
- for a file. The other nine entries are grouped into triplets: user, group, and other, where
the user denotes the owner of the object. In each triplet, the entries denote read, write, and
execute privileges, respectively.

Let us now look at the five example objects listed above:

binary The owner, jdoe (column 4), has read (r), write (w), and execute (x) privileges
on this file, and members of group jdoe (column 5) have read (r) and execute (x)
privileges.

dirl  This directory has read (r), write (w), and execute (x) for user jdoe, read (r) and
execute (x) privileges for members of group jdoe, and read (r) and execute (x)
privileges for all other users.

dir2  This directory has read (r), write (w), and execute (x) for user jdoe and read (r)
and execute (x) privileges for members of group wg-sierra-users. Additionally,
because of the SGID (s) set on the group’s executable permission, all files created
within dir2 (after the SGID is set) will inherit wg-sierra-users as the group.

filel Everyone can read (r) this file, and user jdoe can also write to this file.

file2 Only user jdoe can read and write to this file - no one else can access it in any
manner.

In order to manipulate permissions and groups, two important UNIX commands are
required: chmod and chgrp. The chmod command serves to change permissions, while the
chgrp command is used to to change the group membership of a file. For example, to give
read privileges to all users and to propagate its execute status, if present (accomplished by
X), one could issue either of the following commands:

$ chmod ugo+rX file
$ chmod a+trX file

These attributes each have an octal representation, as shown in Table 3.1. As an example,
the following command gives read and write privileges to the user, read privileges to the
group, and no privileges to others:

$ chmod 640 file

One important aspect of permissions is that in order to allow an entity to enter a di-
rectory, the executable permissions must be enabled on the directory for that entity. For
example, to allow everyone to access a directory, use the following command:

25




Table 3.1. Octal bit representations for permissions triplets

#  Permission TWX
7 full 111
6 read and write 110
5 read and execute 101
4 read only 100
3 write and execute 011
2 write only 010
1 execute only 001
0 none 000

$ chmod a+X dir

One who is not familiar with UNIX permissions may opt for the naive method of com-
pletely opening permissions on all files, e.g.,

$ chmod -R 777 *  ### DO NOT DO THIS!! ###

While this does certainly allow someone quick access to files, it also has undesirable effects.
First, giving everyone access to all files including write access, is generally discouraged due
to its high level of insecurity and possibility of file corruption or loss. The above command
also gives execute permissions to all objects, which is incorrect, as most files should not
and cannot be executed. The above command should be avoided in the vast majority of
circumstances.

One can circumvent future permissions issues with two additional commands. The first
command is umask, which sets the default permissions for newly created files and directories
in a terminal session. To give full privileges to the owner, read and execute permissions to
the group, and no permissions to others, use this umask command:

$ umask 0027

The next command deals with the SGID, which was explained in the example above (dir2).
To set the SGID on a directory, one can use the following command:

$ chmod gt+s dir2

The above command ensures that all files and directories created within dir2 will inherit
the same group as dir2.

Members of Sierra Help have created a useful script that allows users to simplify the
process of opening permissions to files. This script, fixperm.sh, is made available upon
loading the sierra module (see Section 4.4). One may either specify certain directories and
files, as follows:

26




$ fixperm.sh /path/to/directory filel file2

or one may enter the directory in which the files are contained and issue the following
command:

$ fixperm.sh .

There are other useful options for this script that can be found by invoking the script without
any options, i.e.,

$ fixperm.sh

27




28



Chapter 4

User Environment

It is necessary to set up the user environment before using Sierra. For external users, this
is best accomplished by contacting your system administrator and referring to Sections 4.3
and 4.5. For Sandia users, all of the following sections are applicable.

4.1 Necessary Accounts

For Sandia users, the first step to getting the user environment set up is to add Sierra-
related accounts on WebCARS:

https://webcars.sandia.gov/

Once there, navigate to “High Performance Computing,” located on the left of the home-
page. Figure 4.1 shows the accounts available at this location, including Sierra-specific ac-
counts. If one desires only to run Sierra, then the “SIERRA Analysts Code Access” account
must be selected. If one desires access to the source code, then the “SIERRA Developers
Code Access” should also be selected. In addition, to run Sierra on HPC platforms, the
“SRN/SCN Capacity Clusters” accounts should be selected. This information is outlined on
CompSim at the following URL:

http://compsim.sandia.gov/compsim/Support_Availability.html#access

WebCARS account approval depends on manager and sometimes other approval, which
can take some time (typically around a day, with the exceptions of approver absence). After
the accounts are approved, another day is required for the accounts to propagate to all SNL
systems. In order for changes to take effect in your local user environment on a SNL system,
you must log off and back on to that system.

4.2 WCID Process and Usage

A Workload Characterization ID (WCID) is required to run Sierra on one of SNL’s HPC
capacity platforms (e.g., TLCC2, Sky Bridge). Requests for new WCIDs should be made on

29


https://webcars.sandia.gov/
http://compsim.sandia.gov/compsim/Support_Availability.html#access

EHigh Performance Computing

=High Performance Computing - Unclassified

EClusters
Account Guidance [C] Arthur - Advanced Technology Intel Testbed
Account Descriptions (Show..) ¥ [T Compton - Advanced Technology Intel Testbed
Selected Description (Show..) ¥ [T] Curie - Advanced Technology Cray XK6 Testbed

[C1 ECN Red Mesa High Performance Computing Cluster
[C] Morgan - Advanced Technology Intel SRN Testbed

Request New Accounts By
[C] Pulsed Power Scientific Computing Resources

Common Account Groups [C] SGI Altix 3700 (grover)
® General Accesses [C] Shannon - Advanced Technology Appro GPU Testbed
® Responsibility-specific L SRN Capacity Clusters
© Remote Access [C] Teller - Advanced Technology AMD Testbed

© Foreign National Access

- [T Volta - Advanced Technology Cray XC30
® Classified Access

[C] Watt - Advanced Technology Testbed
Categories

EMiscellaneous HPC
® Basic Accounts 4 HPC
® Physical Remote Access Accounts .
®© Other Accounts 1 Muzia
® Estemnally Accessible Applications J Restricted Sandia Mass Storage System (RSMSS)
© Oracle 3 SIERRA Analysts Code Access (including OUO, e.g. ITAR, CRADA)

© High Performance Computing

® Common Ensineerins Environment (CEE) - SON 1 SIERRA Developers Code Access (including OUQ, e.g. ITAR, CRADA)

® Common Engineering Fnvironment (CEE) - SRN SIERRA Ticket System Access
® Servers B Xyce
® Classified -
® Common Engineering Environment (CEE) - SCN XyceRad
® Common Engineering Environment (CEE) - SEN EHigh Performance puting - Classified
S— EClusters - Classified
L SCN Capacity Clusters

Figure 4.1. Example showing WebCARS high performance

computing accounts, including those necessary to use Sierra

Sandia’s WC Tool site:
https://wctool.sandia.gov/wctool/

Information related to the nature of the work must be submitted according to the direc-
tions on that site and may include the following:

List of users (names and logins)

Project/Task number

Classification (SRN or SCN)

Description of work

30


https://wctool.sandia.gov/wctool/

N

Any special requests can also be made by submitting an e-mail to wctool-help@sandia.gov.

Once a WCID is approved, users can check what their WC ID is by either using the
mywcid or sbatch command on HPC platforms. More information about WC IDs can be
found on computing.sandia.gov.

To simplify the usage of WCIDs on HPC platforms, one may set the following environ-
mental variables in the .*rc file of choice - the example shown here is for the Bourne Again
Shell (BASH) (see Section 4.3):

export ACCOUNT="fy424242"
export SBATCH_ACCOUNT=$ACCOUNT
export SALLOC_ACCOUNT=$ACCOUNT
export MOAB_ACCOUNT=$ACCOUNT

4.3 .xrc Configuration Files

In UNIX/Linux operating systems, there are shell configuration files which often start with
a period and end with rc, which is short for “run commands.” Due to the name starting with
a period, one nickname for these files is “dotfiles.” These files configure the initial settings for
a user’s account and can be very useful in specifying keyboard shortcuts and useful functions
to improve productivity. The most commonly edited .*rc files are .bashrc for those who
use the BASH shell (see Appendix D for an example) and .cshrc for those who use the C
shell (CSH) (see Appendix E for an example).

However, there are certain pitfalls related to Sierra usage that should be avoided in .*rc
files. First, NEVER load a sierra module (discussed more in Section 4.4) in a configuration
file, as this can have undesirable effects on the operating environment, especially when other
modules are loaded. Also, care must be taken when modifying the PATH variable, as sierra
modules modify a user’s PATH in order to point to code versions and Sierra tools. The best
mode of operation is to keep the dotfiles as clean and minimal as possible so that the user
environment does not conflict with the Sierra environment.

Other dotfiles exist for text editors (e.g., Vim and Emacs), Nvidia settings, mail utilities,
etc., though these have little relevance in the context of Sierra usage.

4.4 Modules

Sandia platforms and the Sierra project make extensive use of modules, so it is useful
to understand what modules are and how to use them. A module is a software tool that
allows for dynamic modification of a user’s environment. Once loaded, modules will alter or
set shell environment variables such as PATH and MANPATH. Modules can also be easily loaded

31



mailto:wctool-help@sandia.gov
https://computing.sandia.gov/

and wunloaded dynamically for easy modification of the user environment. Thus, modules
are attractive when running on different operating environments and for use in management
of different application versions. The Sierra project uses modules for these reasons, both
because Sierra is utilized on many different platforms and supports the use of different
versions at any one time (see Chapter 6 for more information).

Following are some examples of common module commands as well as the output on
different SNL systems. The list of available module often changes depending on the system
being utilized. All available modules can be listed by using the following command:

$ module available

To see all Sierra-related modules, the following command may be used:

$ module available sierra

This command gives ALL sierra modules, including those used by developers. In order to
list only the Sierra versions available for loading, add a trailing forward slash:

$ module available sierra/

———————————————— /projects/sierra/linux_rh6/modules ----------------
sierra/4.30 sierra/4.30.1 sierra/4.32 sierra/4.32.1
sierra/4.33.1 sierra/4.33.2 sierra/master

Doing the following will load the sierra module, which will put the current default version
of Sierra in your PATH:

$ module load sierra

Once modules have been loaded in a shell, the following command shows which modules are
actually loaded:

$ module list
Currently Loaded Modulefiles:

1) sntools/4.32 6) sntools/master
2) sierra-python/2.7 7) sierra-compiler/intel/12.1-2011.13.367
3) sierra-git/1.7.3 8) sierra-mpi/intelmpi/4.1

4) sierra-mkl/12.1-2011.13.367 9) sierra/master
5) sierra-tbb/12.1-2011.13.367

The last set of useful module commands pertains to removing and switching modules.
To remove a module from use, either of the following commands suffice:

$ module unload sierra
$ module purge

32




Please note that module purge is heavy-handed and will remove all loaded modules from
the current shell session. This can have adverse effects on platforms where a number of
environment modules are pre-loaded, so caution is advised.

To switch modules, use switch or swap':

$ module switch sierra sierra/master
$ module swap sierra/master sierra/4.32

As a convenience, some of the module commands can be shortened. For example, module
available can be shortened to module avail or even module av (at least two letters are
necessary). This shortcut also applies to 1ist, swap, and switch.

4.4.1 Just-in-Time Module Loading

There are times when a user needs to use different tools which require the use of different
modules to set up the proper environment. However, in many circumstances it is dangerous
to load multiple modules concurrently because some environmental setup conflicts may be
introduced. One such example is the conflict caused when concurrently loading the Sierra
and Dakota modules (see Section 5.10.2).

To avoid this issue, it is recommended to use a process known as Just-in-Time (JIT)
module loading. This is best accomplished via scripting, and one simple setup is illustrated
below:

1. Load the dakota module on a login script.

$ module load dakota

2. Run the login script on a HPC login node which executes compute scripts that are
submitted to the batch queue and run on compute nodes.

$ ./login_script.sh

3. Within the compute scripts, unload the dakota module.

$ module unload dakota

4. Load the sierra module within the compute script.

$ module load sierra

!The module swap and switch commands have been shown to contain bugs on certain platforms. If
encountered, please use the appropriate sequence of unload and load.

33



5. Run Sierra without queue submission using launch within the compute script.

$ launch -n 128 adagio -i input.i

6. Unload the sierra module within the compute script upon completion of the Sierra
run.

$ module unload sierra

Since Dakota is often used as a wrapper application, it is recommended to use the Dakota
User’s Manual [3| as a reference. The Dakota manual contains an excellent chapter regarding
parallelism use cases; the case described above is referred to as “Case 4”7 in the manual.

4.5 Stale Environments

Some users maintain the practice of keeping terminal windows with loaded modules open for
a long time (on the order of weeks). While this practice is not necessarily bad, it can have
negative consequences when running. If, for example, a module is altered by the module
owner while a terminal window is open, the changes made will not be propagated to the
terminal session, even though Sierra may expect the newer version of the module. This can
result in difficult-to-decipher environmental error messages.

If you encounter odd error messages that seem to be related to the environment, the first
step is to close the terminal and try the same set of commands in a new terminal window. If
that does not change the outcome, then the next step is to log off the system and log back
in to ascertain whether the error persists.

34



Chapter 5

Running Sierra

After the necessary accounts have been obtained and the user environment has been set up,
Sierra may be utilized for simulations. From a Sierra-wide perspective, there are several
considerations which are relevant to anyone who runs the Sierra suite of codes.

For information relating to specific application codes, please refer to relevant theory and
user manuals, which can be found on the CompSim website (compsim.sandia.gov).

5.1 Commandline Invocation

Sierra applications (e.g., Sierra/SM, Sierra/Aero, Sierra/Thermal Multiphysics, Sierra/Low
Mach Fluids, Sierra/SD) are standard Message Passing Interface (MPI) applications and can
be invoked as such. For example, if your system uses OpenMPI (preferred by Sierra), one
can launch a parallel application using mpiexec:

$ mpiexec --np 32 aria -i <input_file>.i

If your machine requires that MPI applications be submitted through a queueing system,
you can invoke Sierra applications like any other MPI application on that system. For
example, on a system using sbatch one way to launch the application is as follows:

$ /usr/bin/sbatch --nodes 32 --time 8:00:00 -A FY123456 mpiexec --np 32
salinas <input file>.inp

5.2 sierra Script

While the above commands will work on many systems, they may need to be modified for
each system and can be dramatically different depending upon the platform. Additionally,
these commands only run the Sierra application of interest and will not decompose the mesh
or concatenate the results. To simplify the use of Sierra on different systems, a script is
available which wraps the pre-processing, run/submission, and post-processing steps into
one command. The basic format of the command to invoke the script is as follows:

35



http://compsim.sandia.gov/compsim/

$ sierra <sierra_options> <APPLICATION> <application_options>

where sierra_options denotes commands that are passed to sierra, APPLICATION is the
name of the application code, and application_options are the commands passed to the
application code. Following is a list of common sierra options:

--np Number of processors on which to run the simulation
--make Build user-specified plugins and/or subroutines
-a Preprocess the input file with aprepro (see Section 5.9.1)

--queue-name Queue specification on HPC platforms

-T Time limit for jobs run on HPC platforms
--account WCID relevant to run

--pre Execute mesh decomposition step

--run Execute the simulation run step

--post Execute the results concatenation step

By default, the sierra script will execute all three of the last options listed above, so it
is only necessary to include one or two of the options when all three steps are not required.
Also note that this is not all of the sierra-specific options, and that a complete list of the
available options on a certain platform can be found by issuing the command

$ sierra --help

The most commonly-used application_options option is -i, which specifies the input file
that is used by the application. To find all available options for a specific application, the
following should be executed:

$ <APPLICATION> --help

Following are some common examples of sierra script usage:

$ sierra --np 8 fuego -i input.i
$ sierra --run aria -i input.i
$ sierra --np 128 -T 24:00:00 --queue-name nw adagio -i input.i

Please note that the sierra script is a convenience script and may not function well in
complex situations, such as non-standard run specifications or code couplings. In situations
of non-standard run specifications, the best place to look for examples is on HPC platforms
at the following location:

36




/home/samples/<platform_name>/

For code couplings that cannot be accomplished through Solution Control, like Dakota-
Sierra or Aero-SD, examples can be supplied by contacting Sierra Help. See Section 5.10 for
more information on how to couple Sierra with other codes.

5.3 Pre- and Post-processing

One aspect of running simulations in parallel is splitting the model into pieces for each
processor. For standard Sierra simulations, the SEACAS decomp utility (see Section 5.9.1)
will split the input mesh(es) into the same number of parts as the number of processors
to run on. The following command will accomplish this as a separate step to running the
simulation:

$ decomp --processors <NP> <mesh_name>.ext

There has also been effort into making mesh decomposition a part of each of the Sierra
application codes. This is also referred to as “on-the-fly” mesh decomposition and eliminates
the need to have a distinct set of decomposed mesh files. In order to activate this capability,
the following needs to be added to each Finite Element Model specification in the input
file:

Decomposition Method = <method>

There are several options for method, but the most common are RIB and RCB. If the sierra
script is being used, make sure to specify --run so that the standard decomposition step is
avoided.

In a similar fashion, the post-processing step of Sierra simulations involves concatenating
the decomposed results files into one file. This is accomplished using the SEACAS utility
epu (see Section 5.9.1). The simplest command for using epu is shown below - this example
illustrates combining Exodus files with the naming convention output.e.10.[00-15] from
a sixteen-processor Sierra run:

$ epu -auto output.e.16.00

The “on-the-fly” method also works for results concatenation and requires additional lines
in the input file, in each of the Results Output blocks:

Property COMPOSE_RESULTS = Yes

The following lines are also required in Restart Data blocks:

37




N

N

Property COMPOSE_RESTART = Yes
Decomposition Method = <method>

For the Restart Data block(s), ensure that method corresponds to the method in the Finite
Element Model block.

“On-the-fly” decomposition and concatenation will at some point become the default
behavior in Sierra, though there is no hard date for when this will happen.

5.3.1 Signals

All Sierra applications have the capability of exiting gracefully upon reception of certain
POSIX signals, e.g., SIGKILL. The line which enables this for each type of output block is
as follows:

Output on Signal = <SIGNAL>

Signal 10 (SIGUSR1) is the preferred signal to instruct Sierra applications to exit gracefully,
as this signal is not commonly used by the system.

Note that signals do no always get passed to applications by the resource manager on
HPC platforms so the use of signals may be problematic.

5.4 Restart

One important consideration when running on any system, and especially HPC platforms,
is maximization of throughput. For example, if hardware fails or the application walltime is
reached, a user would like to restart their simulation at or near the time when the run was
terminated. Sierra provides a checkpoint/restart capability to provide for such scenarios,
and it behooves all analysts to implement this capability in their models.

The standard and well-tested method of utilizing restart is to write a restart file peri-
odically during the run, which is of exodus format and contains all fields necessary to start
at a point midway in the simulation. These restart files are typically decomposed into the
number of processors on which the simulation is performed. Below is a typical restart block
for many Sierra applications which should be placed in the Region scope of the input file:

Begin Restart Data restartData

Input Database Name = model.rso
Output Database Name = model.rso
Start Time = 0.0 # seconds

At Step O Increment 1000.0 # steps

38




6

Additional Times = 1250.0 # seconds

7| End Restart Data restartData

Restart files should not be written too often, as they only serve to reduce wasted com-
putation time in the event of failure. Before running a model, consider the problem size
and the amount of time you are willing to lose in the event of failure - for a long-running
problem (e.g., 96 hours), that number may be 6 wall-clock hours, while for a shorter time
limit (e.g., 24 hours) the time may be closer to 2 wall-clock hours. Once you have decided
the frequency of restart output, you then will need to determine the approximate number of
steps that occur in that wall time and provide that frequency in the Restart block. There
has been discussion about providing a wall-clock frequency in Sierra input files, but this has
not yet been implemented.

In order to use a restart file for its intended purpose of running a model later in simulation
time, one of the following two lines must be added to the Sierra scope of the input file:

Restart = Auto

or

Restart Time = <time>

The behavior of each method will be explained in the following sections.

5.4.1 Automatic Restart

You can use the restart option in an automated fashion by using a combination of the
Restart command line in the Sierra scope and the Database Name command line in the
RESTART DATA command block. This automated use of restart can best be explained by an
example. We will use a two-processor example and assume all files will be in our current
directory.

The option of automated restart will not only manage the restart files to prevent over-
writing, it will also manage the results files and history files to prevent overwriting. In the
example we give, we will assume our run includes a Results Output command block with
the command line

Database Name = rslt.e

to generate results files with the root file name rslt.e. We will also assume a run includes
a History Output command block with the command line

Database Name = hist.h

to generate history files with the root file name hist.h.

39




For the first run in our restart sequence, we will have the command line

i|Restart = Automatic

in the Sierra scope of our input file. In a time stepping command block, embedded in a
Solution Control command block in the Procedure scope of our input file, we will have
the command line:

1|Start Time = 0.0

In the Time Control command block we will have the command line

1| TERMINATION TIME = 2.5E-3

to set the limits for the begin and end times of the first restart run. These time-related com-
mand lines should not be confused with the Start Time and Termination Time command
lines that appear in the Restart Data command block.

Finally, for the first run in our restart sequence, the Restart Data command block in
our input file will be as follows:

|Begin Restart Data Restart_data
Database Name = g.rsout
At Time 0.0 Increment = 0.25E-3
End Restart Data Restart_data

N

In this block, the Database Name command line specifies a root file name for the restart file.
The At Time command line gives the time when we will start to write the restart information
and the interval at which the restart information will be written. All the same commands
used to define when results output is written can also be used in restart output.

For our first run, the automatic restart option will generate the restart files:

# restart files
g.rsout.2.0
g.rsout.2.1

# results files
rslt.e.2.0
rslt.e.2.1

# history files
hist.h.2.0
hist.h.2.1

For the above files, there are extensions on the file names that indicate we have a two-
processor run. The 2.0 and 2.1 extensions associate the restart files with the corresponding
mesh files on each processor. (If our mesh file is mesh. g, then our mesh files on the individual

40



processors will be mesh.g.2.0 and mesh.g.2.1.) All restart information in the above files
appears at time intervals of 0.25 x 1073, and the last restart information is written at time
2.5 x 1073. We have also listed the results and history files that will be generated for this
run due to the file definitions in the command blocks for the results and history files.

For the second run in our sequence of restart runs, we want to start at the previous
termination time, 2.5 x 1073, and terminate at time 5.0 x 1073, We leave everything in our
input file (including the START TIME = 0.0 command line in the TIME STEPPING command
block, the RESTART command line, and the RESTART DATA command block) the same except
for the TERMINATION TIME command line (in the TIME CONTROL command block). The
TERMINATION TIME command line will now become:

Termination Time = 5.0E-3

The actual start time for the second run in our analysis is now set by the last time
(2.5 x 1073) that restart information was written. The command line Start Time = 0.0 in
the Time Stepping command block is now superseded as the actual starting time for the
second run by the restart commands. Any Start Time command line in a Time Stepping
command block is still valid in terms of defining time stepping blocks (these blocks being
used to set activation periods), but the restart process sets the actual start time for our
analysis. This pattern of control for setting the actual start time holds for any run in our
sequence of restart runs.

For the second run in our sequence of restart runs, the restart files will be from time
2.5 x 1072 to time 5.0 x 1073, The restart files in our current directory after the second run
will be as follows:

restart files
.rsout.2.0
.rsout.2.1
.rsout-s0002.2.0
.rsout-s0002.2.1
results files
rslt.e.2.0
rslt.e.2.1
rslt.e-s0002.2.0
rslt.e-s0002.2.1
# history files
hist.h.2.0
hist.h.2.1
hist.h-s0002.2.0
hist.h-s0002.2.1

H 0 0B 0B 0B

Notice that we have generated new restart files with a -s0002 extension in addition to the
extension associated with the individual processors. All restart information in the above files
with the -s0002 extension appears at time intervals of 0.25 x 1072, the restart information

41




is written between time 2.5 x 1072 and time 5.0 x 1073, and the final restart information
is written at time 5.0 x 1073. The restart files for the first run in our sequence of restart
runs, g.rsout.2.0 and g.rsout.2.1, have been preserved. New results and history files
have been created using the same extension, -s0002, as that used for the restart files. The
original results and history files have been preserved.

Now, we want to do a third run in our sequence of restart runs. For the third run in our
sequence of restart runs, we want to start at the previous termination time, 5.0 x 1073, and
terminate at time 8.5 x 1073. We leave everything in our input file (including the Start
Time command line, the Restart command line, and the Restart Data command block) the
same except for the Termination Time command line. The Termination Time command
line (within the Time Control command block) will now become:

Termination Time = 8.5E-3

For the third run in our sequence of restart runs, the restart files will be from time
5.0 x 1072 to time 8.5 x 1073. The restart files in our current directory after the third run
will be as follows:

# restart files
g.rsout.2.0
g.rsout.2.1
g.rsout-s0002.2.0
g.rsout-s0002.2.1
g.rsout-s0003.2.0
g.rsout-s0003.2.1
# results files
rslt.e.2.0
rslt.e.2.1
rslt.e-s0002.2.0
rslt.e-s0002.2.1
rslt.e-s0003.2.0
rslt.e-s0003.2.1
# history files
hist.h.2.0
hist.h.2.1
hist.h-s0002.2.
hist.h-s0002.2.
hist.h-s0003.2.
2.

0
1
0
hist.h-s0003.2.1

Notice that we have generated new restart files with a -s0003 extension in addition to the
extension associated with the individual processors. All restart information in the above files
with the -s0003 extension appears at time intervals of 0.25 x 1072, the restart information
is written between time 5.0 x 1072 and time 8.5 x 1072, and the final restart information is
written at time 8.5 x 1073. The restart files for the first and second runs in our sequence of

42




[V}

'

restart runs have been preserved. New results and history files have been created using the
same extension, -s0003, as that used for the restart files. The original results and history
files have been preserved.

The process described can be continued as long as necessary. We will continue the process
of generating new restart files with extensions that indicate their place in the sequence of
runs.

5.4.2 Time-specified Restart

You can use the restart option and select specific restart times and specific restart files to
read from and write to by using a combination of the Restart Time command line in the
Sierra scope and the Input Database Name and Output Database Name command line in
the Restart Data command block. This “controlled” use of restart can best be explained
by an example. We will use a two-processor example and assume all files will be in our
current directory. In this example, we will manage the creation of new restart files so as not
to overwrite existing restart files. Unlike the automated option for restart, this controlled
use of restart requires that the user manage restart file names so as to prevent overwriting
previously generated restart files. The same is true for the results and history files. The user
will have to manage the creation of new results and history files so as not to overwrite existing
results and history files. Creating new results and history files for each run in the sequence
of restart runs requires changing the Database Name command line in the Results Output
and History Output command blocks. We will not show examples for use of the Database
Name command line in the Results Output and History Output command blocks here,
as the actual use of the Database Name command line in the results and history command
blocks would closely parallel the pattern we see for management of the restart file names.

For the first run in our restart sequence, we will have only a Restart Data command
block in the region; there will be no restart-related command line in the Sierra scope of our
input file. We will, however, have a

Start Time = 0.0

command line in a Time Stepping command block (within the Time Control command

block) and a

Termination Time = 2.5E-3

command line within the Time Control command block to set the limits for the begin and
end times. The Restart Data command block in our input file will be as follows:

Begin restart Data Restart_data
Output Database Name = RS1.rsout
At Time 0.0 Increment = 0.5e-3

End Restart Data Restart_data

43




N

For our first run, the restart option will generate the restart files:

RS1.rsout.2.0
RS1.rsout.2.1

For the above files, the extensions on the file names indicate that we have a two-processor
run. The 2.0 and 2.1 extensions associate the restart files with the corresponding mesh files
on each processor. If our mesh file is mesh.g, then our mesh files on the individual processors
will be mesh.g.2.0 and mesh.g.2.1. All restart information in the above files appears at
time intervals of 0.5 x 1073, and the last restart information is written at time 2.5 x 1073,

For the second run in our sequence of restart runs, we want to start at the previous
termination time, 2.5 x 1073, and terminate at time 5.0 x 1073. To do this, we must add a

Restart Time = 2.5E-3

command line to the Sierra scope and set the termination time to 5.0 x 10~3 by using the
command line

Termination Time = 5.0E-3 \rm

within the Time Control command block.

The actual start time for the second run in our analysis is now set by the restart time
set on the Restart Time command line, 2.5 x 1072, The command line Start Time = 0.0
in the Time Stepping command block is now superseded as the actual starting time for the
second run by the restart commands. Any Start Time command line in a Time Stepping
command block is still valid in terms of defining time stepping blocks (these blocks being
used to set activation periods), but the restart process sets the actual start time for our
analysis. This pattern of control for setting the actual start time holds for any run in our
sequence of restart runs.

We also must change the Restart Data command block to:

Begin Restart Data Restart_data
Input Database Name = RS1.rsout
Output Database Name = RS2.rsout
At Time 0.0 Increment = 0.5E-3

5| End Restart Data Restart_data

For this second run, we will read from the files:

RS1.rsout.2.0
RS1.rsout.2.1

And we will write to these files:

44




RS2.rsout.2.0
RS2.rsout.2.1

All restart information in the above output files, RS2.rsout.2.0 and RS2.rsout.2.1,
appears at time intervals of 0.5 x 1073, restart information is written from time 2.5 x 1073 to
time 5.0 x 1073, and the last restart information is written at time 5.0 x 10~2. Notice that we
have preserved the restart files from the first run from our restart sequence of runs because
we have specifically given the input and output databases distinct names — RS1.rsout for
the input file name and RS2.rsout for the output file name.

Now, we want to do a third run in our sequence of restart runs. For this third run, we
want to start at time 4.5 x 1072 and terminate at time 8.5 x 1073. We do not want to start
at the termination time for the previous restart, which is 5.0 x 1073; rather, we want to start
at time 4.5 x 1073. We change the Restart Time command line to

Restart Time = 4.5E-3

and the Termination Time command line within the Time Control command block to:

TERMINATION TIME = 8.5E-3

And we change the Restart Data command block to:

Begin Restart Data Restart_data
Input Database Name = RS2.rsout
Output Database Name = RS3.rsout
At Time 0.0, Increment = 0.5E-3

5| End Restart Data Restart_data

For this third run, we will read from these files:

RS2.rsout.2.0
RS2.rsout.2.1

And we will write to these files:

RS3.rsout.2.0
RS3.rsout.2.1

All restart information in the above output files, RS3.rsout.2.0 and RS3.rsout.2.1,
appears at time intervals of 0.5 x 1073, restart information is written from time 4.5 x 1073 to
time 8.5 x 1073, and the last restart information is written at time 8.5 x 1073. Notice that
we have preserved all restart files from previous runs in our restart sequence of runs because
we have specifically given the input and output databases distinct names for this third run.

45




V]

5.5 User Subroutines

Many of the Sierra code executables may be extended for the users’ needs via user subrou-
tines, which may be written in either Fortran, C, or C++, depending upon the executable.
For details on how to write user subroutines for a Sierra application of interest, please refer
to the respective User Manual.

To compile a Sierra user subroutine, the sierra script may be invoked with the --make
option:

$ sierra --make aria -i input.i

The subroutines which are built are dependent upon the input file, which will contain
lines like this:

User Subroutine File = userSub.F
Load User Plugin File userSub.C

The first line will create a completely new binary which incorporates userSub.F and will
place this binary within . /UserSubsProject/bin. This new binary executable may then be
invoked with the following command:

$ sierra ./UserSubsProject/bin/adagio -i input.i

The second input file line will take the user subroutine userSub.C and create a shared object
file userSub. so which will be dynamically linked to the executable that was used to compile
the subroutine. The model will then be run as normal.

It is important to note that the subroutine must not be used with a different executable
than the one which was used to compile it. For example, a model with a user subroutine
that was compiled with version 4.33.2 must be run only with version 4.33.2. If one runs
their model with a different version of the code than that which was used to compile a user
subroutine, at best the code will terminate, and at worst, the code will run but may give
erroneous results. The safest course of action is to re-compile any user subroutines each time
the code is run in order to ensure agreement between the compiled subroutine and the code.

Some platforms, such as the Advanced Technology Systems (ATS) platforms, may have
different requirements for running Sierra with user subroutines. In some instances, running
with user subroutines may not be possible, so care is advised when planning activities on
different or new platforms.

46




)

5.6 Memory Considerations

A significant factor that must be taken into account when running any simulation code,
including Sierra, is the memory use of the application with respect to the available memory
on the platform being used. For instance, one would like to avoid situations of memory
overrun, which will terminate the run and may corrupt the platform. On the other hand,
it is important to utilize memory as efficiently as possible, as analyst throughput has been
demonstrated to improve for many applications on HPC platforms [4].

All Sierra applications provide memory diagnostics in the log file, though the output
may differ slightly. An example of the memory output in a Sierra application log file during
run-time, which is output periodically throughout the simulation, is shown below:

Memory Usage: current = 267747328 (255.3 M), high-water-mark = 267747328
(255.3 M)

At the successful end of a simulation, a more complete memory summary is output to
the log file and looks like the following:

Memory summary of 4 processors
Metric Largest Processor Smallest
Processor

Dynamically Allocated (Heap) 106.3 MB on 1 at 1:34.652 105.1 MB on 0O at
1:34.652

s|Largest Free Fragment (Heap) 48.2 MB on 1 at 1:34.652 47.6 MB on O at

1:34.652
Total Memory In Use 518.7 MB on O 518.3 MB on 1
Major Page Faults 6 flts on 3 6 flts on 1

Performance metric summary

|Min High-water memory usage 256.6 MB
s|Avg High-water memory usage 257.2 MB

Max High-water memory usage 257.9 MB

jiMin Available memory per processor 4036.1 MB

Avg Available memory per processor 4036.1 MB
Max Available memory per processor 4036.1 MB

Min No-output time 27931.2 sec

Avg No-output time 27935.9 sec
Max No-output time 27937.7 sec

47




The first table shows information about maximum and minimum memory usage plus the
total amount of memory used on the processors, including Sierra as well as system processes.
In this example, the total memory in use on four processors varied from 518.3 to 518.7 MB.
The variation of Sierra memory usage is shown under the Performance metric summary,
where it can be seen that the Sierra application used between 256.6 and 257.9 MB. In cases
where the load is poorly balanced between processors, the variation in memory usage may
increase and should be investigated further.

Because Sierra is run on a wide variety of systems with differing memory configurations,
the available memory per processor is also output. On the system where this example was
run, the maximum theoretical available memory is 4036.1 MB, or roughly 4.0 GB. The actual
memory available will always be lower than this due to system processes, but this mark is
useful for showing an estimation of how many processors are required to maximize memory
efficiency.

57 1/O

During Sierra application runs, some form of input/output (I/O) must be executed. Common
forms of 1/O from Sierra applications include mesh read, mesh transfers, results output,
heartbeat output, history output, and restart. Depending on the scale of the analysis, each
of these types of I/O have an associated computational cost, and so must be considered with
care.

5.7.1 Good Citizenship

I/O can be one of the most computationally intensive operations in a Sierra run, so it must be
used appropriately. For instance, writing a restart file every iteration can quickly bog down
a system and a simulation, especially when a large model is being run on HPC platforms
with specialized filesystems. This adversely affects other users and in some instances has
even caused HPC platforms to slow to the point of usability.

To maximize efficiency in 1/O, it is best to determine the least amount of required 1/0,
which is specific to each model analysis. Consider the following example:

A large simulation will be run for several days on an HPC system. Data probes
will provide important information at key points in the model and must have a
high amount of temporal information. Some key animations and graphics will
also be made for certain simulation times. In order to prevent the loss of data
in the case of a system failure or model abort, restart will be required. This
simulation will require the following output at the listed frequencies:

48



e Every iteration — heartbeat output (data probes)
e Every 100 time steps — results output (animations/graphics)

e Every 2 hours of wall-clock time — restart output

It is also recommended to stagger restart and results output, as concurrent output of
these types can be very taxing on the filesystem.

5.7.2 Striping

Striping is a distributed filesystem term for how many pieces a file will be broken up into
and placed within different object storage targets (OSTs). The default striping on several
HPC platforms is 4. The example shown below shows how to modify striping and determine
what striping is already present. If you have any files that are larger than about 1.5TB, you
will want to make sure your striping is set to a value larger than 1. Currently on TLCC2
Chama, the OSTs have, on average, 1.8TB of free space. So, with striping set to 1, each file
will need to be smaller than what is available to fit onto an OST or problems will arise.

$ hostname

chama-login4

$ pwd

/gscratch2/rpshaw

$ mkdir test_1 test_2

$ 1fs getstripe test_x

test_1

stripe_count: 4 stripe_size: 1048576 stripe_offset: -1
test_2

stripe_count: 4 stripe_size: 1048576 stripe_offset: -1
$
$ ### USE setstripe TO SET STRIPING ###
$
$ 1fs setstripe -c 1 test_1
$ 1fs getstripe test_x

test_1

stripe_count: 1 stripe_size: 1048576 stripe_offset: -1
test_2

stripe_count: 4 stripe_size: 1048576 stripe_offset: -1
$ cd test_1

$ echo "TESTING" > test_1.txt
$ 1fs getstripe test_1.txt

test_1.txt
Ilmm_stripe_count: 1
Imm_stripe_size: 1048576

Imm_stripe_offset: 51

49




obdidx objid objid group
51 1435257 0x15e679 0

$ cd ../test_2
$ echo "TESTING" > test_2.txt
$ 1fs getstripe test_2.txt

test_2.txt

Imm_stripe_count: 4

Imm_stripe_size: 1048576

Imm_stripe_offset: 16

obdidx objid objid group

16 1448312 0x161978 0
74 1393623 0x1543d7 0
88 1436155 0x15e9fb 0
132 1448615 Ox161aa7 0

A number of HPC system administrators and Sierra I/O experts have noticed faster I/0
with striping set to 1 on distributed filesystems for most 1/O situations. If you perform a
considerable amount of filesystem 1/0O and all individual files are smaller than the OST size
(roughly 1.5 TB), then it would make most sense to set the file striping to 1.

Note that setting the file striping on an existing directory will not change the striping on
files or directories previously created inside that directory. Thus, the best idea is to create
a new directory and change its file striping, then perform analyses within the newly-created
directory.

5.8 Interpreting Terminal Output

In addition to the user-specified output outlined in Section 5.7, automatically generated
output is given to aid users in charting simulation progress and debugging model issues.
These tools are very valuable if you know how to interpret and utilize them.

In all cases where a job has died and you cannot determine the cause, please send all
of types of automatically generated files to Sierra Help in order to expedite the investiga-
tion. Note, however, that Sierra Help email is limited to files less than 64 MB in size. For
larger files, please send the file location and change the file permissions, if necessary (see Sec-
tion 3.4), to allow the files to be accessed. In the case of classified or need-to-know (NTK)
permission issues, note that in your support request.

50




5.8.1 Log File

All Sierra applications provide varying forms of log file output of overall simulation informa-
tion, solver status, variable output, and other data. The preamble of each Sierra log file is
essentially the same and gives useful information such as code version, run start time, and
input file parsing. An example of this preamble is shown below.

e S o S SO s S SO St S S ST St S
Aria

Coupled multiphysics including Navier-Stokes,
elasticity, energy transport, species transport,
electrostatics; free and moving boundaries;
transient or steady state.

Version 4.33.1-398-gaeb9bfbb

With coupled mechanics support for
Aria - Coupled multiphysics
Encore - Solution Verification Analysis Region

Sandia National Laboratories
Albuquerque, New Mexico and Livermore, California

Please email questions and comments to
sierra-help@sandia.gov

Notice: This computer software was prepared by
Sandia Corporation, hereinafter the Contractor,
under Contract DE-AC04-94AL85000 with the
Department of Energy (DOE). All rights in the
computer software are reserved by DOE on behalf
of the United States Government and the
Contractor as provided in the Contract. You are
authorized to use this computer software for
Governmental purposes but it is not to be
released or distributed to the public. NEITHER
THE U.S. GOVERNMENT NOR THE CONTRACTOR MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LIABILITY FOR THE USE OF THIS SOFTWARE.

o1




2|Build Options

Directory
Executable
Built

Run Started
User
Architecture
Host
Hardware
Running
Processors 1
Processing

Product

Aria

Chaparral

Encore

FEI

GDSW

Linux

MPIH

SIERRA Framework
Trilinos
Trilinos|Aztec00
UtilityLib
Zoltan

/home/rpshaw/foamDecomposition/
/projects/sierra/linux_rh6/install/master/bin/aria
May 12 2014 18:46:01

linux intel-12.1 release

May 14 2014 11:04:22

rpshaw

cee-build001

cee-build001

x86_64

Linux

foamDecomposition. i

Version Qualifier

2.9.0
4.33.1-398-gaeb9bfbb
3.3.1 development
4.33.1-398-gaeb9bfbb
2.24.02

Dev
2.6.32-358.2.1.e16.x86_64
4.33.1-398-gaeb9bfbb
4.33.1-398-gaeb9bfbb
11.9.0

11.9.0
4.33.1-398-gaeb9bfbb
3.8

unreleased

Here it can be seen that Aria version 4.33.1-398-gaeb9bfbb is used, and further, it can
be seen that the master (i.e., VOTD) version is used based on the executable path:

/projects/sierra/linux_rh6/install/master/bin/aria

It can also be seen that the run was started at May 14 2014 11:04:22 on cee-build001
with 1 processor in /home/rpshaw/foamDecomposition/.

For more information on interpreting application-specific log file output, please refer to
the application user manuals.

5.8.2 STDOUT and slurm-* Files

In addition to the standard log file output, several messages may appear to standard output
(STDOUT) or to a job file if on a queued system. For Sandia queued systems, this is

o2




N

typically labeled slurm-JOBID.out due to Sandia’s use of SLURM as a job scheduler. One
of the most common error messages in this output is something like the following, where the
signal number, processor number and date may be changed:

Sierra received signal 11 at exception on processor 52:
Segmentation violation error

Sierra received signal 11 at Wed Apr 17 15:53:42 2013
s|Wed Apr 17 15:53:42 2013

While in and of itself this error message is not overly helpful in diagnosing the root problem of
the run termination, it does show that the problem did terminate with a segmentation fault
and was killed with POSIX signal 11 (SIGSEGV), which also denotes an invalid memory
reference. For a list of all signals and their numeric mapping, execute the following command:

$ kill -1

Another message that may be useful on systems where jobs have a time limit looks like
this:

slurmd [rs1779] : *** JOB 12424308 CANCELLED AT 2013-03-08T07:21:06 DUE TO
TIME LIMIT **x*

If the job appears to have suddenly halted without any apparent error in the log file, a quick
check for this message may help to give the reason for job termination.

5.9 Other Tools

Other tools are available which assist in different steps of running Sierra applications. This
section is not meant to be an exhaustive list of all available tools and users should refer to
documentation specific to the tools mentioned for more detail.

5.9.1 SEACAS

SEACAS [5] is a set of pre- and post-processing codes that have been developed in tandem
with Sierra. From the main SEACAS page:

“The Sandia National Laboratories (SNL) Engineering Analysis Code Access Sys-
tem (SEACAS) is a collection of structural and thermal codes and utilities used
by analysts at SNL. The system includes pre- and post-processing codes, analysis
codes, database translation codes, support libraries, UNIX shell scripts, and an
installation system.”

23




SEACAS codes that are commonly used by Sierra analysts include the following:

Aprepro Aprepro is an algebraic pre-processor that reads a file containing both general text
and algebraic, string, or conditional expressions. It interprets the expressions and
outputs them to the output file along with the general text. Aprepro contains
several mathematical functions, string functions, and flow control constructs. In
addition, functions are included that, with some additional files, implement a
units conversion system and a material database look-up system.

Decomp Decomp decomposes an Exodus-formatted mesh file into partitioned mesh files
for use in parallel computation. Decomp includes several different decomposition
methods for different application needs.

EPU EPU combines multiple Exodus databases produced by a parallel application into
a single Exodus database.

Exotxt Exotxt converts Exodus-formatted binary files to text files; a similar program
exists called Txtexo which performs the opposite transformation.

Grope  Grope is a program that examines the input to a finite element analysis (which
is in the Genesis database format) or the output from an analysis (in the Exodus
database format). Grope allows the user to examine any value in the database.
The display can be directed to the user’s terminal or to a print file.

For more information on SEACAS, see the documentation at the following URL:

http://compsim.sandia.gov/compsim/Docs/SEACAS/index.html

5.9.2 Percept

Percept is a toolkit for verification that includes a standalone code (mesh_adapt) that can
refine very large meshes in parallel. The tool can be run from the command line and is
completely automated. Features include support for a variety of element types, use of CAD
geometry files, maintenance of mesh size gradings, smoothing of meshes, and output of mesh
size statistics. More information regarding Percept and some of the available tools can be
found on CompSim.

5.9.3 Catalyst

Catalyst [6] is a visualization co-processing library developed by Kitware that is essentially
a lightweight ParaView [1] server library. Efforts have been made at Sandia to integrate
Catalyst tightly with many Sierra application codes, including using the same input syntax
as one would normally find in a Sierra Results Output block. For more information regarding
this capability, please contact catalyst-help@sandia.gov.

o4


http://compsim.sandia.gov/compsim/Docs/SEACAS/index.html
mailto:catalyst-help@sandia.gov

5.9.4 CUBIT

CUBIT is “a full-featured software toolkit for robust generation of two- and three-dimensional
finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time
to generate meshes, particularly large hex meshes of complicated, interlocking assemblies. It
is a solid-modeler-based pre-processor that meshes volumes and surfaces for finite element
analysis.” |7]

Many analysts use this Sandia-developed mesh generation tool to create and modify
computational meshes for use in Sierra. CUBIT also employs Aprepro to perform algebraic
operations, which lends to its use with Sierra applications. CUBIT is available at Sandia
and can be obtained for government use for free. For help with CUBIT, visit their web page
or contact Cubit Help at cubit-help@sandia.gov.

5.9.5 Sandia Analysis Workbench (SAW)

The Sandia Analysis Workbench (SAW) was created to help analysts build a computational
model using Sierra. The SAW “environment is a collection of integrated software tools to help
analysts reduce the time required to build, analyze, and understand complex finite element
analysis simulations. Depending upon the specific edition, it provides convenient graphical
model building and meshing capabilities, resource links, file management, metadata editor,
tools for teaming, the ability to add engineering notes to objects, and data management
capabilities.” [§].

SAW is available to all Sandia users of Sierra and can also be included in Sierra distri-
butions for external users of the Sierra codes. For more information on SAW, please contact
dart-help@sandia.gov.

5.9.6 More Information

More information regarding non-Sierra codes that can be used with Sierra applications can
be found at this URL for internal Sandia analysts:

https://computing.sandia.gov/codes_and_tools

5.10 Coupling within Sierra and with Non-Sierra Codes

One of Sierra’s aims is to be a multi-physics suite of codes, and it has the capability to
couple some of its own applications and to be coupled with certain non-Sierra codes when
the need arises. Sierra can also be utilized for the purposes of verification and parameter

95


mailto:cubit-help@sandia.gov
mailto:dart-help@sandia.gov
https://computing.sandia.gov/codes_and_tools

studies, which requires integration with optimization packages. This section outlines some
of these couplings and gives recommendations for achieving the desired coupling.

5.10.1 Multi-physics Coupling

To enable multi-physics simulations, several Sierra applications may be coupled to each
other through various means. One means of doing this is via framework Solution Control
- examples of this include Sierra/Thermal Multiphysics and Sierra/SM (arpeggio) and
Sierra/ Thermal Multiphysics and Sierra/Low Mach Fluids (fuego_aria). The coupling of
Sierra/SD and Sierra/Aero is accomplished not via a combined executable, but through a
Multiple Program Multiple Data (MPMD) model. These couplings of Sierra-Sierra applica-
tions are described in the appropriate user manuals.

Coupling of CTH [9] to some Sierra applications is also available in the ITAR distribution
of Sierra. Sierra/SM couples to CTH via the fortissimo executable. Aero also provides
one-way coupling to CTH via the reading in of specific files. The specifics of these couplings
can also be found in the Sierra/SM and Sierra/Aero manuals.

Other non-Sierra codes have also been coupled to Sierra. Contact Sierra Help if interested
in determining whether a specific non-Sierra coupled application exists or would be feasible
to implement.

5.10.2 Dakota: Optimization & Solution Verification

Sierra analysts who desire to perform sensitivity analysis, design optimization, or uncertainty
quantification may use Dakota [10]. Setting up Dakota with Sierra requires an understand-
ing of the desired workflow and computing environment. See Section 4.4.1 for information
regarding running Sierra and Dakota together.

o6



Chapter 6

Versioning

The Sierra codes follow a strict versioning system in order to meet software quality assurance
(SQA) demands. An illustration of Sierra’s release process may be seen in Figure 6.1.
The general numbering notation that Sierra follows is X.YY.Z, where X denotes the major
number, YY denotes the minor number, and Z denotes the point number. These numbers
may have different meanings depending upon the type of version and are discussed in the
following sections.

4.10 Branch Tip 4.12 Branch Tip

Official 4.10.3 Release

Official 4.10.2 Release Official 4.12.2 Release

Official 4.10.1 Release Official 4.12.1 Release

Release Cycle (currently 6 months)

7 \
L. % & @& _____ & _____® & @& |
Q0 Lo Lo L0
o 2 2 v P & 2
<A “ X ENIEN Y o
x?é" N N “’Dé L S
£ S Iy £ E Iy Iy
~ >
O K 2 v S K ' 7
T & & NPE & &
Pl 1) L o & Q S
& s} ke N ks ks
s S S sr g S
fay /& v £/ /8 3
QQ’-E' v;’ ¥ "\?é "'? ”’)q'{
S o 5 ~ N ~ 7
VV? ™ * v-vr?, [ w

Figure 6.1. Tllustration of Sierra release process.

57



6.1 Release

Sierra follows a release cycle that is roughly six months in duration. At the end of each
release cycle, the Sierra developers create a new release branch, which has been rigorously
tested to remove as many issues as possible. Sierra releases follow the X.YY notation, where
YY is an even number, e.g., 4.10. After the release branch has been created, further testing
is performed, and when consensus is reached between all Sierra development team leads,
then a (static) point release is made and follows the numbering convention X.YY.Z, where
Z denotes the point number and begins with 1. For example, the first point release of the
4.10 branch is 4.10.1.

Note that in this example, 4.10 (without the trailing point number) is a development
branch, i.e., changes can be made to it. If serious code bugs are found in the 4.10.1 point
release, a code fix can be developed and applied as a patch to the 4.10 release branch.
Another point release can be created that includes the fix, which would be labeled 4.10.2.

For production Sierra analysis and for most applications, the release version of Sierra is
the recommended for all code use. However, there are situations where using a newer, less
stable version of Sierra is warranted:

e New code features have been added since the release, and a user would like to test the
feature on their problem.

e A bug fix was made in a newer version which allows a model to run.

It is important to note that versions of the code newer than the point release have not been
as rigorously tested and may provide incorrect results.

As a policy, Sierra supports the two most recent releases at any time. Some users may
need to use an older release for qualification purposes, so this policy should be taken into
account when planning these activities. If special support is needed for longer than the official
policy, please let Sierra Help know so that your needs can be correctly communicated.

Please note that backward compatibility of user input is not always guaranteed; users
should use release notes on CompSim as guidance on such matters. Also, due to frequent
code changes (e.g., bug fixes, new features), results may differ between different releases -
this can occur if the suite of tests do not test similar user input setup or are not run at
the scale of the model of concern. If the results are different enough or are trending away
from expected answers, please contact Sierra Help so that they may raise the issue with the
development teams.

o8



@ 6.1.1 Default Version

The default version of Sierra corresponds to the code version loaded into a user’s working
environment when the sierra module is loaded:

$ module load sierra

The Sierra development operations (DevOps) team, which manages Sierra builds and
distributions, also manages the default version that will be loaded with the sierra module.
The default version will always point to the current point release. To continue the previous
example, the default version when the 4.10.1 point release is created is also 4.10.1. If at
some point a 4.10.2 point release needed to be created, then the default version would be
switched to that version number upon approval by the key Sierra development leads.

As discussed in Section 6.1, the default version of Sierra is recommended for all situations
that do not merit the use of a newer version of the code. If the same executable is required
on a project for over one year (roughly the supported lifetime of a release executable), it is
recommended that you copy the executable to ensure that it is not erased before you are
done using it on the project.

6.2 End-of-Sprint (EOS) Snapshot

In between each major release, Sierra development occurs on odd-numbered development
branches, e.g., 4.13. At the end of each three-week development sprint (See Chapter 7),
the Sierra development teams also creates a point release, termed an End-of-Sprint (EOS)
snapshot. EOS snapshots also follow the X.YY.Z convention, where Z is the sprint number
in the current development cycle. These EOS snapshots are created to ensure that Sierra
is release-ready at frequent intervals and to aid users who need to use a newer version than
the current release.

As with release versions, Sierra development teams only support the two most recent EOS
snapshots. This means that each EOS snapshot is available and supported for approximately
six weeks.

() 6.3 Master

All Sierra development occurs on the development branch of the code, which is also
termed master or Version of the Day (VOTD). To ensure code correctness, the master
branch is built and tested nightly on all platforms upon which Sierra is supported. Sandia
users may use the nightly-built version of Sierra by loading the following module:

$ module load sierra/master

59



Regular use of master is highly discouraged, as it is the least tested of all the versions of
Sierra and may not be available due to regular code churn or system issues. Please exercise
caution whenever using this version of Sierra. When running a Sierra application master
executable, we recommend copying the executable to your disk area in case the executable
becomes unavailable or you need to perform a restart run. The sierra script includes the
-c option for this purpose.

6.4 Personal Versions

Some users may decide to participate in Sierra development in order to aid in personal
projects. In this situation, the user will need to add the Sierra Developer account in Web-
CARS (see Section 4.1). Once this account is approved, the Sierra code and tests Git
repositories can be copied via the following commands. It is advised to do so on a fast
filesystem such as /scratch:

$ module load sierra-devel

$ mkdir new_repo_dir

$ cd new_repo_dir

repo init

repo sync

repo start --all master

git clone sierra-git:/git/tests

€hH A fH &H

To compile the code, the following command sequence will suffice:

$ module load sierra-devel
$ cd code
$ bake

Depending upon where the compilation occurs, it is wise to limit the number of proces-
sors to a reasonable amount. To compile one specific application, such as Sierra/SM, on 8
processors, execute the following:

$ bake -j 8 adagio

Once the executable has built, you can run any model with that binary:

$ module load sierra/master
$ sierra /path/to/code/bin/adagio -i input.i

For further information regarding Sierra development, please see the following URL:

http://compsim.sandia.gov/compsim/Docs/Sierra/development/index.html

60



http://compsim.sandia.gov/compsim/Docs/Sierra/development/index.html

Note that before a user engages in code development that will be deployed generally in
Sierra code, they should engage with the correct code development team to ensure they are
following practices which will result in high-quality code.

6.5 Distribution

The Sierra code is routinely distributed to external customers via processes that the Sierra
DevOps team has created. Some internal users may also request a distribution if they feel
that they have a compelling reason and are unable to utilize the supported Sierra versions on
Sandia’s HPC systems. In this case, a distribution request may be filled out at the following
URL:

http://compsim.sandia.gov/compsim/Support_SierraRequestForm.html

Note that due to limited resources, these requests are generally discouraged if the Sierra
code can be accessed in some other already established manner.

61


http://compsim.sandia.gov/compsim/Support_SierraRequestForm.html

62



Chapter 7

Development Process

The Sierra development teams follow the concepts of lean/agile software development [11].
This development model was chosen in an effort to ensure that all deliverables are met while
remaining flexible enough to meet changing demands in an ever-growing code development
project.

7.1 SCRUM Agile Development

Most scrum development teams loosely adhere to the SCRUM development process, a widely
used method that follows the principles of agile software development. More information
regarding the scrum process can be found in the Scrum Guide [12]. Given that the scrum
process is integral to interfacing with Sierra development teams, key information regarding
the scrum process is described here. Realize that each development team is different and
may employ practices which do not exactly align with the description below.

Development is broken into time-bound cycles called sprints, which last three weeks.
Development tasks, called User Stories, are typically parts of larger efforts, called epics.
Stories are usually sized so that they can be finished within a sprint. Every day during
the sprint, the team will discuss progress and impediments at a 15-minute meeting called
a stand-up. At the end of each sprint, the team will hold a one-hour review where they
will present the progress on stories to any interested parties. They will then hold a team
retrospective and planning session to discuss process improvements and plan tasks for the
next sprint.

Several positions have been created within the scrum process to ensure success of the
project. The Product Owner (PO) makes sure that the team achieves all deliverables by
prioritizing all items on the product backlog, which generally consists of items from the fiscal
year project plan, among other items. The Scrum Master is in charge of all meetings and
helps to remove impediments to the team’s productivity.

63



7.2 Process for Adding New Capabilities

There are several actions which may be taken to add a new capability to the Sierra code
suite, each of which have varying levels of effectiveness. The method which ensures greatest
success is to add a feature request to the fiscal year project plan, which is negotiated at the
the management level. This requires a good deal of prior planning and negotiation and may
not be feasible for some feature requests. The next most effective process is to communicate
needs through the Product Owner so that they can place the request on the product backlog.

The least effective method for requesting a new feature is through the user support
process, though this is also a viable option. Feature requests may be submitted to Sierra Help,
who will then create an enhancement user support ticket. The time frame for completion of a
feature request depends on the team and on the scope of the feature request. Smaller feature
requests may be implemented quickly if the request fits in the with the current development
work. More difficult enhancement requests may end up on the ticket backlog, which is then
prioritized against the current set of user stories by the Product Owner. This is typically a
good avenue to take when one has a low-priority request that should be recorded for future
planning purposes. It is still recommended to consult with the correct Product Owner to
ensure that they are aware of the feature request and its relative importance.

64



Appendices

65



66



® &

Appendix A

Guide of Document Conventions

This appendix chapter outlines the different styles that are utilized in this manual. Styles
and their respective descriptions are shown below.

Sandia-specific section

The entire section marked by the SNL Thunderbird logo is relevant only for Sandia users
of Sierra.

Sandia-specific item(s)

Paragraphs/items marked by the Sandia Thunderbird logo are relevant only to Sandia users
of Sierra. Examples are as follows:

e General item applicable to all users

e Sandia-specific item

This entire paragraph is applicable only to Sandia users of the Sierra codes. External
users need not read this paragraph.

Command Line Prompt

$ cd /path/to/file
$ 1s

67




N

00

10

Directory Listing

/path/to/important/directory

Text File

# File.txt

3)This is an example of a text file and how it appears

in this document.

j|BASH syntax highlighting is the default:

cd /path/to/file

for file in list ; do
echo "Found $file"

done

Sierra Input File

$ Sierra example input file

s|Begin Sierra

Begin Procedure
Begin Time Control
Time Step = 1.0
End Time Control

Begin Region
BC displacements on surface_1 =0 0 0

End Region

End Procedure

5| End Sierra

68




URL

http://www.sandia.gov/

69


http://www.sandia.gov/

70



Appendix B

Build Documentation

This appendix chapter describes how to obtain and build this document. The source code
for this document is managed within Sierra’s internal documentation repository. Appropriate
WebCARS access will be required for this access. With access, the following command can
be issued to obtain the source.

$ git clone sierra-git:/git/docs

This document’s source resides within this directory:

$ cd docs/Sierra/user_manual

A brief introduction of the contents of this directory is given below.

Makefile: Used to build the documentation; please read this file for its targets and their

descriptions
doc: Contains the BKTEX files and resultant final PDF document
src: Contains the source file examples referenced within the document
ref: Contains reference material used in the making of this document

Now, to build the document, the following command can be issued in the top-level direc-
tory.

$ make

71




72



Appendix C

Example Input File

Below is an example input file that showcases consistent indention and comments.

<Problem_Description>

time marching

Tabular conductivity

single material

H OHF H HF H HF H HF H H

</Problem_Description>

Dirichlet boundary condition
Tabular Time-dependent Flux Boundary condition

constant initial condition

Begin SIERRA Aria VOTD: Class-Model

Title Aria Transient Training Model

Begin Aria Material ssteel304
Constant rho
Constant cp

Density

Specific Heat

Heat Conduction
Thermal Conductivity
ssteel_k_function

Basic

7.900E+03 # kg/m"3,
477.0 # J/kg-K,

User_Function X = Temperature Name

End Aria Material ssteel304

Begin Aria Material aluminum
Constant rho
Constant cp

Density

Specific Heat

Heat Conduction
Thermal Conductivity

Basic
Constant k

End Aria Material aluminum

73

2.7T0E+03 # kg/m"3,
800.0 # J/kg-K,
175.0 # W/mK

at 20 C
at 20 C

at 20 C
at 20 C




%}

ss| Begin Definition for Function ssteel_k_function
37 Type is Piecewise Linear

38 Begin Values

39 #T (K) k (W/HlK)

10 173.15 10.8857

11 273.15 13.3978

12 373.15 16.3285

13 773.15 21.7714

44 973.15 25.9582
15 3500.0 25.9582
16 End Values

17 End Definition for Function ssteel_k_function

52| Begin Definition for Function unsteady_flux

53 Type is Piecewise Linear
54 Begin Values

55 #t (s) QW)

56 0.0 0.0

57 500.0 2.0e4

59 End Values

6o End Definition for Function unsteady_flux

3|$ Define linear solver settings
61|$ - Conjugate Gradient solver used
6s|$ - Jacobi Preconditioning

66 $ ———————————————————————————————————————————————————
o7| Begin AZTEC Equation Solver solve_temperature_cg
68 Solution Method = CG

69 Preconditioning Method = Jacobi

70 Maximum Iterations = 500

71 Residual Norm Tolerance = 1le-10

72 Residual Norm Scaling = ANORM # default

73 End  AZTEC Equation Solver solve_temperature_cg
74
S

76| $ Specify mesh name and settings

74




75| Begin Finite Element Model FEModel
79 Database Name = model_coarse_hex.g
so| # Database Name = model_med_hex.g

85 Use Material ssteel304 for \$

86 block_1 block_4 block_5 block_6 block_7 block_8 \$

87 block_9 block_10 block_21 block_22 block_31 \$

88 block_32 block_33 block_120 block_121 block_122 block_123
89

90 $ ___________________________________________________

01| $ Choose blocks to omit from analysis
I

93 Omit Volume block_11

95 End Finite Element Model FEModel

00 [ T T T T T

100

01| Begin Procedure AriaProcedure

103 $ ———————————————————————————————————————————————————
wi|$  Define temporal solution parameters

105 $ ———————————————————————————————————————————————————
106 Begin Solution Control Description

107 Use System Main

108 Begin System Main

109 Simulation Start Time = 0.0

110 Simulation Termination Time = 3000.

111 Begin Transient solution_block_1

112 Advance AriaRegion

113 End Transient solution_block_1

114 End System Main

115

116 $ ___________________________________________________
17| $ Specify time integration settings

1s| $ Note: There could be several solution

119 $ blocks changing these parameters

120 $ ———————————————————————————————————————————————————
121 Begin Parameters for Transient Solution_Block_1

I6)




159

160

161

162

163

164

165

166

Start Time 0.0 # seconds

Termination Time = 3000.0 # seconds

Begin Parameters for Aria Region AriaRegion
Time Step Variation = Adaptive
Initial Time Step Size = 0.05 # seconds
Initial Time Step Size = 0.004 # seconds
Time Integration Method = Second_Order

Maximum Time Step Size = 20.0 # seconds
Maximum Time Step Size = 4.0 # seconds
Minimum Time Step Size = 0.01 # seconds
Minimum Time Step Size = 0.0001 # seconds
Predictor-Corrector Tolerance = 0.01 # seconds

Limit solution Increment Temperature = 20.0 # K
End Parameters for Aria Region AriaRegion
End Parameters for Transient Solution_Block_1
End Solution Control Description

Use Linear Solver solve_temperature_cg

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 4

Nonlinear Residual Tolerance = 1.e-6
Nonlinear Relaxation Factor = 1.0 # default

# mimic Calore solution behavior
Use DOF Averaged Nonlinear Residual
Accept Solution After Maximum Nonlinear Iterations = True




EQ Energy for Temperature on all_blocks using Q1 with Diff Mass

B m o
$ Specify initial conditions
B o o o .
Begin Initial Condition IC_block
Temperature = 300.0 # K
A1l Volumes
End Initial Condition IC_block
o m oo
$ Specify boundary conditions
o
Begin Heat Flux Boundary Condition fluxBC
Add Surface surface_701 surface_801
Flux Time Function = unsteady_flux
End Heat Flux Boundary Condition fluxBC
Begin Temperature Boundary Condition surface_temp_1
Add Surface surface_202
Temperature = 400. # K
End Temperature Boundary Condition surface_temp_1
B m o
$ Define contents of binary plot file
B o o .

Begin Results Output Arialutput

Database Name = transient.e

At Step O Interval =1

Title Aria: Transient Training Model

Nodal Variables = Solution->Temperature as T
End Results Output AriaOutput

End Aria Region AriaRegion
End Procedure AriaProcedure

End SIERRA Aria VOTD: Class-Model

One way to properly indent Sierra input file source code is to use the sindent utility,
developed by this document’s authors. An example of how to use this utility is below. This
utility may be used after loading a sierra module.

$ cat tst.i
#COMMENT ON COLUMN1

7




bEgin block

this

#COMMENT ON COLUMN1
bEgin block2

was
End block2

#COMMENT ON COLUMN1
more
bEgin block3
work
bEgin block4
than
End block4
#COMMENT ON COLUMN2
it
End block3
should’ve
End block
been

$ sindent tst.i > tstnew.i
$ cat tstnew.i
#COMMENT ON COLUMN1
bEgin block

this
#COMMENT ON COLUMN1

bEgin block?2

was
End block2

#COMMENT ON COLUMN1
more
bEgin block3
work
bEgin block4
than
End block4
#COMMENT ON COLUMN2
it
End block3
should’ve
End block
been

78




N

Appendix D

Example .bashrc and .bash_profile files

Below is an example .bashrc file. It is important to note that there are no modules loaded
in the .bashrc as per the recommendations in Section 4.3.

#Source global definitions

if [ -f /etc/bashrc ]; then
. /etc/bashrc

fi

export PATH=/usr/bin:/bin:/sbin:/usr/sbin:$PATH
export http_proxy=http://wwwproxy.sandia.gov:80

#MAKE PERMISSIONS MORE ACCESSIBLE
umask 027

3| #SET PATH

export PATH=${HOME}/bin:$PATH

;| #SET USER VARS
:|export MAILTO=${USER}@sandia.gov

#SET ALIAS
alias gochama=’ssh -Y chama’
alias golynx=’ssh -Y lynx’

2lalias back=’cd $0LDPWD’

Below is an example .bash_profile.

# ~/.bash_profile: executed by bash(l) for login shells.
# see /usr/share/doc/bash/examples/startup-files for examples

# include .bashrc if it exists

s/if [ -f 7/.bashrc ]; then

source ~/.bashrc
fi

79




80



N

Appendix E

Example .cshrc file

Below is an example .cshrc file. It is important to note that there are no modules loaded
in the .cshrc as per the recommendations in Section 4.3.

if ( -r /usr/local/etc/system.cshrc ) then
source /usr/local/etc/system.cshrc

endif

if ( -r /usr/local/modules/default/init/csh ) then
source /usr/local/modules/default/init/csh

endif

# Set http proxy
setenv http_proxy http://wwwproxy.sandia.gov:80

limit coredumpsize Ok
umask 027

# list directories in columns

slalias 1s ’1s -C?

alias 11 ‘pwd ; 1s -1°

rlalias 111 ’pwd ; 1ls -al’

alias 11d ’pwd ; 1ls -1 | grep drwx’
alias lad ’pwd ; 1ls -al | grep drwx’
alias 11t ‘’pwd ; 1ls -1rt’

# useful aliases

;jalias ssh ’ssh -Y?

5| # Remember last 100 commands

set history = 100

alias h ’history’

# PATHS

set path = ( $HOME/bin /etc /usr/sbin /sbin /usr/kerberos/bin )

set path = ( $path /usr/local/etc /usr/local/bin /usr/bin /bin /usr/etc )

81




82



References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

Utkarsh Ayachit et al. The ParaView Guide: A Parallel Visualization Application.
Kitware Inc., 4th edition, 2012. ISBN 978-1-930934-24-5.

CEI Inc. EnSight - CSM and CFD Post processing. https://www.ceisoftware.com,
2014.

B. M. Adams, M. S. Ebeida, M. S. Eldred, J. D. Jakeman, L. P. Swiler, J. A. Stephens,
D. M. Vigil, T. M. Wildey, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, K. T. Hu, L. E.
Bauman, and P. D. Hough. DAKOTA, A Multilevel Parallel Object-Oriented Frame-
work for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.0 User’s Manual. Technical report SAND2014-4633, San-
dia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550, July 2014.

Mahesh Rajan and Anthony Agelastos. Advantages & Benefits of 4GB/core Memory
on Chama & Pecos. https://sharepoint.sandia.gov/sites/capviz/HPC},20User’
20Meetings/memory_benefit_03.pdf, October 2013.

Greg Sjaardema. SEACAS: Sandia Engineering Analysis Code Access System. http:
//compsim.sandia.gov/compsim/Docs/SEACAS/index.html, July 2013.

Andrew C. Bauer, Berk Geveci, and Will Schroeder. The ParaView Catalyst User’s
Guide v1.0. Kitware Inc., 2013.

Cubit Support. Sandia National Laboratories: CUBIT. https://cubit.sandia.gov/,
2014.

Ernest Friedman-Hill, Edward Hoffman, Marcus Gibson, Kevin Olsen, et al. San-
dia Analysis Workbench. https://dart.sandia.gov/wiki/display/SAW/Sandia+
Analysis+Workbench, November 2014.

Eric Harstad. Sandia National Laboratories: CTH Shock Physics. http://www.sandia.
gov/CTH/index.html, 2015.

Dakota Development Team. The Dakota Project: Large-scale Engineering Optimization
and Uncertainty Analysis. http://dakota.sandia.gov, May 2014.

Agile Development Team. Manifesto for Agile Software Development. http://
agilemanifesto.org, 2001.

Ken Schwaber and Jeff Sutherland. The SCRUM Guide™. http://www.scrumguides.
org/scrum-guide.html, July 2013.

33


https://www.ceisoftware.com
https://sharepoint.sandia.gov/sites/capviz/HPC%20User%20Meetings/memory_benefit_03.pdf
https://sharepoint.sandia.gov/sites/capviz/HPC%20User%20Meetings/memory_benefit_03.pdf
http://compsim.sandia.gov/compsim/Docs/SEACAS/index.html
http://compsim.sandia.gov/compsim/Docs/SEACAS/index.html
https://cubit.sandia.gov/
https://dart.sandia.gov/wiki/display/SAW/Sandia+Analysis+Workbench
https://dart.sandia.gov/wiki/display/SAW/Sandia+Analysis+Workbench
http://www.sandia.gov/CTH/index.html
http://www.sandia.gov/CTH/index.html
http://dakota.sandia.gov
http://agilemanifesto.org
http://agilemanifesto.org
http://www.scrumguides.org/scrum-guide.html
http://www.scrumguides.org/scrum-guide.html

84



DISTRIBUTION:

—_ = =

MS 0807
MS 0807
MS 0807
MS 0845
MS 0899

Anthony M. Agelastos, 9326

Joel D. Miller, 9326

Ryan P. Shaw, 9326

Micheal W. Glass, 1545

Technical Library, 9536 (electronic copy)

85



86



87

v1.38



(ﬂ:'l) Sandia National Laboratories



	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Frequently Asked Questions
	Before Asking for Help
	Documentation
	Additional Non-Sierra Resources
	computing.sandia.gov
	<machine>-help
	Post-processing Help

	Information to Give Sierra Help
	Code Version
	Running Environment
	Number of Processors
	Files
	Funding Program
	Additional Considerations

	Permissions

	User Environment
	Necessary Accounts
	WCID Process and Usage
	.*rc Configuration Files
	Modules
	Just-in-Time Module Loading

	Stale Environments

	Running Sierra
	Commandline Invocation
	sierra Script
	Pre- and Post-processing
	Signals

	Restart
	Automatic Restart
	Time-specified Restart

	User Subroutines
	Memory Considerations
	I/O
	Good Citizenship
	Striping

	Interpreting Terminal Output
	Log File
	STDOUT and slurm-* Files

	Other Tools
	SEACAS
	Percept
	Catalyst
	CUBIT
	Sandia Analysis Workbench (SAW)
	More Information

	Coupling within Sierra and with Non-Sierra Codes
	Multi-physics Coupling
	Dakota: Optimization & Solution Verification


	Versioning
	Release
	Default Version

	End-of-Sprint (EOS) Snapshot
	Master
	Personal Versions
	Distribution

	Development Process
	SCRUM Agile Development
	Process for Adding New Capabilities

	Guide of Document Conventions
	Build Documentation
	Example Input File
	Example .bashrc and .bash_profile files
	Example .cshrc file
	References

