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ABSTRACT
Application scalability can be significantly impacted by node
level performance variability in HPC. While previous studies
have demonstrated the impact of one source of variability,
OS noise, in message passing runtimes, none have explored
the impact on dynamically scheduled runtimes. In this pa-
per we examine the impact that OS noise has on the Le-
gion runtime. Our work shows that 2.5% net performance
variability at the node level can result in 25% application
slowdown for MPI+OpenACC based runtimes compared to
2% slowdown for Legion. We then identify the mechanisms
that contribute to better noise absorption in Legion, quan-
tifying their impact. Furthermore, we assess the impact of
OS noise at the granularity of communication, task schedul-
ing, and application level tasks within Legion demonstrating
that where noise is injected can significantly effect scalabil-
ity. The implications of this study on OS and runtime ar-
chitecture is then discussed.

1. INTRODUCTION
Modern high performance computing systems and appli-

cations are composed of a variety of system and user level
services, all of which are subject to varying degrees of perfor-
mance variability. In particular, system level services such
as parallel file systems, I/O forwarding layers, and system
monitoring daemons can compete with application threads
for node level and system wide resources. Similarly, at the
application level, multi-physics packages and coupled ana-
lytics can create contention for resources. Emerging power
management services such as power capping at the node and
CPU/GPU level can introduce similar performance variabil-
ity in the form of application and system level threads com-
peting for execution under a fixed power budget. All of these
sources of variability can significantly harm the performance
and scalability of production applications.

Traditionally the management of resource contention has
been an operating system (OS) level function and in HPC
the general approach has been to minimize OS level ser-
vice interrupts also known as OS noise. In practice, this is
done by containing OS level services through core special-
ization or by function shipping OS services to a remote sys-

tem thereby providing a level of isolation of system services
from the application. Management of resource contention
at the application level is handled by the application de-
veloper. Many application developers opt for a static par-
titioning of resources mirroring domain decomposition due
to its simplicity. However, this approach leaves many HPC
applications vulnerable to the effects of OS noise, especially
at scale.

The growing effects of OS noise has been one of the con-
tributing factors in the development of dynamic runtime
systems such as Charm++ [1], the Open Community Run-
time [2], Uintah [3], StarSs [4] and Legion [5]. Dynamic run-
time systems have the potential to react to the performance
variability introduced by resource contention and mitigate
its effects. While prior work has examined the impact of
OS noise within static runtime environments, no prior work
has examined the effects of OS noise on dynamic runtime
systems. Our work explores these effects and demonstrates
the ways that a dynamic runtime system such as Legion can
mitigate the effects of OS noise in comparison to traditional
static systems such as MPI and OpenACC. We investigate
these effects within the context of S3D, a production-grade
turbulent combustion simulation. This paper makes the fol-
lowing novel contributions:

1. A comparison of the impact of OS noise on both static
and dynamic runtime systems using a real-world ap-
plication

2. An analysis of the mechanisms that help absorb OS
noise in a dynamic runtime

3. Identification of dynamic runtime tasks that are more
susceptible to OS noise

Section 2 gives a brief overview of the Legion runtime sys-
tem. Section 3 describes each version of the S3D application
used in this study. Our evaluation and results are then pre-
sented in Section 4 and we conclude with implications of our
work for future systems in Section 5.

2. THE LEGION RUNTIME SYSTEM
Legion [5, 6, 7] is a dynamic task-based runtime system

which relies on a dynamic program analysis to both discover
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parallelism and map applications on target machines. Le-
gion programs are structured as a hierarchical tree of tasks,
with tasks permitted to launch arbitrary numbers of sub-
tasks. All data in Legion is stored within logical regions, a
relational abstraction that decouples data specification from
both its layout and placement in the memory hierarchy. Im-
portantly, all tasks are required to name the set of logical
regions that they will access during their execution. The Le-
gion runtime performs a dynamic dependence analysis based
on the logical region usage of different tasks to implicitly ex-
tract parallelism from Legion programs. From this analysis,
the Legion runtime constructs an explicit asynchronous task
graph to be executed by the lower-level Realm runtime (see
Section 2.1). To hide the latency of this analysis, Legion
relies on a deferred execution model [8], in which the run-
time is performing its dynamic analysis well in advance of
the actual application execution. This allows Legion to dis-
cover task parallelism, execute tasks out-of-order, and hide
operation latencies while still preserving sequential program
semantics.

The dynamic analysis performed by Legion is important
for two reasons. First, automatic extraction of parallelism
eases the burden on programmers. Second, it makes it pos-
sible to dynamically adapt how a Legion program is mapped
onto a target architecture. To map a Legion application onto
a particular machine, every task is assigned a processor on
which to run, and a physical instance must be created (or
reused) in some memory for each logical region requested by
a task. These decisions are referred to as the mapping of a
Legion program. In Legion, all of these mapping decisions
are exposed directly to the application programmer through
a mapping interface. A crucial aspect of the Legion mapping
interface is that it allows the construction of mapper objects
(also called mappers) to handle dynamic queries from the
runtime about how to map tasks and logical regions. By
making this interface dynamic, mappers can introspect the
state of the application and the underlying hardware when
making mapping decisions. For example, mappers can ob-
serve which processors are executing tasks faster or slower
(possibly depending on OS noise) and schedule tasks onto
more lightly loaded processors. A mapper can continually
monitor the changing state of the machine, and decide the
best course of action as anomalous behavior occurs through-
out a run.

2.1 Realm
Realm[8] is a low-level runtime that provides a portable

interface for execution of asynchronous task graphs on sys-
tems with heterogeneous computational resources and com-
plicated memory hierarchies. Realm uses a deferred execu-
tion model in which all operations (tasks, copies, even criti-
cal sections in the form of reservations) are included in the
task graph with dependencies captured explicitly by events.

Realm handles the scheduling of operations (i.e., deter-
mining when dependencies have been satisfied and when
the assigned execution resources are available), but leaves
the mapping decisions (i.e. where tasks and data should be
placed) to the Realm client - a combination of the Legion
runtime and the application’s mapper objects in this case.

To allow the client to make intelligent mapping decisions,
Realm provides a model of the underlying machine in the
form of a graph of processors (e.g. x86 CPU cores, CUDA-
capable GPUs) and memories (e.g. a node’s system memory,

a GPU’s framebuffer, or remote-DMA-accessible memory on
another node), with edges indicating memories accessible
to a given processor or pairs of memories between which
efficient copies can be performed.

The client’s control over the system is maximized by hav-
ing the performance of operations mapped to the machine
model be as predictable as possible. Thus, Realm focuses on
providing an efficient mechanism for execution and not in-
terfering with the mapping decisions made by the client. It
also tries to reduce, or at least isolate, performance variabil-
ity in the the underlying operating system and hardware.

The most obvious way in which Realm does this is in the
way it sets the CPU affinity masks of threads. Realm uses
a large number of threads internally:

• A persistent thread is created for each “CPU” proces-
sor exposed in the machine graph. (The number to
expose is configurable at runtime startup.) All tasks
mapped onto that processor by the client will be ex-
ecuted in this thread. With good mapping decisions,
these threads should be constantly busy.

• A persistent thread is created for each “GPU” proces-
sor that runs application tasks mapped to that proces-
sor. The typical activity of a task mapped to a GPU
processor is to perform CUDA kernel launches, and
these threads spend most of their time waiting for the
CUDA operations to complete.

• Persistent threads are also created for “utility” proces-
sors, which are used by the Legion runtime for its dy-
namic analysis. This analysis work is bursty, so while
is it common to expose several utility processors, they
are often idle.

• Background DMA threads are created for each NUMA
domain and each GPU to perform copies that have
been requested by the Realm client. These threads
are often very busy, but entirely memory-bound.

• Finally, several background progress threads are cre-
ated to deal with sending and receiving inter-node mes-
sages via the GASNet API[9].

Realm uses sched_setaffinity on Linux-based systems
to control which CPU cores may be used by each thread. For
each “CPU” processor thread, an available CPU core is cho-
sen and the thread’s affinity mask is set to include only that
core. The core is also removed from every other thread’s
affinity mask, eliminating processor interference due to any
other Realm threads. On machines that support Hyper-
Threading[10], the second core is removed from the affinity
mask of all threads. Once all “CPU” processor threads have
been assigned their cores, all other Realm threads share the
remaining cores, including any enabled by Hyper-Threading,
allowing resource sharing for the bursty workloads these
other threads perform. The affinity mask of the original
application thread is also adjusted, in the hopes that any
other background threads that are created (e.g. for asyn-
chronous file I/O) are similarly kept from interfering with
the main computation threads that are being used by the
application.

3. APPLICATION
Our goal in this work is to understand the effects of OS

noise on production applications. We therefore focused our
work on a real production application: S3D, a turbulent
combustion simulation. We first provide a brief overview of
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Figure 1: Spyplot of S3D communication pattern (9 point
stencil) at 256 processes

S3D and then cover the several different implementations of
S3D used in our study.

S3D [11] is a reacting flow solver for the direct numerical
simulation of turbulent combustion in canonical geometries.
It solves the fully coupled unsteady conservation equations
for species mass, momentum and energy. The equations are
solved on a conventional structured Cartesian mesh using
higher order finite difference methods and advanced in time
with an explicit multi-stage Runge-Kutta integration scheme
with built-in error estimators. The formulation used in S3D
is specifically tailored for simulating multi-species chemically
reacting flow using detailed models for the thermophysical,
chemical and molecular transport properties. The computa-
tional kernels that compute these properties are a significant
fraction of the computational cost in comparison to other
flow solvers that are used for non-reacting flows.

Three different implementations of S3D are examined in
this paper. The same benchmark problem is used in each
case, and measures the time to solution, presented as wall-
clock time per timestep, for a grid size of 483 gridpoints per
node using a representative n-heptane/air chemical model.

3.1 S3D - MPI only
The original implementation of S3D used a pure MPI-

based single program multiple data (SPMD) paralleliza-
tion. The three-dimensional structured cartesian mesh was
equally partitioned among the multiple MPI tasks to achieve
perfect load balancing. On multi-core systems, multiple
MPI tasks are placed on each network node to utilize all
cores available on that node. The finite difference oper-
ators used for computing the derivatives and filtering the
solution require ghost zones that are 4 and 5 gridpoints
wide, respectively, to be exchanged. The ghost zone ex-
change occurs between the x, y and z neighbors of the three-
dimensional cartesian communication topology, also called
a box topology, using asynchronous point-to-point message
passing. Global communications are required for periodic
synchronization and monitoring, but are usually not perfor-
mance critical. The communication pattern of S3D is illus-
trated in Fig. 1 and is seen to be very regular due to the
nearest neighbor point-to-point (p2p) communication.

Since the communication is dominated by point-to-point
message passing among the neighbors in the cartesian topol-
ogy, the application benefits tremendously when the task
placement is chosen such as to minimize the distance that
such messages have to travel. In the case of the pure-MPI
implementation described here, task placement is achieved
at two levels. We use GAMPI, a parallel genetic-algorithm
based optimization tool that takes the set of nodes allocated

by the batch scheduler and computes a task ordering by min-
imizing the mean internode distance [12].

3.2 S3D - MPI+OpenACC
The MPI-only S3D was refactored and augmented with

OpenMP and OpenACC directives by Levesque et al. [13]
thereby porting it to GPU accelerated architectures while
also improving its scalability on massively parallel multicore
systems. Since all of S3D’s computations occur in loops that
traverse the three-dimensional Cartesian grid, they could be
easily converted to OpenMP either manually or through au-
tomatic parallelization. However, such an approach would
have suffered from having too fine granularity and therefore
not having enough computation to offset the fixed cost in
spawning the threads for each OpenMP region. Therefore,
S3D was refactored by combining the various grid loops to
form large computational regions that could be hybridized
with OpenMP without loss of efficiency. Once S3D was hy-
bridized, the OpenACC directives were added in addition to
OpenMP to allow the kernels to be executed on accelerators
as described in Ref. [13]. Furthermore, recent advances in
the OpenACC directives and compiler support has allowed
the parallel regions in S3D-OpenACC to be executed asyn-
chronously on the accelerator using multiple parallel streams
of execution on the device. S3D-OpenACC only uses 1 MPI
rank per network node and so does not require on-node task
placement as described above for S3D-MPI. However, it uses
the multi-node task placement computed using GAMPI and
MPI collective I/O similar to S3D-MPI.

3.3 MPI+Legion Version of S3D
The Legion version of S3D takes an alternate approach.

Starting from the original MPI-only implementation, it re-
places an entire call to the integrate function (i.e. six
stages of right-hand-side calculation followed by explicit
Runge-Kutta integration) with a handoff of the input data
to a Legion task that performs the equivalent computation.
The main Fortran application thread waits for the Legion
computation to finish and receives the updated state of the
simulation. After possibly performing some occasional filter-
ing, analysis, or checkpointing, the data is then handed back
to the Legion side to calculate the next time step. This ap-
proach yields the performance benefits of moving the main
computation into Legion while allowing the bulk of the code
that deals with user interface, monitoring, and file I/O un-
changed.

The Legion code is implemented using a tree of tasks.
The top-level task creates logical regions that will be used
throughout the execution of the simulation. For each time
step, sub-tasks perform each of the various physical and
chemical computations. Many of these tasks work on dif-
ferent subsets of the simulation state, and as we will show,
Legion’s ability to discover additional parallelism and exe-
cute tasks out-of-order are key contributors to its improved
OS noise mitigation.

The Legion version of S3D uses a customized mapper
which supports two different mapping strategies: a mixed
strategy divides work between the CPUs and GPUs and all-
GPU strategy places as much work as possible on the GPU.
(The relative performance of the two mappings depends on
processor speeds, memory sizes, and system bus bandwidth
- the correct strategy for a given machine is usually deter-
mined empirically.) When possible, the mapper will load



balance work by assigning tasks to sets of processors where
the task can execute. In Section 4 we will show how this
load balancing feature improves tolerance to OS noise.

4. EVALUATION
In this section we present our experimental evaluation of

the impact of system performance variability on three ver-
sions of S3D each optimized for different runtimes. First
we describe the experimental environment 4.1 used to con-
duct our evaluation. Next we describe our testing methodol-
ogy 4.2 describing how performance variability is introduced
in each of the three versions of S3D and the amount of per-
formance variability“injected” into the application. We then
present the impact of this induced performance variability
(noise injection) 4.3 on the performance of the three versions
of S3D. Finally, we conclude this section with an analysis of
the mechanisms 4.4 within Legion that help mitigate perfor-
mance variability.

4.1 Experimental Environment
All experiments were performed on two Cray XK-7 sys-

tems, the Titan supercomputer and a smaller scale testbed
of the same configuration at the Oak Ridge National Lab-
oratory. Each compute node in these systems is composed
of one 16-core AMD Opteron running at 2200MHz and one
Nvidia K20X GPU with 32 Gigabytes of DRAM memory
and 6 Gigabytes of GDDR memory. Nodes are intercon-
nected via the Cray Gemini interconnect in a 3-D torus
topology. The system software environment was Cray CLE
5.2UP02.

To verify the experimental results as well as get a better
understanding of how noise gets amplified and absorbed in
S3D, a validated OS noise simulator was also used. This
simulator framework comprises LogGOPSim [14] and the tool
chain developed by Levy et al. [15]. LogGOPSim uses the
LogGOPS model, an extension of the well known LogP
model [16], to simulate application traces that contain all
exchanged messages and group operations. In this way, Log-
GOPSim reproduces all happens-before dependencies and the
transitive closures of all delay chains of the application exe-
cution. It can also extrapolate traces from small application
runs with p processes to application runs with k ·p processes.
The extrapolation produces exact communication patterns
for all collective communications and approximates point-
to-point communications [14]. Levy et al.’s tool chain adds
the capability to simulate resilience activities such as check-
pointing and other scenarios such as in-situ analytics and
coupled codes. This tool chain extension has been validated
against experiments and established models in [15, 17].

OS Noise was injected into the application using the Self-
ish Detour [18] utility developed as part of the ZeptoOS
project at Argonne National Laboratory. This utility uti-
lizes the SIGALRM signal available in POSIX environments
to trigger noise injection within one or more application level
threads at a configurable interval. A signal handler then
samples a random distribution to determine if a configurable
amount of work will be conducted within the signal handler
thereby creating additional work for the CPU and block-
ing the application thread during execution of the handler.
For all of our experiments we set the probability to unity,
guaranteeing that work will be conducted at each interval.

4.2 Testing Methodology

For our experiments, we used the three versions of the S3D
application described in Section 3: a CPU only MPI version,
a mixed CPU/GPU MPI+OpenACC version, and a Legion
version. The Legion version was tested in two configura-
tions: 1) All CPU, where S3D tasks were mapped to only
CPUs, and 2) CPU+GPU, where S3D tasks were mapped
to both CPUs and GPUs. Using the selfish detour utility,
noise is injected into each of the S3D versions. The same
set of noise signatures is tested across all S3D versions and
this noise is selectively targeted at one or more bound CPU
threads. The hybrid MPI+OpenACC and Legion versions
differ significantly from the MPI only version of S3D in that
the former run a single process per node while the MPI only
version is optimally configured with a single process per core
on this system. This impacts our noise injection strategy as
a single signal handler for noise is generally configured for
each process. To accommodate this difference, for the MPI
only version, the noise interval is increased by the number
of processes per node and the interval timer used for each
process is offset by local process number × noise duration
resulting in a wave front of noise across the local processes.
In all versions noise injection is not coordinated between
nodes.

The noise signatures used for our experiments were based
on previous work [19, 20]. For the MPI version of S3D,
we explore the impact of injecting noise to a single process
per node vs. distributing noise across all MPI processes on
the node. For the MPI+OpenACC version, noise is injected
into the single master process running on the host, affecting
all CPU threads within the OpenACC runtime. For both
Legion versions we explore the effects of noise injection on
different thread types:

• S3D Fortran Thread: All noise is injected on the
thread running the Fortran component of the appli-
cation. This thread is mainly busy at start-up and
tear-down, and idle for most of a run.

• App Thread 1: All noise is injected on the first CPU
processor thread allocated to application level tasks.
This thread is bound to a dedicated physical core.

• Realm Threads: All noise is injected on the low-level
Realm threads responsible for handling active mes-
sages, performing data movement, and offloading work
onto GPU processors. Realm threads are bound to
the set of physical cores not used by CPU processor
threads.

• Legion Threads: All noise is injected on the Legion
runtime threads responsible for performing the dy-
namic program analysis necessary to map and execute
a Legion program on a target machine. Legion threads
are bound to the same physical cores as Realm threads.

• Any Thread: Noise is injected on all threads.

The ability to control where noise is injected within the
Legion runtime provides the opportunity to assess not only
the ability of dynamic task scheduling to potentially absorb
noise but also the impact of system noise on distinct task
types in the runtime.

Each noise profile was injected using two different meth-
ods, unscaled and scaled. For the unscaled method, the noise
profile being injected on each node was distributed evenly
among the threads being targeted on that node, resulting in
the node as a whole experiencing one copy of the noise pro-
file. For the scaled noise injection method, the noise profile
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Figure 2: Legion CPU+GPU version with 10Hz-2500us-
unscaled noise signature (runtime per step)
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Figure 3: OpenACC version with 10Hz-2500us-unscaled
noise signature (runtime per step)

was first scaled up by the number of CPU cores per node,
then distributed evenly among the threads being targeted
on each node. At a node level, the scaled method results in
a net noise equal to one copy of the noise profile per core.

4.3 Noise Injection: Impact on S3D Versions
We first examine the impact of a noise duration of approx-

imately 2500usec occurring at a frequency of 10Hz which
corresponds empirically to a loaded preemption of a process
by the operating system.

Figures 2,3 illustrate the performance in terms of
walltime/timestep for the Legion CPU+GPU and
MPI+OpenACC S3D versions for unscaled noise injection.
The Legion CPU+GPU version shows very little perfor-
mance impact, 1 − 2%, to this noise pattern irrespective of
the number of nodes. The MPI+OpenACC version incurs
a minimum of .75% performance degradation at 16 nodes
and maximum of 4.5% at 1024 nodes. Overall S3D absorbs
this noise signature well for both of these configurations
and does not appear to amplify noise as a function of scale
due to its use of a nearest neighbor stencil communication
pattern. The Legion All CPU and MPI only versions were
similarly insensitive.

Next we examine the impact of this same noise signature,
10Hz − 2500usec, scaled by the number of cores per node.

22 23 24 25 26 27 28 29 210

Node count

0.70

0.75

0.80

0.85

0.90

R
u
n
ti

m
e
/t

im
e
st

e
p
 (

se
c)

No Noise
App Thread 1
Realm Threads
S3D Fortran Thread
Legion Threads
Any Thread

Figure 4: Legion CPU + GPU version with 10Hz-2500us-
scaled noise signature (runtime per step)

In the Legion and MPI+OpenACC versions this is accom-
plished by injecting the noise signature with frequency scaled
by 10Hz × cores per node to the single application process
per node. In the MPI only version this is accomplished by
injecting the noise signature without frequency scaling to
every process in the “Distribute to All Processes” configura-
tion and the frequency scaled noise signature to the first MPI
process on each node in the “Concentrate to Process 0” con-
figuration. As illustrated in Figure 4 the Legion CPU+GPU
version is marginally impacted by this noise signature with
the most significant impact (up to 6% degradation) occur-
ring when noise is injected to any thread or restricted to just
the low-level Realm threads. This is a result of noise im-
pacting communication and work scheduling threads in the
runtime limiting the efficient scheduling of tasks and com-
munication of data dependencies in the S3D stencil. The
Legion GPU+CPU version realizes little performance im-
pact, < 1%, when noise is injected into an application CPU
processor thread (“App Thread 1”) or the Fortran thread.
Figure 5 illustrates a similar performance impact in the Le-
gion CPU only version when noise is injected into the Le-
gion, Realm, or any thread with a performance degradation
of up to 16% compared to 5% or less when noise is injected
into the application threads. These results indicate that
Legion is better able to adapt to noise on the application
threads than noise on the Legion runtime’s communication
and utility threads. The MPI+OpenACC version slowdown
is more pronounced, resulting in 16% − 26% degradation as
the noise impacts any communication or CPU level calcu-
lations within the process as illustrated in Figure 6. The
MPI only version exhibits up to a 4% slowdown when noise
is distributed across all processes on a node. When noise is
concentrated on node local process 0, performance degrada-
tion from 4 − 16% was observed as illustrated in Figure 7.
This is a result of a single process per node significantly de-
grading local stencil computations. When contrasted with
the Legion CPU only version with noise injection directed
at a single computation task we begin to see the impact of
static mapping of tasks to cores when 2.5% net noise is in-
duced. Dynamic task scheduling as in the Legion CPU only
version alleviates some of the impact of this type of noise.

Next we consider a shorter duration noise signature
(250usec) with higher frequency (100Hz). S3D is in gen-
eral better able to contend with this noise signature when
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Figure 5: Legion all CPU version with 10Hz-2500us-scaled
noise signature (runtime per step)
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Figure 6: OpenACC version with 10Hz-2500us-scaled noise
signature (runtime per step)

compared to the 10Hz − 2500usec noise signature. In the
unscaled noise signature case we see very little performance
impact, from 1−3% as illustrated in Figures 8 and 9. Legion
CPU only and MPI only exhibit similar results.

When noise is scaled by core count the performance im-
pact is more pronounced. The Legion CPU+GPU version
exhibits up to an 8% slowdown with this noise signature
with the largest slowdown at 256 nodes and noise injected
to either Realm or Legion level threads again demonstrat-
ing that the performance degradation of communication and
scheduling threads is the most impacting to application per-
formance for S3D. Application performance is minimally af-
fected across all scales when noise is only injected in ap-
plication level tasks. More pronounced is the performance
impact of OS noise on the Legion CPU only version of S3D.
Figure 10 illustrates the impact this noise signature has on
the Legion CPU only version. Of note is the significant dif-
ference in performance degradation when noise is injected in
communication and scheduling threads, up to 12.8%, com-
pared to a maximum of 6% when noise is isolated to ap-
plication computation tasks. Perhaps more significant is
the inverse relationship between these scenarios in terms of
performance degradation as a function of scale. Figure 11
provides a more detailed view of this phenomena. S3D per-
formance is degraded by 6% from 16 to 256 nodes and
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signature (runtime per step)
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Figure 8: Legion all GPU version with 100Hz-250us-
unscaled noise signature (runtime per step)

then drops to 0% as scale increases to 512 and 1024 nodes.
Conversely, S3D exhibits very little performance degrada-
tion when noise is isolated to communication and schedul-
ing threads at smaller node counts but then increases sig-
nificantly as scale increases, indicating that at larger node
counts Legion’s dynamic scheduling of application level tasks
can effectively mitigate noise even as scale increases but that
communication and task scheduling threads are more sus-
ceptible to OS noise in this application.

In all of these cases, the performance impact of directing
noise to the “S3D Fortran Core” is significantly lower than
the impact of noise on the Realm or Legion threads. Recall
that all of these threads are sharing the same set of physical
cores (i.e. the ones not assigned to run application tasks), so
noise events handled by any of these threads have identical
impacts on the availability of execution resources, poten-
tially displacing communication and scheduling work being
performed by the runtime. The difference is in which run-
time operations are interrupted (because they are assigned
to the thread that is handling the noise event). The Fortran
thread has no work assigned to it during the bulk of the
S3D execution, while the Legion and Realm threads have
scheduling and communication operations whose delay im-
pacts overall performance more, especially at scale.

The MPI+OpenACC versions exhibits moderate perfor-
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Figure 9: OpenACC version with 100Hz-250us-unscaled
noise signature (runtime per step)
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Figure 10: Legion all cpu version with 100Hz-250us-scaled
noise signature (runtime per step)

mance degradation under this noise signature, between
4 − 7.5% as illustrated in Figure 12. The MPI only ver-
sion exhibits a 4− 7% degradation when noise is injected in
node local process 0 and a minimal degradation of 1% when
noise is spread across all processes on the node. Compared
with the longer duration, lower frequency noise signature
(10Hz−2500usec) the statically mapped version of S3D are
significantly less impacted by this noise signature. This is
in contrast to the Legion version of S3D whose performance
degradation is similar across both noise signatures and with
respect to which threads are targeted with noise.

4.4 Mechanisms in Legion that Mitigate Noise
While our performance studies suggest that dynamic task

scheduling can alleviate some forms of OS noise a more thor-
ough analysis of the scheduling mechanisms that contribute
to this is in order. Legion provides two primary mechanisms
for dynamic task scheduling, task scheduling windows sim-
ilar to out-of-order instruction windows [21] and load bal-
ancing of tasks across processors. To evaluate the impact
of each of these mechanisms we begin with an experiment
at a fixed node count (64) with the same task window size
(1024) used in our previous experiments and comparing the
no-noise case with the scaled noise signatures with and with-
out load balancing. Table 1 summarizes these results. In this
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Figure 11: Legion all cpu version with 100Hz-250us-scaled
noise signature (Percentage degradation)
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Figure 12: OpenACC version with 100Hz-250us-scaled
noise signature (runtime per step)

experiment load balancing reduces the impact of OS noise
directed at an application level task from 20% to 5%. These
results indicates that load balancing of computational tasks
plays a significant role in reducing the impact of OS noise.

Table 1: Legion all cpu version runtime/step with and with-
out load balancing

Noise signature
(scaled - App Thread 1)

With load
balancing

Without
load balancing

No noise 6.007 6.01
100Hz-250us 6.373 7.3
10Hz-2500us 6.337 7.27

In our next experiment we demonstrate the impact of task
scheduling windows by reducing the window size from 1024
to 2. As in the load balancing experiment we fix the num-
ber of nodes at 64 and examine the impact of our two noise
signatures with load balancing enabled. Figures 13 and 14
illustrate the impact of reducing the window size with noise
signatures of 100Hz − 250us and 10Hz − 2500us respec-
tively. As the window size decreases from 1024 to 256 the
impact of noise remains fairly constant indicating that Le-
gion is still able to identify sufficient work within the task
stream such that the induced noise continues to have mini-
mal impact on performance. As the task window is reduced



to 128 Legion is no longer able to find sufficient work re-
sulting in performance degradation that begins to dominate
any induced noise effects. Performance continues to degrade
significantly as the window size is decreased further. These
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Figure 13: Legion all cpu version runtime/step with varying
window size and 100Hz-250us scaled noise signature
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Figure 14: Legion all cpu version runtime/step with varying
window size and 10Hz-2500us scaled noise signature
results indicate that dynamic load balancing coupled with
the ability to find sufficient parallelism through out-of-order
task windowing to schedule both play a significant role in
mitigating node level performance variability.

5. CONCLUSIONS
This paper has presented a study of the impact of OS noise

in dynamic runtime environments. Previous works have fo-
cused on the impact of static runtime environments (MPI)
and have not explored the impact of OS noise on different
application level tasks such as computation, communication,
and task scheduling. Our results show that dynamic runtime
environments such as Legion can absorb OS noise when load
balancing and out-of-order task scheduling mechanisms are
employed. We show that when noise is injected into a single
core with a 10Hz 2500us signature the MPI+OpenACC ver-
sion of S3D realizes up to a 25% slowdown while the Legion
CPU+GPU version realizes at most a 2% slowdown. We fur-
ther demonstrate that adaptive load balancing can reduce
overall impact of noise in the Legion CPU only version from
20% slowdown to 6% when sufficient work is scheduled in

advance by the runtime. This result indicates that on node
load balancing and out-of-order execution strategies are im-
portant mechanisms in dealing with performance variability.

Our results also demonstrate that application perfor-
mance is significantly impacted by where noise is injected
and what threads of execution are interrupted or displaced
by OS noise. Previous work has demonstrated that how
noise is generated (noise signature) is often more important
than the net noise on a system. Our work demonstrates
that OS noise that impacts communication and scheduling
threads in a dynamic runtime environment reduces applica-
tion performance up to 12% and grows as a function of node
scale. Conversely, under the same noise signature targeted
instead to application tasks results in at most a 6% perfor-
mance degradation at 16 nodes and decreases to 0% at 1024
nodes. This is more pronounced in our experimentation as
the number of cores dedicated to the runtime is 1/8th of
those dedicated to application level tasks. This places addi-
tional constraints on the runtime system when attempting
to mitigate this form of noise. Future systems such as Intel’s
Knights Landing will contain significantly more processing
cores than today’s systems. In these systems, runtimes such
as Legion will likely be able to consume more processing
cores with similar overheads presenting new opportunities
to mitigate the impact of OS noise within communication
and scheduling threads.

The observed differences in the noise sensitivity of the
different Legion threads show that, in dynamic runtime en-
vironments, having the OS run a background operation on
a separate thread can be significantly better than “hijack-
ing” a user-level thread. The former consumes execution re-
sources, but still allows the runtime to load-balance across
the remaining resources, while the latter also delays specific
application or runtime operations that have been assigned
to that user-level thread.
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