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Towards Model Form Error (V&V')

Model Configuration: SNL-based Sean Kearney

Experiment, “Experimental investigation of a cylinder in turbulent
convection with an imposed shear flow”, AIAA, 2005
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Kearney experimental configuration Laskowski et al. RANS / Kang et al. DNS study

(taken with permission from G. laccarino)

RANS-based simulation (v2-f, k-e) study conducted by Laskowski et al., AIAA 2007
DNS-based simulation study conducted by Kang et al., JCP, 2009

1. V&V Approaches to support the Abnormal/Thermal Environment; Pl, Domino (V&V)




Towards Model Form Error (/2

Goal 1: Deploy standard V&V study (h- and P-
refinement) with current set of LES models

WALE, Ksgs, and Smagorinsky model
P=1 RO, R1 and R2; R2 ~O(100) million nodes
P=2 R1

Time: 16.506983 Time: 0.000000 Nalu Edge-Based Wale R2
Nalu Element-based WALE; R1, P=2
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Towards Model Form Error 2/2)

Model form comparison using common LES sgs closure
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» Unstructured formulation
Requires a line-of-site post
processing technique
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LES using P=1 edge-based scheme with low-dissipation operators, BDF2




Goal 2: Advanced Model-Form
Uncertainty Techniques

“A framework for epistemic UQ for turbulent scalar flux
models for RANS”, C. Gorle, 2013; Q3 activity
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The low-Mach application space has=
extensive experience with low-
order, low-dissipation schemes

Production low Mach algorithm for Abnormal/Thermal
LES-based simulations is characterized as a low order
(P=1), low dissipation (k.e. conserving) generalized
unstructured CVFEM formulation
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Re ~45K turbulent back step; vorticity magnitude




Question: What is the Viability of
high-order schemes in low-Mach?

ASC Research project on continuous higher order methods
with efforts on linear solver strategies and low Mach
discretization (J. Hu, PI); Advantageous for NGP?

Goal 1: Implement and verify low Mach higher order
method bmldmgf from base CVFEM (P- based promotion:;

Domino, 2014) [Sweet spot of P=37? PC: M. Ihme; K. Jansen]

Goal 2: Are common pressure stabilization approaches
used in low Mach equal-order interpolation design order?

Goal 3: Efficient linear solver interface/performance

Goal 4: Develop advanced stabilization approaches
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Location, location, location!

Quadrature locations are of the utmost importance!

* HOCVFEM, P=2
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Inviscid Taylor Vortex
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¢ 'Steady 'i;aylor Vortex
Dual volume definition; P=2

2x2 integration at scs/scv Challenge: pStab ~ ’E(Gj(]) — d(I)/de)nde

Finding: Current dual volume definition requires consistent
integration for time, source, and L2 Go

Most unstructured CV-based methods are difficult to extend to H.O.
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Code Verification (P1 vs P2)

0.4 06
Normalized Mesh Spacing

L2 projected nodal gradients must be O(P) Velocity verified to be O(3
CMM L2 Projection Equation must be solved! Pressure gradient O(2) ¢
Lesson leaned: If one is verifying an unstructured scheme
then use unstructured meshes !
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Advanced Stabilization Approaches

Goal: Advanced the state-of-the-art nonlinear
stabilization operators (NSO) (ASC Algorithms)




Helium Plume DNS

Reduced Geometry fro
FLAME (above)
to simple cylinder

P=1 (left); P=4 (right); same number of nodes




Conclusions

A variety of innovations are required to deploy LES to
production ATE simulation studies

Discretization, solver, V&V and PEM activities are in
progress to advance the state of the art

MMS First (not shown), model validation second

LES non-isothermal flow V&V study in transit; Model
form uncertainties will be explored via A decomp

Higher order methods look promising; compare to P=1

Models to incorporate buoyancy in LES simulations will
be explored; will drive novel DNS study for a 1-m plume




