
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

IPv6 Addresses
Big Numbers, Big Solutions

Andrew Steele
Andrew.Steele@sandia.gov

@ahsteele

Robert H. Engelhardt
Robert.Engelhardt@sanida.gov

@rheone

SAND2016-4063C

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov


IPv6 Addresses: Big Numbers, Big Solutions

Abstract numbers much bigger than 7 are hard to 
conceptualize. IPv6 and its 2128 possibilities are big, but 
developing with it doesn’t have to be a big problem. Let us 
help you get on track with IPv6 addressing.

Our team at Sandia National Laboratories has come up 
with some techniques to model, manage, and manipulate 
those all-too-large 128-bit numbers that aren’t typically 
accounted for in common 32-bit software environments. 
We will cover some of our exploration into the concepts 
needed, as well as the methods that we have developed 
for performing network mathematics in high level 
languages such as C# and SQL. 

Since June 2015 we have been utilizing these techniques as 
the backbone for an application that manages the Sandia 
National Laboratories IPv4 and IPv6 networks, subnets and 
addresses.

 Big Numbers

 An Intro to IP Addresses

 Basics of Subnetting Math

 Programmatic Mathematics

 RDBMS Implementation



BIG NUMBERS
like really big



A Simple chess board

If a chessboard were to have wheat placed upon each 
square such that one grain were placed on the first 
square, two on the second, four on the third, and so on 
(doubling the number of grains on each subsequent 
square), how many grains of wheat would be on the 
chessboard at the finish?

-Wikipedia “Wheat and chessboard problem”



A Simple chess board

By Andy0101 (talk) - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10700518



IP Addresses are just numbers

 IPv4
 232

 ~2G (Giga)

 4,294,967,296 possibilities

 Ranges from 0.0.0.0 to 255.255.255.255

 IPv6
 2128

 ~3x1014Y (Yotta).. way bigger than 9Exa

 340,282,366,920,938,463,463,374,607,431,768,211,456 possibilities

 Ranges from :: to ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff



Size of IPv4 vs IPv6

256

4294967296

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

7,000,000,000

8,000,000,000

9,000,000,000

10,000,000,000

IPv4 IPv6

A
d

d
re

s
s
 C

o
u

n
t

Address Type

IPv4 vs IPv6

Typical Subnet All Addresses

18446744073709551616

340282366920938463463374607431768211456



Log Scales are for Quitters

Log Scale https://xkcd.com/1162/



Fine, have your Log2 scales

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

IPv4 IPv6

A
d

d
re

s
s
 C

o
u

n
t 
2

n

Address Type

IPv4 vs IPv6

Typical Subnet All Addresses



BUT HOW BIG IS THAT REALLY?
Let’s divvy up those addresses



4.77 x 1028 PER EVERY 
LIVING PERSON
Crowd By James Cridland - Own work, CC BY-SA 2.0, https://www.flickr.com/photos/jamescridland/613445810



IF EACH IPv6 ADDRESS 
WAS A GRAIN OF 
SAND…
Sand By Siim Sepp - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17276362



THAT’S OF ADDRESSES 
PER PERSON, OR ROUGHLY ENOUGH 
SAND SIZED ADDRESSES TO EQUAL 
ABOUT 1.8 TIMES THE VOLUME OF 
EARTHS OCEAN PER PERSON

By Tiago Fioreze - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6111892



AT SAND SCALE ALL IPv6 
ADDRESSES WOULD TAKE THE 
VOLUME OF ABOUT 12 SOLS

By NASA/SDO/AIA/Goddard Space Flight Center - http://www.nasa.gov/mission_pages/rbsp/news/third-
belt.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=24922453



CONVERSELY, ALL THE IPv4 
ADDRESSES IN THIS SAND SCALE 
WOULD SLIGHTLY OVER FILL AN 
OIL DRUM

By Trevor MacInnis - Trevor MacInnis, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=358103



COMPOSITION
How is IP Address formed



Format of IPv4

IPv4 Address Equality

3,232,235,77710

Unsigned 
Decimal

0xC0A8010116

Hexadecimal

big-endian

192.168.1.1

Dotted Quad



Converting IPv4

Join with Periods

192.168.1.1

As Decimal

[19210], [1680], [110], [110]

Split into Octets

[0xC016], [0xA816], [0x0116], [0x0116]

Converted to bytes

0xC0A8010116

Original 32-Bit IPv4 Address

3,232,235,77710

32-Bit IPv4 Address

3,232,235,77710

Append bytes

0xC0A8010116

Octects to bytes

[0xC016], [0xA816], [0x0116], [0x0116]

Delimit octects

[19210], [16810], [110], [110]

Dotted quad IPv4 Address

192.168.1.1



Format of IPv6

 IPv6 Hexadecimal Notation
 Hiding zeros, sometimes, to make 128-bit numbers more human readable, sometimes

IPv6 Address Equality

334,965,470,149,915,403,112,039,664,316,435,185,88610

Unsigned Decimal
0xFC0000C000FFEE15600D00000000C0DE16

Hexadecimalbig-endian

fc00:00c0:00ff:ee15:600d:0000:0000:c0de
Expanded From

fc00:c0:ff:ee15:600d::c0de
Hexadecimal notation



Take a good look at IPv6

Un-collapsed

fc00:00c0:00ff:ee15:600d:0000:0000:c0de

Collapsed

fc00:c0:ff:ee15:600d::c0de



Converting IPv6

Collapse largest contagious zero-valued groups 

fc00:c0:ff:ee15:600d::c0de

Omit most significant zero valued nibbles

fc00:c0:ff:ee15:600d:0:0:c0de

Delimit with colons

fc00:00c0:00ff:ee15:600d:0000:0000:c0de

Split into to 4 nibble groups

[0xFC0016],[0x00C016],[0x00FF16],[0xEE1516],[0x600D16],[0x000016],[0x00016],[0xC0DE16] 

Convert to bytes

0xFC0000C000FFEE15600D00000000C0DE16

Original 128-Bit Address

334,965,470,149,915,403,112,039,664,316,435,185,88610

Convert Bytes to decimal

334,965,470,149,915,403,112,039,664,316,435,185,88610

Concatenate hextets as bytes

0xFC0000C000FFEE15600D00000000C0DE16

Provide most significant zeros making all hextets four digits long

fc00:00c0:00ff:ee15:600d:0000:0000:c0de

Expand ‘::’ into appropriate number of groups

fc00:c0:ff:ee15:600d:0:0:c0de

Hexadecimal notation

fc00:c0:ff:ee15:600d::c0de



Sub Networks a.k.a. Subnetting

 Components
 Network Bits and Host Bits

 Boundaries

 Formats
 Netmasking

 Classful Networks

 CIDR



Network Bits and Host Bits

 Network Bits – Specifies the sub network

 Host Bits – Specifies the range of allowed hosts on a network

Host Bits & Network Bits

host bits = bit depth - network bits network bits = bit depth - host bits



Network Bits and Host Bits

Host bits

(�)

IPv4 Network Bits 

(�� − �)

IPv6 Network Bits 

(128−�)

Addresses in 

Subnet as	��
Addresses in 

Subnet

0 32 128 2� 1

1 31 127 2� 2

2 30 126 2� 4

3 29 125 2� 8

4 29 124 2� 16

5 27 123 2� 32

6 26 122 2� 64

7 25 121 2� 128

8 24 120 2� 256

9 23 119 2� 512

⁞
32 (IPv4 Maximum) 0 96 2�� 4,294,967,296

⁞
128 (IPv6 Maximum) not applicable 0 2��� ~3.402 × 10��



Bitmasking (Netmasking, well sorta)

 A Netmask is just a IPv4 encoded Bitmask

 Operations
 AND an address with a Network Bitmask to get Network Bits

 XOR an address with a Network Bitmask to get The Last Address



Bitmasking
Network bits Host bits Netmask Mask as integer Bitmask Address Count

0 32 0.0.0.0 0 0000 0000 0000 0000 0000 0000 0000 0000 4294967296
1 31 128.0.0.0 2147483648 1000 0000 0000 0000 0000 0000 0000 0000 2147483648

2 30 192.0.0.0 3221225472 1100 0000 0000 0000 0000 0000 0000 0000 1073741824
3 29 224.0.0.0 3758096384 1110 0000 0000 0000 0000 0000 0000 0000 536870912
4 28 240.0.0.0 4026531840 1111 0000 0000 0000 0000 0000 0000 0000 268435456
5 27 248.0.0.0 4160749568 1111 1000 0000 0000 0000 0000 0000 0000 134217728

6 26 252.0.0.0 4227858432 1111 1100 0000 0000 0000 0000 0000 0000 67108864
7 25 254.0.0.0 4261412864 1111 1110 0000 0000 0000 0000 0000 0000 33554432
8 24 255.0.0.0 4278190080 1111 1111 0000 0000 0000 0000 0000 0000 16777216
9 23 255.128.0.0 4286578688 1111 1111 1000 0000 0000 0000 0000 0000 8388608

10 22 255.192.0.0 4290772992 1111 1111 1100 0000 0000 0000 0000 0000 4194304
11 21 255.224.0.0 4292870144 1111 1111 1110 0000 0000 0000 0000 0000 2097152
12 20 255.240.0.0 4293918720 1111 1111 1111 0000 0000 0000 0000 0000 1048576

13 19 255.248.0.0 4294443008 1111 1111 1111 1000 0000 0000 0000 0000 524288
14 18 255.252.0.0 4294705152 1111 1111 1111 1100 0000 0000 0000 0000 262144
15 17 255.254.0.0 4294836224 1111 1111 1111 1110 0000 0000 0000 0000 131072
16 16 255.255.0.0 4294901760 1111 1111 1111 1111 0000 0000 0000 0000 65536

17 15 255.255.128.0 4294934528 1111 1111 1111 1111 1000 0000 0000 0000 32768
18 14 255.255.192.0 4294950912 1111 1111 1111 1111 1100 0000 0000 0000 16384
19 13 255.255.224.0 4294959104 1111 1111 1111 1111 1110 0000 0000 0000 8192
20 12 255.255.240.0 4294963200 1111 1111 1111 1111 1111 0000 0000 0000 4096

21 11 255.255.248.0 4294965248 1111 1111 1111 1111 1111 1000 0000 0000 2048
22 10 255.255.252.0 4294966272 1111 1111 1111 1111 1111 1100 0000 0000 1024
23 9 255.255.254.0 4294966784 1111 1111 1111 1111 1111 1110 0000 0000 512

24 8 255.255.255.0 4294967040 1111 1111 1111 1111 1111 1111 0000 0000 256
25 7 255.255.255.128 4294967168 1111 1111 1111 1111 1111 1111 1000 0000 128
26 6 255.255.255.192 4294967232 1111 1111 1111 1111 1111 1111 1100 0000 64
27 5 255.255.255.224 4294967264 1111 1111 1111 1111 1111 1111 1110 0000 32

28 4 255.255.255.240 4294967280 1111 1111 1111 1111 1111 1111 1111 0000 16
29 3 255.255.255.248 4294967288 1111 1111 1111 1111 1111 1111 1111 1000 8
30 2 255.255.255.252 4294967292 1111 1111 1111 1111 1111 1111 1111 1100 4
31 1 255.255.255.254 4294967294 1111 1111 1111 1111 1111 1111 1111 1110 2

32 0 255.255.255.255 4294967295 1111 1111 1111 1111 1111 1111 1111 1111 1



Classful Networks

 No, you’re wrong

 Stop

 Don’t do this

 Go away

 This is not the slide deck you are looking for



Classless Inter-Domain Routing (CIDR)

 Fixes issues with Classful Networks

 Valid for IPv4 and IPv6

 Specifies start address and number of bits must be static on the left



DISCUSSING IMPLEMENTATION
What to keep in mind when losing your mind



Implementation Details

 Sign parity

 Endianness

 Programmatic Mathematics
 32-bit Integers to IPv4

 128-bit Integers to IPv6



Sign Parity

 Not all bits are the same

 IP Addresses are unsigned by nature

By en:User:Cburnett - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1477715



Endianness - it’s all about word order

Endian Equality

1,123,029,9321010

Decimal

[0x4216],[0xF016],[0x1316],[0xAC16]

Big-endian

[0xAC16],[0x1316],[0xF016],[0x4216]

Little-endian

 Big Endian
 Network order

 Little Endian
 System Bus Order (typically)



Endianness

http://geekandpoke.typepad.com/geekandpoke/2011/09/simply-explained-1.html



PROGRAMMATIC MATHEMATICS
In a pseudo C# like environment



THIS SHOULD BE EASY, THIS PROBLEM 
SEEMS WELL UNDERSTOOD…



…YOUR COMPUTER DOESN’T DO 128-BIT MATH
Even if it does, chances are your programming language doesn’t



What needs to be done – IP Addresses

 Treat as a “First-class citizen”

 Math - Increment / Decrement / Mathematically Compare

 Know Address Family (IPv4 vs IPv6)

 Put data to rest / read data out

 User/Developer friendly interaction
 Parse

 Output

 Logical Composition



What needs to be done – Subnets

 Treat as “First-class citizen”
 Basic Math – Mathematically Comparison
 Know Address Family (IPv4 vs IPv6)
 Put data to rest / read data in
 User/Developer friendly interaction

 Parse
 Output

 Set Mathematics
 Expand
 Contract
 Divide
 Combine
 Membership Introspection

 Logical Composition
 Arbitrary Range Best fit
 Consecutive fitting of Arbitrary Range



What we need

We need a data type that is:

 Big-endian

 Capable of bitwise arithmetic

 Integer Based

 Unsigned

 Variable bit depth up to 128-Bit

 Willing to make me coffee in the morning



What do we have

 Common data types
 Integers

 Bytes

 C# data types
 IPAddress - mostly just some special logic around bytes



Integers (BigInteger)

Integers CAN

 Basic Arithmetic for large numbers 

 Integer Based

 Variable bit depth

 Be treated as numbers

Integers CAN’T

 Big-endian

 Boolean Arithmetic 

 Be unsigned



Byte array

Byte Arrays CAN

 Boolean Arithmetic 

 Convert between endianness

 Variable bit depth

Byte Arrays CAN’T

 Basic Arithmetic for large numbers

 Integer Based

 Be treated as numbers



IP Address Type

IP Addresses CAN

 Big-endian byte order

 Look pretty

 Parse from IP Address style strings

 Variable bit depth (32-bit and 128-bit)

IP Addresses CAN’T

 Basic Arithmetic

 Boolean Arithmetic

 Be treated as numbers



LETS MASH SOME THINGS TOGETHER
By our powers combined

Captain Planet © Turner Program Services and Warner Brothers 2016



byte[] Operations– Basic Building Blocks

•Bitwise operations
• NOT, AND, OR, XOR 

•Bit-shifting

•Bit Padding (to a lesser degree)

•Convert back and forth between

• IP Address

•BigInteger



BigInteger Operations– Basic Building Blocks

•Mathematical
• Treat as unsigned

•Byte Padding 

•Convert back and forth between
• IP Address

•Byte[]of appropriate endianness

•Strings of appropriate base



IPAddress Operations– Basic Building Blocks

•Mathematical
• Increment / Decrement

• Mathematic equality and comparison

•Convert back and forth between
• Netmasks

• Special Case Parsing

• Suitable Integers

• Byte[] of appropriate endianness

• Strings of appropriate base and Formats



WHAT ABOUT SUBNETS?
Then a miracle occurs…



AT THIS POINT A SUBNET IS JUST TWO NUMBERS
The first address, and the last address



Subnet – Basic Math

 Comparison
 Size

 Last address minus First address

 Ordering

 Value of Address1 against Value of Address2



Subnet – Set Math

 Expand
 High address is increased 2n orders of magnitude

 Contract
 High address is decreased 2n orders of magnitude

 Divide
 New subnet begins at half way point of old subnet, old subnet ends at halfway point

 Membership Introspection
 Address membership

 Compare address to high and low address

 Subnet membership

 Subnet high and low between high and low



Subnet – Logical Composition

 Arbitrary Range Best fit
 AND the low and high address to find where the subnet starts

 XNOR the low and the high and count (hamming) the consecutive set bits for network bits

 Bitmask is 232-232-network bits for IPv4

 Bitmask is 2128-2128-network bits for IPv6

 XNOR the low address by the bitmask for the high address

 Consecutive fitting of Arbitrary Range
 Binary Search: Recursively divide range by two until each sub range is filled



Arcus
A C# Utility library we developed to make network math a bit easier

 Coming soon(?) 
 Open source(?)
 IP Address & Subnet

 Takes over where .NET left off
 Includes

 Parsing
 Math
 Manipulation
 Formatting
 Conversion
 Comparison
 And so much more!

 Developed and used at Sandia National Laboratories
 ~52kb Library
 98% Unit test covered (some code is unreachable by design)



YOUR COMPUTER DOESN’T DO 128-BIT MATH
Now it does



PARTIAL RELATIONAL DATABASE IMPLEMENTATION
SQL ˈsiːkwəl/; (n): A four letter word so repugnant that it only requires three.



Options for data at rest

The Breaking

 Integer (int and bigint)
 Sign issues

 Too small

 Split data up
 8 columns for int

 4 columns for bigint

 Varchar
 No math

 Cannot order well

The Bad?

 Binary
 Overcomes issues with other data types

 Hard to read for IPv4

 Until you get used to it



IP address table

address : varbinary(16) address_family : varchar(16)

0xFC0000C000FFEE15600D00000000C0DE InterNetworkV6

0xC0A80101 InterNetwork



begin_address : varbinary(16) end_address : varbinary(16) address_family : varchar(16)

0xFC000000000000000000000000000000 0xFC0000FFFFFFFFFFFFFFFFFFFFFFFFFF InterNetworkV6

0xC0A80101 0xC0A801FF InterNetwork

Subnet table



Address bytes to string

 No one wants to look at 0xC0A80101
 So we pull it apart

 substring(0xC0A80101, 1, 1) = C0

 CAST(substring(0xC0A80101, 1, 1) AS int) = 192

 CAST(CAST(substring(0xC0A80101, 1, 1) AS int) AS nvarchar(3)) + '.' = 192.

 Lather rinse and repeat until we have 192.168.1.1

 Nor does anyone want to look at 0xFC0000C000FFEE15600D00000000C0DE
 Thankfully you can fizz buzz your way to FC00:00C0:00FF:EE15:600D:0000:0000:C0DE



Address string to bytes

 Splitting up 192.168.1.1 into octets
 Bit shift each octet by an octet

 192 * 256 * 256 * 256 = 0xC00000

 168 * 256 * 256 = 0x00A80000

 1 * 256 = 0x00000100

 1 = 0x00000001

 Add bit shifted octets together to get 0xC0A80101

 Remove colons and cast FC00:00C0:00FF:EE15:600D:0000:0000:C0DE



Bend SQL to your will

 Find next available integer within range that is not present in existing integer subset
 given a range x -> y of unsigned integers

 where x and y are both in the range 0 -> 2n

 and n is 0 -> 32 (or 64 in IPv6 case)

 find the minimum available value

 not equal to x or y

– that is not in an existing set

– where existing sets are arbitrary subsets of x -> y



What We’ve Learned

 The scale of IPv6 is really, really big
 To a somewhat silly degree

 IP Addresses are just numbers
 We just need to know how to treat them right

 Subnets are just number ranges
 There is a right way, and a wrong way to define these ranges

 Computers and languages don’t want to do IPv6 mathematics
 You can make it work if we divide and conquer 

 Or we may have a solution for you (Arcus)

 SQL wasn’t really meant to deal with big numbers
 We made it do it anyhow



QUESTIONS?
If not, we will be leading the session in a lively rendition of the 
popular networking song “2128 IPv6 Addresses on the wall”

Andrew Steele
Andrew.Steele@sandia.gov

@ahsteele

Robert H. Engelhardt
Robert.Engelhardt@sanida.gov

@rheone

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov


QUESTIONS?
In fairness, we warned you

Andrew Steele
Andrew.Steele@sandia.gov

@ahsteele

Robert H. Engelhardt
Robert.Engelhardt@sanida.gov

@rheone

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov

