SAND2016- 4063C]

Sandia

Exceptional service in the national interest National
Laboratories

-

JRp]
- -1 “ Fixed - TSN © SRS o TN
196.22.0248 & 3 £ nermallty JR—— SEATAALY © WAL .0 ;;“
= = 22sp 1 ’ RESAABBIRNG 0.0 © SITCANGTIRAL a'm.w
E ISEOEETIGE © 99350 REINIIRGE 0.0 B FITRELRAN AT 4
E: 569697993 0 JBBB2AEIEHC\0 o4 b MMBISVHEBMGE 0.0 .6 B m.wmww 2
g ETOROAGL7SB 0.0 0 MSIZETIRE: ¢ 7S 0. 0.0 ©.WTSHATERA "ﬁﬁ?\: 2208 8! ‘P lr
- g gl “’x" aIYSEETS 0.0 0.0 0.0 0. .EAGLTT a,m?;l:?:\% 200080888 I \
A I i 42585 0.0256381396063 0.Q07ASIB U0 T I6aRTEAMAR 0 QUTOTLZSIRRERG R0 R BB AL T
55375 ©. 006726887 TRRRRARRLTSL 0.8 §
g = aSEIgne il 05278 00622951515 RRUERC) 00600000 00 e.mm%%‘mgm”:::: o TS TAST
single NEE s permanent : i - = different 0.0 e.w;‘ﬁ% 0.006673I87INL 0.6 0.0 e.masﬂ;:: :.:\:\:Q; EARNER AA R
=3 SNt i o spevific e | 9.006 42366 0.9 0.0 Y. A52T307 0.9 .022001 LLRA 0.0 0 WS
M ot 3y dymamic router ey °§z§;°:§§?3fe 0.0 .0 0.0 0 MERSTENES D AU B0 L
- DHCP i - 4 0.0 V.Y T Eﬂmm o
S e G e 0oy contract. Eermet 7:5;&5?83] mem. 0.00772038152645 0.0 8.0 e.mﬂﬁ‘:ﬁ :1;:;}: 2.0 0.0 0.0 9.2 0.2 @ ML
ast e St i see e g . = 31 0.0 0.0 0. ; AR O.W
S 196.122.0.252 G.WSTW 325655815 LR 55
- 8 10 0.0125136443018 0.9 1 0.0 0.0 0.024 !
£ 90900532521434851. 0.00557795196481 a.wssmsxﬁ IS ISR 0.0 D
g O~ aann0nnMS3887BS612 0.0 QIATIITU i a0 0.0 0.0 QST

IPv6 Addresses

Big Numbers, Big Solutions

Andrew Steele Robert H. Engelhardt
Andrew.Steele@sandia.gov Robert.Engelhardt@sanida.gov
@ahsteele @rheone

v—c? U.S. DEPARTMENT OF Iw‘ ' 'b%{
E N E RGY ///’ v A‘ u-?"ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
o Natlonal Nuclear Security Administration Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov

IPv6 Addresses: Big Numbers, Big Solutions () 2

Abstract numbers much bigger than 7 are hard to - .
conceptualize. IPv6 and its 2128 possibilities are big, but Blg Numbers

developing with it doesn’t have to be a big problem. Let us = An Intro to IP Add resses
help you get on track with IPv6 addressing.

Our team at Sandia National Laboratories has come up = Basics of Su bnetting Math
with some techniques to model, manage, and manipulate

those all-too-large 128-bit numbers that aren’t typically | Programmatic Mathematics
accounted for in common 32-bit software environments.

We will cover some of our exploration into the concepts = RDBMS |mp|ementation

needed, as well as the methods that we have developed
for performing network mathematics in high level
languages such as C# and SQL.

Since June 2015 we have been utilizing these techniques as
the backbone for an application that manages the Sandia
National Laboratories IPv4 and IPv6 networks, subnets and
addresses.

BIG NUMBERS

like really big

andia
tional _
boratories

A Simple chess board (i) &

520

If a chessboard were to have wheat placed upon each
square such that one grain were placed on the first
square, two on the second, four on the third, and so on
(doubling the number of grains on each subsequent
square), how many grains of wheat would be on the

chessboard at the finish?

-Wikipedia “Wheat and chessboard problem”

A Simple chess board () i,

0 024 048 4096 1819 5384 58
0 0 0 4 4 3
0 O 4 00 0
4 O /] 6 / 10
4 G 0 40
O 0 B B AN OP QP D
D AAPR 93P 5P /l 0

By Andy0101 (talk) - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=10700518

IP Addresses are just numbers () .

= |Pv4

s 932

= ~2G (Giga)

= 4,294,967,296 possibilities

= Ranges from 0.0.0.0 to 255.255.255.255
= |Pv6

= ~3x10%Y (Yotta).. way bigger than 9Exa
= 340,282,366,920,938,463,463,374,607,431,768,211,456 possibilities
= Ranges from :: to ffff:ffff.ffff:feff.fFffFEff.FFFF:FEFf

Sandia
National
Laboratories

7431768211456

Size of IPv4 vs IPv6

184467
IPv4 vs IPv6

10,000,000,000
9,000,000,000
8,000,000,000
7,000,000,000
6,000,000,000
5,000,000,000

4294967296

4,000,000,000

Address Count

3,000,000,000
2,000,000,000

1,000,000,000
256

0
IPv4 IPv6

Address Type

u Typical Subnet ®All Addresses

Log Scales are for Quitters () &

SCOENCE TiP: L0G SCALES ARE FOR QUITTERS WHO CANT
FIND ENOUGH PAPER TOMAKE THEIR POINT /ROPERLY.

Log Scale https://xkcd.com/1162/

Fine, have your Log, scales

Address Count 2"

128
120
112
104
96
88
80
72
64
56
48
40
32
24
16

IPv4

IPv4 vs IPv6

Address Type

u Typical Subnet ®All Addresses

IPv6

(D)

Sandia
National _
Laboratories

BUT HOW BIG IS THAT REALLY?

Let’s divvy up those addresses

A . y 2
ﬂ'ﬁ’ AR s
A v

-

. 4
h

R Faro®

THAT’S 2.39 X 10 OF ADDRESSES
PER PERSON, BRROUBHLY ENOUGH
L— lﬁ"k"’_ 14&9 ‘ <NEIJLD . EQUAL

ABOUT 1.8 TIMES THE VOLUME OF
EARTHS OCEAN PER PERSON

By Tiago Fioreze - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6111892

AT SAND
ADDRESSESY
VOLUME OF

By NASA/SDO/AIA/Goddard Space Flight Center - http://w

ission Jpages/rb /Prewsﬁhlrd-

nasq gov

belt.html, Public Domain, https://commons. W|k|m : orgl,w/lnd &p’?curld_ 2492245 s 9

. gMevor Maclnnis, CC BY-SA 2.5, https://commons.wikimedia.org/w/index. ph\ =398’

——

Sandia
National
Laboratories

COMPOSITION

How is IP Address formed

Format of IPv4 (7 feteme

IPv4 Address Equality

3,232,235,777 4, O0xCO0A8010144 192.168.1.1

Unsigned Hexadecimal Dotted Quad
DeC|ma| big-endian

Converting IPv4 ()

Original 32-Bit IPv4 Address Dotted quad IPv4 Address

3,232,235,777 4 192.168.1.1

Converted to bytes Delimit octects

0xCOA80101,4 [192,4], [16840], [110], [140]

Split into Octets Octects to bytes

[0xCO44], [0xA84], [0x01,6], [0x01,4] [0XCO,¢], [0xA844], [0x014¢], [0Xx0144]

As Decimal Append bytes

(o sl 0xCOA80101,

Join with Periods 32-Bit IPv4 Address

192.168.1.1 3,232,235,777,

Sandia

Format of IPv6

= |Pv6 Hexadecimal Notation
= Hiding zeros, sometimes, to make 128-bit numbers more human readable, sometimes

IPv6 Address Equality

334,965,470,149,915,403,112,039,664,316,435,185,886 0xFC0000C000FFEE15600D00000000CODE 16 fc00:00c0:00ff:ee15:600d:0000:0000:c0de fc00:c0:ff:ee15:600d::cOde
Unsigned Decimal Hexadecimalyg_engian Expanded From Hexadecimal notation

Sandia

Take a good look at IPv6 () i,

Un-collapsed Collapsed
fc00:00c0:00ff:ee15:600d:0000:0000:c0de fc00:c0:ff:ee15:600d::cOde

Converting IPv6 () =

Original 128-Bit Address
334,965,470,149,915,403,112,039,664,316,435,185,886 ¢

Hexadecimal notation

fc00:c0:ff:ee15:600d::cO0de

A 4

Expand ‘::" into appropriate number of groups

fc00:c0:ff:ee15:600d:0:0:cOde

Convert to bytes
0xFC0000CO00FFEE15600D00000000CODE 44

Split into to 4 nibble groups
[0xFC00,],[0x00C044],[0X00FF 45],[0XEE 1546],[0x600D4],[0x0000,¢],[0x000,],[0XCODE 4]

Provide most significant zeros making all hextets four digits long

fc00:00c0:00ff:ee15:600d:0000:0000:c0de

Delimit with colons

fc00:00c0:00ff:ee15:600d:0000:0000:c0de

Concatenate hextets as bytes

OxFCO000CO00FFEE15600D00000000C0ODE 44

Omit most significant zero valued nibbles

fc00:c0:ff:ee15:600d:0:0:c0de

Convert Bytes to decimal

334,965,470,149,915,403,112,039,664,316,435,185,886,,

|¢

Collapse largest contagious zero-valued groups

fc00:c0:ff:ee15:600d::cOde

Sandia

Sub Networks a.k.a. Subnetting () ..

= Components
= Network Bits and Host Bits
= Boundaries

" Formats
= Netmasking
=_Classful Netweorks
= CIDR

Network Bits and Host Bits (FN) drs

= Network Bits — Specifies the sub network
= Host Bits — Specifies the range of allowed hosts on a network

1001 0011 0110 0100 11** *¥dx* Fdkx Xk

Immutable Bits
Network Bits

Mutable Bits
Host Bits

Host Bits & Network Bits

host bits = bit depth - network bits network bits = bit depth - host bits

Network Bits and Host Bits (FiN) s,

Host b|ts IPv4 Network Bits IPv6 Network Bits Addresses in Addresses in
(32 n) (128—n) Subnet as 2™ Subnet
128 2 1

-_

o 127 3 z
7 126 . ;
D 125 23 :
D 124 2 X
R 123 . 3
I 122 . o4

2 121 7 128
T 120 : 256
s It > 512

0 96 232 4,294,967,296
not applicable 0 e ~3.402 x 1038

Sandia

Bitmasking (Netmasking, well sorta) () &=

= A Netmask is just a IPv4 encoded Bitmask

= (QOperations
= AND an address with a Network Bitmask to get Network Bits
= XOR an address with a Network Bitmask to get The Last Address

11171 11171 1111 1111 1100 0060 0006 0000

C Set Bits C

Unset Bits
Network Bits Address Bits

B

0 32 0.0.
1 31 128.
2 30 192.
3 29 224.
4 28 240.
5 27 248.
6 26 252.
7 25 254.
8 24 255.
9 23 255.
10 22 255.
11 21 255.
12 20 255.
13 19 255.
14 18 255.
15 17 255.
16 16 255.
17 15 255.
18 14 255.
19 13 255.
20 12 255.
21 11 255.
22 10 255.
23 9 255.
24 8 255.
25 7 255.
26 6 255.
27 5 255.
28 4 255.
29 3 255.
30 2 255.
31 1 255.
32 0 255.

P OOO0OOOO0OOO®

N o

192.0.
224.0.
240.0.
248.0.
252.0.
254,
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.
255.

0O OO0OO0OO0OOOOO

COOOOOOOOODOO®O O O

()
()

tmasking

©OCO0OO0OO0OOO0C

B R
o N
N 00

224,
240.
248.
252,
254,
255.
255.
255.
255.
255.
255.
255.
255.
255.

OO0 OO ®

128
192
224
240
248
252
254
255

0

2147483648
3221225472
3758096384
4026531840
4160749568
4227858432
4261412864
4278190080
4286578688
4290772992
4292870144
4293918720
4294443008
4294705152
4294836224
4294901760
4294934528
4294950912
4294959104
4294963200
4294965248
4294966272
4294966784
4294967040
4294967168
4294967232
4294967264
4294967280
4294967288
4294967292
4294967294
4294967295

0000 0000 0000 0000 0000 0000 0000 0000
1000 0000 0000 0000 0000 0000 0000 0000
1100 0000 0000 0000 0000 0000 0000 0000
1110 0000 0000 0000 0000 0000 0000 0000
1111 0000 0000 0000 0000 0000 0000 0000
1111 1000 0000 0000 0000 0000 0000 0000
1111 1100 0000 0000 0000 0000 0000 0000
1111 1110 0000 0000 0000 0000 0000 0000
1111 1111 0000 0000 0000 0000 0000 0000
1111 1111 1000 0000 0000 0000 0000 0000
1111 1111 1100 0000 0000 0000 0000 0000
1111 1111 1110 0000 0000 0000 0000 0000
1111 1111 1111 0000 0000 0000 0000 0000
1111 1111 1111 1000 0000 0000 0000 0000
1111 1111 1111 1100 0000 0000 0000 0000
1111 1111 1111 1110 0000 0000 0000 0000
1111 1111 1111 1111 0000 0000 0000 0000
1111 1111 1111 1111 1000 0000 0000 0000
1111 1111 1111 1111 1100 0000 0000 0000
1111 1111 1111 1111 1110 0000 0000 0000
1111 1111 1111 1111 1111 0000 0000 0000
1111 1111 1111 1111 1111 1000 0000 0000
1111 1111 1111 1111 1111 1100 0000 0000
11111111 1111 1111 1111 1110 0000 0000
1111 1111 1111 1111 1111 1111 0000 0000
1111 1111 1111 1111 1111 1111 1000 0000
1111 1111 1111 1111 1111 1111 1100 0000
1111 1111 1111 1111 1111 1111 1110 0000
1111 1111 1111 1111 1111 1111 1111 0000
1111 1111 1111 1111 1111 1111 1111 1000
1111 1111 1111 1111 1111 1111 1111 1100
1111 1111 1111 1111 1111 1111 1111 1110
1111 1111 1111 1111 1111 1111 1111 1111

Sandia
National _
Laboratories

4294967296
2147483648
1073741824
536870912
268435456
134217728
67108864
33554432
16777216
8388608
4194304
2097152
1048576
524288
262144
131072
65536
32768
16384

8192

4096

2048

1024

512

256

128

64

32

16

8

4
2
1

Sandia
National
Laboratories

= No, you’re wrong
= Stop

= Don’tdo this

= GO away

= This is not the slide deck you are looking for

Classless Inter-Domain Routing (CIDR) () .

= Fixes issues with Classful Networks
= Valid for IPv4 and IPv6
= Specifies start address and number of bits must be static on the left

192.168.90.0/16 +¢c00::/7

Network Bits

H Network Bits H
Low Order Address Low Order Address

DISCUSSING IMPLEMENTATION

What to keep in mind when losing your mind

National

Implementation Details () .

= Sign parity
= Endianness

= Programmatic Mathematics
= 32-bit Integers to IPv4
= 128-bit Integers to IPv6

Sign Parity () &

= Not all bits are the same
= |P Addresses are unsigned by nature

S3 S2 S1 So

By en:User:Cburnett - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1477715

Sandia

Endianness - it’s all about word order

= Big Endian
= Network order

= Little Endian
= System Bus Order (typically)

Endian Equality

1,123,029,93210,, [0x42,],[0XF04],[0x13,6],[OXAC 1] | [OXAC 14],[0%13¢],[0XF O], [0x42, 4]

Decimal Big-endian Little-endian

Endianness (7 B

SIMPLY EXPLAINED

BIG-ENDIAN

LITTLE-ENDIAN

http://geekandpoke.typepad.com/geekandpoke/2011/09/simply-explained-1.html

PROGRAMMATIC MATHEMATICS

In a pseudo C# like environment

THIS SHOULD BE EASY, THIS PROBLEM
SEEMS WELL UNDERSTOOD...

...YOUR COMPUTER DOESN’'T DO 128-BIT MATH

Even if it does, chances are your programming language doesn’t

What needs to be done — IP Addresses ()

= Treat as a “First-class citizen”

= Math - Increment / Decrement / Mathematically Compare
= Know Address Family (IPv4 vs IPv6)

= Put data to rest / read data out

= User/Developer friendly interaction
= Parse
= Qutput

= Logical Composition

What needs to be done — Subnets () =

= Treat as “First-class citizen”

= Basic Math — Mathematically Comparison
= Know Address Family (IPv4 vs IPv6)

= Put data to rest / read data in

= User/Developer friendly interaction
= Parse
= Qutput
= Set Mathematics
= Expand
= Contract
= Divide
= Combine
= Membership Introspection
= Logical Composition
= Arbitrary Range Best fit
= Consecutive fitting of Arbitrary Range

What we need (Fi) B

We need a data type that is:

= Big-endian

= Capable of bitwise arithmetic
= |nteger Based

= Unsigned
= Variable bit depth up to 128-Bit
- Wil | foa in tl :

What do we have (Fi) B

= Common data types

= |ntegers

= Bytes
= C# data types

= |PAddress - mostly just some special logic around bytes

Integers (Biginteger) (i) e,

Integers CAN Integers CAN'T

= Basic Arithmetic for large numbers = Big-endian

= |nteger Based = Boolean Arithmetic
= Variable bit depth = Be unsigned

= Be treated as numbers

Byte array () &

Byte Arrays CAN Byte Arrays CAN'T
= Boolean Arithmetic = Basic Arithmetic for large numbers
= Convert between endianness " |nteger Based

= Variable bit depth = Be treated as numbers

IP Address Type () &

IP Addresses CAN IP Addresses CAN'T

= Big-endian byte order = Basic Arithmetic

= Look pretty = Boolean Arithmetic

= Parse from IP Address style strings = Be treated as numbers

= Variable bit depth (32-bit and 128-bit)

SN
Captain Planet © Turner Program Se /l[A NE\'\\

g%:

byte[] Operations— Basic Building Blocks Gk

*Bitwise operations
* NOT, AND, OR, XOR
*Bit-shifting
*Bit Padding (to a lesser degree)
*Convert back and forth between
*|P Address
*Biginteger

Biginteger Operations— Basic Building Blocks @) &..

*Mathematical

* Treat as unsigned
*Byte Padding

Convert back and forth between

*|P Address
*Byte[]of appropriate endianness
*Strings of appropriate base

IPAddress Operations— Basic Building Blocks @

* Mathematical

* Increment / Decrement

* Mathematic equality and comparison

Convert back and forth between

* Netmasks

* Special Case Parsing

 Suitable Integers

* Byte[] of appropriate endianness

* Strings of appropriate base and Formats

WHAT ABOUT SUBNETS?

Then a miracle occurs...

AT THIS POINT A SUBNET IS JUST TWO NUMBERS

The first address, and the last address

Subnet — Basic Math (Fih) e

= Comparison
= Sjze
= Last address minus First address

= QOrdering

= Value of Address, against Value of Address,

Subnet — Set Math (Fih) e

= Expand

= High address is increased 2" orders of magnitude
= Contract

= High address is decreased 2" orders of magnitude
= Divide

= New subnet begins at half way point of old subnet, old subnet ends at halfway point

= Membership Introspection
= Address membership
= Compare address to high and low address
= Subnet membership
= Subnet high and low between high and low

Subnet — Logical Composition () i,

= Arbitrary Range Best fit
= AND the low and high address to find where the subnet starts

= XNOR the low and the high and count (hamming) the consecutive set bits for network bits
= Bitmask is 232-232-network bits for |py4
= Bitmask is 2128-2128-network bits for |Pyg

= XNOR the low address by the bitmask for the high address

= Consecutive fitting of Arbitrary Range

= Binary Search: Recursively divide range by two until each sub range is filled

Arcus () e

Laboratories
A C# Utility library we developed to make network math a bit easier

= Coming soon(?)
= QOpen source(?)
= |P Address & Subnet

= Takes over where .NET left off

" Includes

= Parsing
Math
Manipulation
Formatting
Conversion
Comparison
= And so much more!

= Developed and used at Sandia National Laboratories
= ~52kb Library
= 98% Unit test covered (some code is unreachable by design)

Sandia
National
Laboratories

SO LA ER DO EC N oA 2 B RAA T

Now it does

PARTIAL RELATIONAL DATABASE IMPLEMENTATION

SQL ‘si:kwal/; (n): A four letter word so repugnant that it only requires three.

Options for data at rest (i) &

The Breaking The Bad?

" |nteger (int and bigint) = Binary
= Sign issues = Qvercomes issues with other data types
= Toosmall = Hard to read for IPv4

n Sp|it data up = Until you get used to it

= 8 columns for int

= 4 columns for bigint
= Varchar

= No math

= Cannot order well

|IP address table (7 feteme

address : varbinary(16) address_family : varchar(16)

OxXFCOOPOCOOOFFEE15600D00000000CADE InterNetworkVe
OxCOA80101 InterNetwork

Subnet table (Fi) B

begin_address : varbinary(16) end_address : varbinary(16) address_family : varchar(16)

OxFCP0000000000000000000000VVVR0 OxFCOOFFFFFFFFFFFFFFFFFFFFFFFFFF InterNetworkVé

OxCOA80101 OxCOA8O1FF InterNetwork

Address bytes to string () &=,

= No one wants to look at 9xCOA80101

= So we pull it apart
* substring(@xCoA80101, 1, 1) = CO
= CAST(substring(@xCOA80101, 1, 1) AS int) = 192
= CAST(CAST(substring(exCe0A80101, 1, 1) AS int) AS nvarchar(3)) +''= 192.

= Lather rinse and repeat until we have 192.168.1.1

= Nor does anyone want to look at O9xFCOO00COOOFFEE15600D00000000CODE
= Thankfully you can fizz buzz your way to FC00 :00C0 :00FF : EE15 : 600D : 0000 : 0000 : CODE

Address string to bytes () &

= Splitting up 192.168.1.1 into octets

= Bit shift each octet by an octet
= 192 * 256 * 256 * 256 = 0xC00000
= 168 * 256 * 256 = Ox00A80000
=1 * 256 = 0x00000100
=1 = 0x00000001

= Add bit shifted octets together to get 9xCO0A80101

= Remove colons and cast FCO0:00C0 :00FF : EE15:600D :0000:0000 : CoDE

Bend SQL to your will () e

" Find next available integer within range that is not present in existing integer subset
= given a range X ->y of unsigned integers
* where x and y are both in the range 0 -> 2"
= and nis 0->32 (or 64 in IPv6 case)
= find the minimum available value

" notequaltoxory
— thatis not in an existing set

— where existing sets are arbitrary subsets of x->y

What We’ve Learned (Fi) B

= The scale of IPv6 is really, really big

= To a somewhat silly degree

= [P Addresses are just numbers

= We just need to know how to treat them right

= Subnets are just number ranges

= There is a right way, and a wrong way to define these ranges

= Computers and languages don’t want to do IPv6 mathematics
= You can make it work if we divide and conquer

= Or we may have a solution for you (Arcus)

= SQL wasn’t really meant to deal with big numbers
= We made it do it anyhow

Sandia
National _
Laboratories

QUESTIONS?

If not, we will be leading the session in a lively rendition of the
popular networking song “212% |Pv6 Addresses on the wall”

Andrew Steele Robert H. Engelhardt
Andrew.Steele@sandia.gov Robert.Engelhardt@sanida.qgov

@ahsteele @rheone

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov

Sandia
National
Laboratories

B IS
QUESTIONS?
In fairness, we warned you
Andrew Steele Robert H. Engelhardt
Andrew.Steele@sandia.gov Robert.Engelhardt@sanida.gov

@ahsteele @rheone

mailto:rhengel@sanida.gov
mailto:ahsteel@sandia.gov

