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ABSTRACT
Moving target defense (MTD) is an emerging paradigm in
which system defenses dynamically mutate in order to de-
crease the overall system attack surface. Though the initial
concept is promising, implementations have not been widely
adopted. The field has been actively researched for over
ten years, and has only produced a small amount of exten-
sively adopted defenses, most notably, address space layout
randomization (ASLR). This is despite the fact that there
currently exist a variety of moving target implementations
and proofs-of-concept. We suspect that this results from
the moving target controls breaking critical system depen-
dencies from the perspectives of users and administrators, as
well as making things more difficult for attackers. As a re-
sult, the impact of the controls on overall system security is
not sufficient to overcome the inconvenience imposed on le-
gitimate system users. In this paper, we analyze a successful
MTD approach. We study the control’s dependency graphs,
showing how we use graph theoretic and network properties
to predict the effectiveness of the selected control.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;

Keywords
Dynamic Defense; Moving Target Defense; Cybersecurity

1. INTRODUCTION
Moving Target Defense (MTD) has been studied for over

a decade. Forward thinking scientists and engineers saw the
writing on the wall back then with regard to burgeoning
cyber-crime. At that point, most malicious computer at-
tacks were, for lack of a better term, not really malicious by
today’s standards. At that time, the hacking underground
consisted of hobbyists and programmers who were exploring
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computer systems to see what they could really do, and what
they could do with them. This was somewhat of a naive age,
prior to the involvement of organized crime and terrorist or-
ganizations. But people could see where things were head-
ing — as soon as criminal organizations understood the low
level of risk and high profitability of cyber-crime, they would
start to get involved. And they did, as did others, leading
us to where we are today [3, 6]. The prevailing opinion was
that existing defenses were insufficient to protect networked
systems against the attackers of the day, let alone those of
the future.

Some funding agencies began to wonder if changing a sys-
tem when under threat to a higher level of overall security
might be a fruitful path forward. Many physical security
systems work in this way. The US military still uses the
DEFCON [25] system, as well as the newer FPCON [24] sys-
tem; it seemed sensible that this might be a useful avenue
for research. It certainly seems valuable to have systems
that can autonomically adjust their run state based on envi-
ronmental context, and systems that can do this in response
to an ongoing attack should be more secure than statically
provisioned systems.

2. RELATED WORK
Other researchers have modeled and studied cyber sys-

tems and the impact of moving target defenses on them.
Zaffarano et. al. present a simulation framework that al-
lows them to rapidly configure a variety of different sys-
tems topologies over which to apply moving target defenses.
Many simulations of these systems are made, and data from
these simulations is compiled into a variety of measures in-
tended to represent the productivity of the system, the suc-
cess of the activity model, and whether data was delivered
unexposed and intact. The authors then use the mean of
those measures to represent the performance of the simu-
lated system [26]. Zhuang et. al. describe a formal logic for
describing MTD systems. The logic itself takes into account
system policies, constraints that must be met by operating
systems, and the operational goals of a given system. It also
describes sets of actions and configuration states, yielding a
formal way to define moving target systems. They also ad-
dress the key problems in MTD management, namely config-
uration and adaptation selection and timing problems, and
describe why they are important to theoretical MTD anal-
ysis [28]. Additional work presents a way to model cyber
attacks that takes into account overall system information,
pre- and post-conditions, and attack processes that encom-
pass multiple stages. The model is logically rigorous and



enables the description of limited system dynamics in that
time is referenced, but monotonically, rather than function-
ally [27]. A hyper-geometric probability distribution model
has been proposed for studying the effects of various types
of defenses within a computer network [8]. The author’s
specifically look at systems with no protections, systems
with honeypots, and address shuffling under two attacker
strategies. They find that deception (honeypots) is more
successful than motion (shuffling), but that using both si-
multaneously provides the greatest increase in security pos-
ture. Prakash et. al. use FlipIt, a simple game in which
players compete for control of a single resource, to analyze
possible moving target strategies. They run the game many
thousands of times, and find that each configuration of at-
tacker and defender strategies has at least one equilibria,
and in some cases many equilibria [18].

3. DEPENDENCY GRAPHS
Despite the amount of research into moving target defense,

we find that relatively few moving target approaches have
been embraced in practice. It seems that this may be be-
cause the inter-dependencies and side-effects introduced by
the moving target defenses were not adequately considered
when the defenses were designed, and that they were not re-
vealed during limited laboratory experiments. Furthermore,
in operational settings some dynamic defenses impact users
and defenders similarly to attackers, making it difficult to
maintain and operate the resulting systems. We propose to
study this problem by analyzing the dependencies of users,
defenders, and adversaries, providing a means of determin-
ing where to locate moving target defenses, and helping to
direct future research into approaches that are more likely
to be transitioned to practice.

Dependencies pervade computing systems. Consider, for
instance, the popular OSI model for communication sys-
tems, which has applications at the top layer, followed by
the presentation, session, transport, network, data-link, and
physical layers [22]. In this model higher levels are depen-
dent on lower levels, so network layer devices have depen-
dencies on the data-link and physical layers [7]. If the func-
tionality of any single layer is broken, then all of the layers
above it are impacted. For example, if a router stops func-
tioning then computers connected to that router will not be
able to access the Internet. Still considering the OSI model,
the protocols at each level are also dependent on the pro-
tocols at lower layers. So, if an IP address (network layer)
changes unexpectedly, then TCP sessions will be impacted.

It is known that the underlying MTD must have sufficient
understanding of the functional and security requirements
of the system, though this has not been placed in the con-
text of dependencies [29]. Carvalho et al. have proposed
a command and control system to appropriately coordinate
movements in the system [5]. Our work is in identifying sys-
tem details that would be needed by such a control system.
Armed with this knowledge, we can then locate adversary
dependencies that are not shared by users or defenders, al-
lowing us to disrupt malicious behavior without having un-
due impact on legitimate users or administrators.

We begin by identifying the dependencies of the users,
defenders (administrators), and adversaries of a system. By
representing the dependencies of each agent on a labeled
graph we can determine the overall cost of satisfying each
agent’s dependencies. Then, given a set of defender options,

we can analyze the impact of any subset of defenses on each
agent, allowing us to find that subset of defenses that will
minimally disrupt users and defenders while maximally im-
pacting attackers. If no such defenses can be found, the
analysis may instead suggest new defenses.

Formally, system components and their dependencies can
be represented by a labeled, directed graph, G = (V,E,W ),
where V is a set of vertices or nodes, E is a set of ordered
pairs defining directed edges between the vertices, and W is
a set of weights for the edges. An edge e ∈ E, e = (µ, ν) is
directed from node µ ∈ V to node ν ∈ V and, in our formula-
tion, indicates that reaching ν is dependent on first reaching
µ and then satisfying the dependency that labels (µ, ν). This
means that success of ν requires success of µ. An element
w ∈W is a function of cost metrics associated with an edge.
From an agents’ perspective, increasing cost is detrimental.
So, for instance, administrators and users want to increase
the attacker’s cost while minimizing their own, while the ad-
versary desires the opposite. Potential metrics include im-
plementation costs (time, money), memory costs (increased
storage requirements), performance costs (time), network
and communication costs (latency, throughput, reliability),
and usability costs (support requests, system crashes). Ad-
ditional metrics suggested for cyber security include time to
compromise confidentiality, integrity, and availability [4, 9],
defense coverage, unpredictability, and timeliness [14], and
measures of deterrence, deception, and detectability [16].

We develop graphs for identified stakeholders by estab-
lishing three dependency graphs Gu = (Vu, Eu,Wu), Gd =
(Vd, Ed,Wd), Ga = (Va, Ea,Wa), for our system to repre-
sent the dependencies of system users, system defenders,
and adversaries, respectively. Note that, while we include
only these three sets of agents, additional stakeholders can
be added to the analysis with definitions similar to those
for these three agents. The weights wuk , k ∈ Eu in the user’s
graph are defined by fuw : R→ R, wuk = fuw (cui (k), i = 1 . . . nu)
where the cui (k), i = 1 . . . nu are the na user costs associated
with the edge k ∈ Eu. We similarly define defender labels
wdk, k ∈ Ed by fdw : R → R, wdk = fdw

(
cdi (k), i = 1 . . . nd

)
for

defender costs cdi , i = 1 . . . nd and adversary labels wak , k ∈
Ea by faw : R → R, wak = faw (cai (k), i = 1 . . . na) for adver-
sary costs cai , i = 1 . . . na. Note that fuw (·), fdw (·) and faw (·)
are not necessarily the same and that the definitions of the
cost metrics and the number of cost metrics nu, nd, and na
for users, defenders, and adversaries can also be different.

Now, we must establish the cost for satisfying the depen-
dencies for each agent. To do so, we must find the lowest
cost path to each terminal node from a root node. We define
the cost of a path as a function of the costs associated with
the edges along that path. Letting wui , i = 1 . . . n be the set
of weights along a path pui from a root node to a terminal
node in the user’s graph, we define the cost of the path as
fuc : R → R, pui = fuc (wui , i = 1 . . . n). Given this definition,
root node α ∈ Vu, and terminal node ζ ∈ Vu, Dijkstra pro-
vides an algorithm for finding the lowest cost path from α
to ζ [11]. We similarly define the cost of a path pdi in the
defenders’ graph as fdc : R → R, pdj = fdc

(
wdi , i = 1 . . . n

)
and the cost of a path paj in the adversary’s graph by fac :
R → R, paj = fac (wai , i = 1 . . . n) and, of course, can use the
same algorithm for finding the lowest cost paths.

Now, we require a method for determining the overall
cost for each agent. To do so, let Pu = {piu,i=mu} , Pd ={
pid,i=md

}
and Pa = {pia,i=ma} be the sets of the low-



est cost paths satisfying all mu,md and ma of the user’s,
defender’s, and adversary’s terminal dependencies, respec-
tively. Then define the user’s overall cost, su, by fus : R →
R, su = fus (pui , i = 1 . . .mu). Likewise, the defender and
adversary costs are defined by fds : R → R, sd = fds (pdi , i =
1 . . .md) and fas : R → R, sa = fas (pai , i = 1 . . .ma), respec-
tively.

4. USE CASE: ADDRESS SPACE LAYOUT
RANDOMIZATION

As an example of this dependency graph based approach,
we now consider applying it to address space layout ran-
domization (ASLR). ASLR is a code location randomization
technique used to help defeat Return Oriented Programming
attacks, or other types of attacks that depend on the at-
tacker having some a priori knowledge of the code map of
a running program. By randomizing the locations of var-
ious libraries and functions in a running program image,
the level of difficulty of developing exploits increases signif-
icantly. ASLR is widely implemented in modern operating
systems, appearing in Windows, Linux, OS X, Android, and
iOS.

ASLR is typically used in conjunction with Data Exe-
cution Prevention (DEP). DEP marks areas in memory as
being executable or non-executable. Only code appearing in
the executable regions can be run by programs. Hardware-
enforced DEP, which uses hardware to mark pages as exe-
cutable or non-executable, is most effective, but software-
enforced DEP is also available. DEP protects against at-
tacks that rely on executing instructions located in non-
executable pages. It is especially useful against buffer over-
flows, since these attacks often store instructions in non-
executable memory locations. Like ASLR, DEP is also widely
deployed and appears in Windows, Linux, OS X, iOS, and
Android operating systems.

DEP was originally developed to stop the proliferation of
stack-overflow based attacks, through which attackers could
easily inject shellcode into running programs via taking ad-
vantage of the stored instruction pointer. Typically, attack-
ers would overwrite a buffer such that the memory after the
buffer would be tactically overwritten to insert a new value
into the stored instruction pointer. This causes the pro-
gram to resume execution at an overwritten location below
the instruction pointer at which the attacker was able to
inject valid code. DEP prevented this attack by prohibit-
ing execution from these memory regions. This lead to the
development of Return-Oriented Programming, a program-
ming paradigm in which attackers jump to single instruc-
tions (or parts of instructions) within the running program.
With a static, known runtime program image, these instruc-
tion locations are easily reusable, once located. The solution
to this problem was to randomize the layout of the address
space, which moves these instructions so that they cannot
be predicted based on previous experimentation.

Individually, DEP and ASLR are not particularly effec-
tive. Attackers can compromise systems without DEP via
stack overflow techniques, and DEP without layout random-
ization is compromised via ROP. When combined however,
they are particularly effective. For this use case, we consider
only defenders and attackers.

4.1 Metrics

We use different metrics for evaluating the costs of users
and adversaries fulfilling their respective dependencies. For
adversaries our metrics are:

• time to acquire access

• cost to acquire access

• time to acquire knowledge

• cost to acquire knowledge

• unpredictability

• frequency of movement

The first two metrics represent the adversary’s difficulty
in achieving the proper position to complete an action or to
fulfill a dependency. For example, an adversary wishing to
exploit a buffer overflow must first be in a position to write
to the buffer. The next two metrics describe the skills and
knowledge required by an adversary to be successful in the
attack. The final two metrics describe the uncertainty that
an attacker will face when attempting to complete an attack
step. We estimate this uncertainty by how predictable the
operating environment is to the adversary and by how of-
ten this environment changes. Additional metrics, such as
the size of the attack team and their commitment to the
attack could also be employed [12]. We found that, for this
example, additional metrics did not help to differentiate the
attack steps. For each edge in the adversary’s dependency
graph we evaluate each of these metrics on a ”low-medium-
high” scale.

For users our metrics are:

• change in memory requirements

• change in CPU requirements

• change in system stability

• change in networked communication latency

• change in networked communication bandwidth

• change in networked communication stability

These metrics focus on disruption to the user’s computing
experience with respect to both computational and network-
ing or communication overhead. For scoring, we initially as-
sign the cost of fulfilling each dependency as zero. This is
because the initial state is an existing system or implemen-
tation, so no overhead results from maintaining this state.
Then, we evaluate the cost of a defense by estimating the
percent change in each metric that will result from applying
the defense.

Note that the specific set of metrics used for this analy-
sis can be changed to suit the application or system under
study. Additionally, we also note that the absolute scores as-
signed to each metric for each edge are less important than
the relative scores between edges. This is because assign-
ing a particular cost to an edge or path is less important
than knowing which paths are the most or least expensive.
Due to this, consistency in assignment of scores is necessary.
For example, if a ”low-medium-high” scale is used to score
the attacker metrics then it is useful to define boundaries or
ranges for each of the scores to aid in consistent application
of them.



4.2 Scoring
Users and adversaries alike have sets of dependencies that

they must satisfy in order to achieve their goals. These sets
are represented by paths from the initial node to a termi-
nal node in the dependency graph. The cost of completing
the goal is then the cost of satisfying each of the dependen-
cies. Consequently, we need to estimate the aggregate cost
of fulfilling a set of dependencies.

It does not make sense to add the individual costs since
this unfairly penalizes longer paths, which may occur simply
because some portions of the dependency graph are more
detailed than others. We also know that it probably does
not make sense to use the maximum individual cost as the
composite cost since, for instance, multi-stage attacks with
several equally and highly expensive steps are likely more
costly for attackers than attacks with only one such difficult
step.

We transform the cost of each stage of a dependency path
into a value between 0 and 1. For this, we map more costly
steps to values closer to 0, and easier steps to values close to
1. Conceptually, we think of these values as representing the
probability of success, although this interpretation should
not be taken literally. Now, after transforming the costs,
and using our probabilistic interpretation, we can compose
them by finding the joint probability of success of the path.
The joint probability of success is strictly smaller than any
of the individual probabilities of success. This means that
the joint probability will include contributions from each
individual dependency; easily satisfied dependencies are not
assumed to be fulfilled, although they will have less impact
than more difficult steps. After finding the joint probability,
we can then transform it back into a cost by inverting the
original transformation.

The transformation we propose is

p =
m− d
m

(1)

where m is an upper bound for the cost of a step, d is the cost
of a step, and p is the value that we interpret as the proba-
bility of success for this step. To aggregate the probabilities
of success across a set of edges ei, i = 1 . . . n we simply cal-
culate

∏
i pi. The inverse transformation corresponding to

equation 1 is

d = m− pm (2)

and so the composed cost of the multi-stage dependency
is

c = m−m
∏
i

pi (3)

where the vi correspond to the individual steps in the
dependency path.

4.3 Evaluation
We are generally interested in answering questions about

the costs of paths through the dependency graph from the
start node to an ending node. Typically, we are interested
in finding the adversary’s least costly paths for satisfying all
of the dependencies for a particular attack, and in finding
the most costly paths for users, administrators, and other
legitimate users. This is because we would like for our de-
fenses to maximize the cost of the adversary’s least expensive

paths, while minimizing the cost of legitimate actors’ most
expensive paths. Djikstra’s algorithm is suited to solving
this problem if we use eqn. 3 as the distance metric [11].

4.3.1 Address Space Layout Randomization with Data
Execution Prevention

In our dependency graphs each directed edge is labeled
with three values. The first label indicates whether the edge
is an adversary or user dependency, and is of the form aN or
uN , whereN is an integer and a and u indicates adversary or
user, respectively. The next label describes the dependency,
and the third label is the cost for satisfying the dependency.
For visual reference, adversary edges and nodes are depicted
in orange, and user edges and nodes in purple. Shared nodes
are shown in white. Edges that are made prohibitively ex-
pensive by a defensive action are denoted by gray dashed
lines, and nodes that are cutoff from the graph by defensive
actions are also shown in gray.

We consider a running example in which a defender at-
tempts to prevent attacks by implementing ASLR and DEP.
We first consider the initial system state before any de-
fense is deployed. We then consider ASLR and DEP inde-
pendently, DEP combined with a partial implementation of
ASLR, and DEP combined with a complete implementation
of ASLR. In each case we examine likely attacker approaches
responding to the defense.

First, we discuss the initial scenario before any defenses
are deployed. Considering Figure 1, we first describe why
this particular set of dependencies was selected. In this case,
we include user dependencies that capture local code execu-
tion. This involves executing subroutines and other code
that is located at different locations in the address space
since not all instructions appear at sequential addresses.
Host application attacks typically require jumping to or oth-
erwise redirecting the execution flow to injected code. This
can be accomplished by placing the code at an address that
appears on the stack as a return address, so we must include
attacker dependencies for accomplishing this. The users’ de-
pendency graph is presented in the purple path in Figure 1,
where we see that the users’ dependencies include calling
the subroutine, pushing the return address onto the stack,
executing the subroutine, and writing data into a buffer. Af-
ter the subroutine is complete the return address is popped
off the stack, the instruction pointer is updated, and the
original program execution continues. Since this is the ini-
tial system configuration and the user’s costs are defined as
changes from some baseline, all of user’s dependencies are
assigned zero cost. The adversary’s original dependencies
are shown by the orange paths in Figure 1. In this initial
setting, the adversary can succeed at injecting and executing
malicious code by exploiting a simple buffer overflow vulner-
ability. For this, the adversary must have knowledge of the
machine architecture, locate a vulnerable buffer, and be able
to write data into this buffer. By overflowing this buffer, the
adversary is able to inject the malicious code. Note that,
owing to the monoculture of defense postures, the adver-
sary can identify the vulnerable process and write the buffer
overflow exploit for it offline. Now, the adversary uses any
of several methods for overflowing the buffer and redirect-
ing program execution to the malicious code. Approaches
for this may include overwriting the return address on the
stack, or making use of a dangling or out of bounds pointer.
In any case, if the adversary is able overflow the buffer to



Figure 1: Dependency graphs for users and adver-
saries prior to applying any defenses.

inject the malicious code and then update the instruction
pointer to point to this code, then the malicious program
will be executed. Due to the static, predictable defense pos-
ture presented to the adversary in this scenario, we find that
the cost for satisfying the adversary’s dependencies is low in
this initial setting. We score each of the attacker’s metrics
on a scale from 0− 1, with 1 being the most costly. For this
example, we only allow scores of 0, 1/3, 2/3 and 1, although
finer gradations are possible. The initial attacker costs are
presented in Table 1. In Table 1 ta is the attacker’s time to
acquire access, ca is the cost to acquire access, tk and ck are
the time and cost to acquire knowledge, u is unpredicitabil-
ity, fm is the frequency of movement, and oc is the overall
cost.

Table 1: Original adversary costs
ta ca tk ck u fm oc

a0 0.00 0.00 0.33 0.33 0.00 0.00 0.11
a1 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a2 0.33 0.33 0.00 0.00 0.00 0.00 0.11
a3 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a4 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a8 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a9 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a10 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a11 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a37 0.00 0.00 0.33 0.33 0.00 0.00 0.11
a38 0.00 0.00 0.33 0.33 0.00 0.00 0.11

Figure 2 shows updated dependencies after applying ASLR.
Note that the cost of ASLR to the user is essentially zero,
with only a slight increase in CPU overhead for randomizing
the memory space when a process is initialized. This change
is shown in Figure 2, where we have included a 10% change
in CPU requirements completing dependency u0. This man-
ifests as a total increase in cost of less than 1%, which is
consistent with the literature on 32-bit ASLR [23]. However,
the randomized memory layout has a greater impact on the
cost of fulfilling the adversary’s dependencies since key ele-
ments, such as the location of the stack and buffers and the
base address of loaded modules are now randomized. These
increased costs are also shown in Figure 2. Some of the ad-
versary dependencies, such as learning the reliable location
of the return address and modifying a pointer with the ad-
dress of exploit code, have more costly access requirements
due to the effort required for learning the appropriate return
addresses. Some of the dependencies also now require a more
sophisticated adversary, increasing the cost of acquiring the
knowledge required for a successful attack. The greatest
increases in cost, however, arise from the unpredictability
introduced to the system by ASLR. Since the adversary can
no longer identify reliable addresses before launching an at-
tack, the adversary now faces a less predictable operating
environment. However, it is still possible for the adversary
to be successful. We find that the cost of fulfilling the ad-
versary’s dependencies for a successful attack increases by
29%. The updated costs are presented in Table 2. One op-
tion available to the adversary is to brute force or guess the
locations of the required structures. While this may be pos-
sible in some circumstances, it is also risky and may lead
to detection. We find that the more likely attack is to em-
ploy a NOP-sled or other heap-spraying technique, which



is consistent with the literature [20]. In these approaches, a
large section of memory is filled with NOP instructions, with
the malicious code following the NOPs. Jumping anywhere
within the sequence of NOPs will eventually cause the mali-
cious code to execute. We add this as a potential adversary
dependency as well.

Table 2: Updated adversary costs after ASLR
ta ca tk ck u fm oc

a3 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a22 0.00 0.00 0.00 0.00 0.33 0.33 0.11

In Figure 3 we present dependency graphs showing the
influence of DEP. The cost to users is low, with only minor
computational overhead and a slight decrease in system sta-
bility. The decreased stability is primarily caused by legacy
applications that do not conform to the memory restrictions
enforced by DEP. We estimate these costs as a 5% increase
in CPU requirements for edges u1, u3 and u6 and 5% de-
crease in system stability for u2. We estimate the total
increased cost to users at less than 1%. There is a much
larger increase in the cost of fulfilling the adversary’s depen-
dencies. Since code injected with a buffer overflow is likely to
be in memory marked as non-executable, adversaries must
find new methods of attack. Typically, these attacks use
return-oriented programming [19]. This technique strings
together sequences of instructions from existing programs.
Since these instructions are in memory locations marked as
executable, the adversary need only to locate an acceptable
sequence and then update the program counter to follow
the desired sequence. Since DEP does not introduce any
randomization, ROP exploits can be identified and written
offline. We represent this by adding attacker dependencies
for identifying the ROP code at the top of Figure 3. The
attacker must still inject some exploit code to hijack control
of execution, likely with a buffer overflow attack to over-
write the return address, and so this set of dependencies
still appears. After this, there are several approaches the
attacker may take for executing the exploit that depend on
the particular construction of the exploit code. These ap-
pear at the bottom of Figure 3. Constructing ROP attacks
is more difficult than writing standard shellcode exploits,
and consequently requires more knowledgeable adversaries.
Additionally, execution of these exploits requires not only
construction of the ROP code, but also modification of the
instruction pointer. In Figure 3 these distinct dependencies
are indicated by labeling sets of adversary terminal nodes
as ’(0)’ and ’(1)’. The adversary must fulfill dependencies
from both sets in order to be successful. Due to the addi-
tional requirements on adversary capability for developing
the attack and the distinct dependency paths for develop-
ment and injection of the attack, we find that DEP increases
the adversary’s cost by about 52%, which is larger than with
ASLR. Changes from the attacker’s original costs appear in
Table 3

Individually, both ASLR and DEP can be bypassed rel-
atively easily with well-known techniques, and so they are
not particularly effective when used independently [23, 21].
However, they are complementary techniques and can be
employed together. One method for doing this is to use
DEP in conjunction with a limited application of ASLR in
which not all modules are protected. Dependency graphs

Figure 2: Updated dependencies after applying ad-
dress space layout randomization. Adversaries no
longer have reliable knowledge of the location of in-
jected code within memory, making NOP-sled type
attacks the most likely.



Figure 3: After applying data execution prevention
adversaries can no longer reliably execute injected
code, and instead are likely to use return-oriented
programming techniques.

Table 3: Updated adversary costs after DEP
ta ca tk ck u fm oc

a6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a22 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a31 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a34 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a39 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a40 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a41 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a42 0.33 0.33 0.67 0.67 0.00 0.00 0.33

for this are shown in Figure 4. Here, we find that because
of DEP the adversary is still likely to use a ROP attack.
However, ASLR prevents the adversary from knowing mem-
ory locations for all executables in advance, so the adversary
must locate modules that are not protected by ASLR and
then build the ROP program from those modules. Conse-
quently, we add an attacker dependency of finding an exe-
cutable or relative address that is not protected by ASLR
from which to build the ROP attack. This limitation on
the adversary’s access complicates the attack and requires
circumventing both the ASLR and DEP protections. Since
these protections are dissimilar, defeating one does not imply
the ability to defeat the other. This effective independence
increases the adversary’s cost considerably. We find a 117%
increase in adversary cost, which is slightly more than the
combined increase required for defeating both ASLR and
DEP independently. The changes from the attacker’s orig-
inal costs and assessment of new edges appears in Table 4.
As before, we find that the user’s costs increase by less than
1%. This represents a 5% increase in CPU requirements for
edges u1, u3 and u6, a 10% increase in CPU requirements
for u0 and 5% decrease in system stability for u2.

Table 4: Updated adversary costs after DEP and a
partial application of ASLR

ta ca tk ck u fm oc
a2 0.33 0.33 0.00 0.00 0.33 0.33 0.22
a3 0.33 0.33 0.67 1.00 0.33 0.33 0.50
a6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a15 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a16 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a17 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a18 0.33 0.33 0.67 0.67 0.33 0.33 0.44
a19 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a22 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a23 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a28 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a31 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a34 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a36 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a39 0.00 0.00 0.00 0.00 0.33 0.33 0.11

We can also pair DEP with a complete application of
ASLR that protects all modules. In the scenario, the adver-
sary can no longer rely on any code being at known locations.
The adversary must now learn the location of a module us-
ing some memory disclosure vulnerability, and then exploit



Figure 4: After implementing DEP and applying
ASLR to some executables the adversary is still
likely to use return-oriented programming tech-
niques, but will now need to build the malicious code
only from modules that are not protected by ASLR.

this vulnerability to dynamically construct a ROP payload.
Following [10], we represent this by incorporating attacker
dependencies for using a memory disclosure vulnerability to
find the base address of a dynamically linked library, and
then using this to dynamically construct the ROP payload.
While the basic process of using ROP to bypass DEP is un-
changed, the skills and difficulty of constructing the exploit
increase greatly, and in Figure 5 we find a 168% increase in
the adversary’s cost. Changes from the attacker’s DEP and
partial ASLR costs and assessment of new dependencies ap-
pear in Table 5. Note that we have assigned the maximum
possible cost to a15 and a17, indicating that those edges
have been removed by the defensive action. As before, users
are essentially unaffected by the protections, and their costs
increase by less than 1%. As with DEP and partial ASLR,
these costs are incurred through a 5% increase in CPU re-
quirements for edges u1, u3 and u6, a 10% increase in CPU
requirements for u0 and 5% decrease in system stability for
u2. The results from our analysis of these four scenarios are
summarized in Table 6.

Finally, we also note that it is possible for an attacker
to bypass a protection entirely. For example, an attacker
might bypass ASLR by targeting an application that leaks
memory information and then using this to bypass ASLR, or
by simply turning ASLR off. After bypassing ASLR the at-
tacker can then proceed with a DEP resistant exploit, such
as a ROP attack that uses instructions at memory loca-
tions that the attacker can learn after bypassing ASLR. Our
modeling approach is intended to assess the costs incurred
by the various classes of users when a particular defense is
correctly deployed. Due to this, we model the costs to an
attacker to complete the attack assuming that the defense is
in place. Consequently, while we acknowledge the possibil-
ity of defenses being bypassed entirely, we do not attempt
to capture it in our models since there is little to gain by
modeling a defense and then simply bypassing it, which ef-
fectively removes it from the model. Additionally, while we
present ASLR and DEP as an example of the modeling ap-
proach, we reiterate that a primary benefit of the modeling
approach is for identifying attacker dependencies that are
suitable for targeting with a defense. Or initial motivating
use and target application may be moving target or dynamic
defense, but the approach is suitable for a variety of different
environments.

Table 5: Updated adversary costs after DEP and a
complete application of ASLR

ta ca tk ck u fm oc
a15 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a17 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a19 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a28 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a29 0.33 0.33 0.67 0.67 0.33 0.33 0.44
a30 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a31 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a32 0.33 0.33 1.00 1.00 0.33 0.33 0.56

5. OVERALL DEPENDENCY ANALYSIS

5.1 Optimization
In section 4.3.1 we demonstrated the sue of dependency

graphs to analyze a moving target defense. We also ap-



Figure 5: After implementing DEP and protecting
all modules with ASLR, the adversary must exploit
a memory disclosure vulnerability to learn the base
address of a module, and then dynamically construct
malicious ROP code.

Table 6: Summary of results
defensive ∆ adversary ∆ user ∆ adversary cost /
technique cost cost ∆ user cost

ASLR 23% 0.25% 92
DEP 47% 0.06% 783

partial ASLR 117% 0.29% 403
and DEP
full ASLR 163% 0.29% 562
and DEP

plied Djikstra’s shortest path finding algorithm with a mod-
ified distance metric, to find the overall user and attacker
costs for fulfilling all of the relevant dependencies. Now, we
explore additional analytic approaches for studying depen-
dency graphs and suggest how these approaches could be
applied to analysis of MTDs.

Recall from section 3 that the users’, defenders’, and at-
tackers’ overall costs for fulfilling their dependencies are su,
sd, and sa, respectively. To identify locations most suitable
for applying existing MTDs, or even to identify attacker de-
pendencies that could be impacted by new defenses without
burdening users or defenders, we want to find those ways
to maximally impact the adversary while minimally impact-
ing users and defenders. One way to do so is by solving
the multi-objective optimization problem min (su, sd,−sa).
We use −sa in the formulation of the optimization problem
since minimizing it is equivalent to maximizing the adver-
sary’s cost. The optimization itself can be constrained by
defining a list of defender options and associating with each
of them the impact that they will have on the user, defender,
and adversary cost metrics cui , i = 1 . . . nu, cdi , i = 1 . . . nd,
and cai , i = 1 . . . na. In general, these impacts vary from
edge to edge within a graph, although in practice a particu-
lar defense option will influence only a subset of edges within
a graph and so the impact of the defense mechanism only
needs to be determined for that set of edges. If no suitable
solution to the multi-objective optimization problem can be
found, or due to interest in discovering new defensive ap-
proaches, this analysis can be expanded to allow for defense
discovery, which can be aided by graph analysis techniques.

5.2 Graph Analysis
There are many graph analysis tools and algorithms that

are appropriate for analyzing dependency graphs. Algo-
rithms and approaches for detecting or identifying bottle-
necks, popular nodes, low costs paths, communities belong-
ing solely to users, defenders, or attackers, and cuts that
separate such communities, allowing them to be targeted,
are all of interest. Here, we provide a brief overview of
some of the relevant graph analysis techniques for achiev-
ing these goals. Formally, we define a multigraph Gm =
(Vm, Em,Wm) where Vm = Vu∪Vd∪Va, Em = Eu∪Ed∪Ea,
Ei ∩ Ej = ∅, i 6= j, and Wm = Wu ∪Wd ∪Wa, Wi ∩Wj =
∅, i 6= j, which is simply a single graph produced by combing
the user, attacker, and defender digraphs.

5.2.1 Centrality
Graph centrality measures attempt to identify the most

important nodes or edges within a graph. We consider both
edge betweenness centrality and eigenvector centrality. The
betweenness centrality of an edge e is the sum of the frac-
tion of all pairs shortest paths that pass through e [2]. It

is calculated as c(v) =
∑
s,t∈V

σ(s,t|e)
σ(s,t)

where V is the set



of nodes in the graph, e is the edge under consideration,
σ (s, t) is the number of shortest paths from node s to node
t, and σ (s, t|e) is the number of those shortest paths that
pass through e.Using this definition of centrality, increasing
adversary costs on the in-edges of central nodes is desir-
able since doing so will increase the adversary’s costs for
satisfying even the least expensive dependencies. If enough
such defenses are available, the adversary’s costs can all be
increased to some minimum value. This may have the ef-
fect of eliminating some attackers from the system entirely.
Considering the user’s and defender’s dependencies, defen-
sive maneuvers that impact nodes with large betweenness
centrality scores is desirable because such defenses will im-
pact shortest-paths in the dependency graph. Increasing the
cost of these shortest paths is more desirable than increasing
the cost of paths that are already expensive to satisfy.

With eigenvector centrality connections to high-scoring
nodes contribute more to a node’s score than connections
to lower scoring nodes. This is appealing for our study of
dependency graphs since it permits us to identify not only
the most central nodes, but also the nodes that lead to these
central nodes. This allows us to consider defenses that im-
pact not only the most central nodes, but also to identify and
impact nodes that are connected to them. This broadens the
number of edges available for targeting while also increasing
the adversary’s costs for satisfying common dependencies.
If we can find defenses that impact paths leading to user
and defender nodes that have low centrality scores then this
might limit the impact on users and defenders since these
paths are not exercised very frequently.

Dissimilarity centrality measures assign more relevance to
nodes with greater dissimilarity, since those nodes allow the
given node access to portions of the graph that the given
node cannot access directly. For example, if there are two
clusters of nodes in a graph and these clusters are connected
by a single edge, then the nodes connected by this edge are
more central (most dissimilar) because they permit access to
the different clusters. Targeting these edges in the attacker’s
graph allows us to increase the cost of traversing bottlenecks
in the attacker’s graph. Conversely, finding such bottlenecks
in user’s or defender’s graphs may help us to identify de-
fenses or system changes to add parallel paths or to increase
the connectivity of the legitimate actor’s graphs.

5.2.2 Community Detection
Graphs have community structure if their nodes can be

grouped into subsets that are internally densely connected.
Such communities are of interest to us for a variety of rea-
sons. If we identify communities within attacker graphs,
then we may be able to target defenses to increase the costs
of satisfying edges within a community, or we may be able
to find central or influential nodes within individual com-
munities to target with our defenses. Similarly, we may also
be able to identify communities in the defender graphs and
then seek defensive measures such as increasing the number
of communities or reducing the centrality of nodes within
communities to limit the negative impacts of attacker and
defender actions on the defenders. Additionally, we may
attempt to divide the defender and attacker nodes into dis-
tinct communities to limit the negative impact of defender
actions on the defender.

Community detection is useful for defense discovery. It
allows us to look for adversary dependencies that are not

shared by users or defenders. These are the edges e =
(µ, ν) ∈ Ea s.t. µ, ν /∈ Vu ∪ Vd. Any such edges are depen-
dencies belonging only to the adversary, and so defensive
measures targeting those edges, and no others, will impact
only adversarial operations.

The Girvan-Newman algorithm is one approach for com-
munity detection [13]. The Girvan-Newman algorithm de-
tects edges that are most likely between communities by
finding those edges that appear along many shortest paths.
These edges are then removed from the graph, and the pro-
cess repeats. In a network with community structure con-
taining two or more internally densely connected communi-
ties, but with few edges connecting them, those edges that
connect communities will have high edge-betweenness and
are targeted for removal. Eventually, only the densely con-
nected communities remain in the graph. This approach is
useful for finding central nodes in networks that have known
starting and ending points, which is true for dependency
graphs.

5.2.3 Cut finding
The minimum cut of a graph is a bottleneck in the graph.

We want to find these bottlenecks and either remove them
for defenders or attempt to create or strengthen them for
attackers. Additionally, finding cuts of the graph that sepa-
rate or almost separate it into defender and attacker graphs
may allow us to identify defenses that preferentially impact
the attacker’s edges more so than the defender’s edges. Sim-
ilarly, such cuts may also suggest locations for adding new
defender or attacker requirements to either make it easier for
the defender to preferentially target attacker dependencies,
or to make it more difficult for the attacker to preferen-
tially target defender dependencies. For instance, we can
search for cuts in the merged graph that disconnect more
of the adversary’s nodes than user and defender nodes. If
the user and defender nodes can be reconnected to their
original graphs, for example, by adding additional vertices,
then these cuts will identify adversary edges that can be
targeted for new defensive measures and which will require
minimal additional edges to be added to the user and de-
fender graphs. In particular, if we can find a cut C =
(S, T ) = {(s, t) ∈ Em|s ∈ S, t ∈ T} of Gm = (Vm, Em,Wm)
s.t. |{t ∈ T ∩ Eu}| ≤ |{t ∈ T ∩ Ed}| < |{t ∈ T ∩ Ea}| then
we might consider defender actions that will impact the
edges in T . In practice, it is possible that these defender
actions will not actually partition Gm, but rather that they
will increase the weights associated with the edges in T .
Although these actions will also impact users and defend-
ers, if the weights in Wu and Wd associated with the edges
{t ∈ T ∩ Eu} and {t ∈ T ∩ Ed} do not increase too much, or
if additional edges eu and ed that are not impacted by the
defender action can be added to Eu and Ed, then these edges
effectively patch the user and defender systems, reducing the
impact of the defensive action on those agents.

5.2.4 Efficiency
The local efficiency of a node indicates how well the net-

work can transfer information when that node is removed. In
some sense it describes how well the network functions when
a node is eliminated. Attacker nodes with high efficiency are
those nodes which will have little impact on the attacker’s
graph if they are removed, or if the cost for reaching them
is increased. Consequently, we can choose either to attempt



to decrease the overall efficiency of the attacker’s graph by
targeting defenses on nodes with high local efficiency, or we
can target defenses on inefficient nodes to increase the cost
of passing through bottlenecks in the attacker’s graph. On
the other hand, we want the defender’s network to have high
efficiency, so we might look for nodes with low local efficiency
and then seek methods, such as adding additional nodes or
edges, for improving it.

5.2.5 Application of Optimizations
Now, we consider applying these optimization approaches

to our example problem to show how, in addition to mod-
eling the impact of a defense, our dependency graph ap-
proach can also be used to identify areas for applying de-
fenses. Since we have a limited set of defender options in
this example, the impacts of which are summarized in Ta-
ble 6, the multi-objective optimization described in section
5.1 is trivially solved as a full implementation of ASLR and
DEP. The graph analysis approaches of section 5.2 are of
more interest in this example. We consider edge betweenness
centrality, local and global efficiency, and Girvan-Newman
community detection on the graph in Figure 1. We begin
with edge betweenness centrality. Recall from Section 5.2.1
that attacker edges with large centrality are attractive for
targeting because they are the nodes most likely to appear
along the attacker’s shortest, and hence most likely, paths.
The centrality for each attacker edge is presented in Table 7.
From this, our analysis suggests defenses targeting edges a7
and a38 or the edges leading to them. These edges lead to a
collection of parallel paths beginning with a3, a8, a10 and a7.
Targeting these would be of little value, since the attacker
would still be left with many alternative options. Now, since
the recommended edges a37 and a38, which represent the
attacker gaining knowledge of the machine instruction set
and development of exploit code. These are not direclty im-
pacted by ASLR or DEP, this suggests that a defense that
does target those dependencies, such as instruction set ran-
domization, would be useful in concert with ASLR and DEP
[17, 1, 15]. Since the user’s dependency graph has a single
path the concept of betweenness centrality is not useful for
analyzing it.

Table 7: Edge Betweenness Centrality for Attacker
Edges

Edge Centrality Edge Centrality
a0 0.08 a7 0.14
a1 0.15 a8 0.05
a2 0.20 a9 0.02
a3 0.05 a10 0.05
a4 0.02 a11 0.02
a5 0.15 a37 0.24
a6 0.08 a38 0.27

Next, we consider the graph efficiency metrics. Recall
from Section 5.2.4 that nodes with high efficiency are those
that will have little impact on the graph if they are removed.
This implies that we should either target inefficient attacker
nodes, helping to create bottlenecks in the attacker’s graph,
or to broadly target efficient nodes in an attempt to lower
the global efficiency of the attacker’s graph. Since the at-
tacker’s graph is consists almost entirely of serial connec-
tions, we find that node n38, which leads to set of parallel
paths, has efficiency 0.25 and is the most efficient in the
network and so preventing or increasing the attacker’s dif-

ficulty for reaching it should be useful. Indeed, this is the
only node in the graph with nonzero efficiency. As with
edge betweenness centrality, this again suggests introducing
instruction set randomization to make it more difficult for
the attacker to learn the machine’s instruction set and to use
this knowledge to craft an exploit. This metric also reveals
that the user’s graph has low efficiency and so implementing
measures for parallelizing paths in the user’s graph might
be useful. Additionally, since two nodes (n5 and n6) are
shared by the users and attackers, any defenses that target
the attacker’s dependencies for reaching these nodes should
be careful not to overly burden the user.

Now, recall from Section 5.2.2 that the Girvan-Newman
algorithm, finds those edges that are most likely to be in be-
tween separate communities in a graph. By locating these
edges, we can target defenses at the boundaries in between
attacker communities to attempt to separate them from the
graph or to make it more costly for the attacker to reach one
community from the other. From the user’s perspective, de-
fenses for blurring the boundaries between communities may
be desirable since they may make it easier to fulfill depen-
dencies. Applying Girvan-Newman to the attacker’s graph
to produce four communities reveals (n1, n8), (n9, n5, n37),
(n38, n10, n11, n12), and (n15, n6, n17) as the four attacker
communities, with (n1, n8) the least important of these.
Of the remaining communities, the boundary nodes are n9,
n37, n38, and n15. This suggests that defenses that make it
more difficult for an attacker to identify the machine archi-
tecture and instruction set, to develop exploit code, and to
use buffer overflows to inject code are all of potential inter-
est. ASLR impacts the use of buffer overflows by making it
more difficult for an attacker to redirect program execution
to the location of the injected code. DEP also has an impact
on buffer overflows since it makes it more likely that injected
code will be in a non-executable region. Additionally, ISR
is likely to increase attacker difficulty for learning about the
instruction set and developing exploit code. Finally, we note
that the three prominent communities detected by Girvan-
Newman can be described as ”exploit development” (n9, n5,
n37), ”exploit insertion” (n38, n10, n11, n12), and ”exploit
execution” (n15, n6, n17), and so techniques for separating
these communities, such as execution environment between
exploit development or insertion and execution, may be use-
ful.

5.2.6 Defense Discovery
The graph analysis algorithms suggest approaches where

one might look to apply defenses to have the greatest impact
on attackers. This permits ”defense discovery” in which we
use analysis of our dependency graphs to find attacker and
defender nodes and edges that are most suitable for target-
ing with a defense. In this setting, there may be situations
in which an existing defense addresses the identified edges or
nodes, such as with using ISR to frustrate exploit develop-
ment in the preceding example, and other situations in which
there is no existing defense that targets the identified nodes
or edges. In these cases, the analysis provides some research
direction into the identification of new defensive techniques
that are likely to have a large impact on attackers without
overly burdening legitimate users. These analysis could be
applied to any dependency graph to help with identification
of appropriate defenses or to suggest research directions for
development of new defenses.



6. CONCLUSIONS
Although many MTD approaches have been presented in

the literature, we find that relatively few of them have been
adopted in practice. We suspect that this is because, in addi-
tion to impacting attackers, many MTDs break or increase
the cost of system dependencies for users and administra-
tors. These impacts on legitimate system users result in the
cost of the MTD outweighing its benefits and prevents it
from being adopted. To explore this issue we presented a
dependency graph approach for modeling MTDs and their
impacts on users, defenders, and attackers, and applied this
model to address space layout randomization. We find that
results from our model agree with previously reported ex-
perimental results, and so we then suggest optimization and
graph analysis approaches for studying dependency graphs
to identify appropriate locations for introducing MTDs. For
instance, graph centrality can be used to identify bottlenecks
in the attacker’s graph, and community finding algorithms
can be used to isolate the attacker’s dependencies from those
of users and defenders. In future work we will further ex-
plore application of these graph analysis approaches to de-
pendency graph models of MTDs.
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