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PROBLEM: .Hovy to expand trained deep nets.to accommodate new data classes? Neurogenlc.Deep Learning (_NDL) Algorithm N | Greedy Layerwise Neurogenesis on an Autoencoder. RESULTS
In contrast to b|olqg|cal n_eural systems, cqpable of continuous learning, DNNs 7= The NDL algorithm e_u_jds and trains new nodes to a layer (_Jf an AE similar to Iayervylse The goal is to learn new feature detectors for novel data. We evaluate NDL on MNIST data, where a Deep AE is initially trained with two digits (1, 7), then learning a new
have a limited ability to incorporate new information in a trained network, so | Ag. Autoencoder pretraining when a critical number of input samples fail to achieve adequate representation. ‘ task is simulated by progressively expanding the number of encountered classes (0, 2, 3, 4, 5, 6, 8, 9), one at a
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DNNs to facilitate their acquisition of novel information while preserving | NDL: Neurogenic DL seen classes. Samples from old classes are created using the representation capability « NDL with IR (NDL+IR) - Figure D: Starting network size of 784-200-100-75-20-75-100-200-784
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challenged adaptive machine learning algorithms. of per-layer RE thresholds Th, vector of per-layer maximum nodes allowed to add MaxNodes, I 3 ® * OL without IR (OL) - Figure A below: Starting network size = NDL generated network
Neuroscience Inspiration New memories are encoded with the help of | | Maximum number of samples allowed to have RE, > Th;, MaxOutliers, Learning Rate LR - § _g § Our results who that NDL with IR enables training of new digits while minimally impairing original representations.
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