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Neuroscience Inspiration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neurogenesis algorithm as an efficient method for adapting DNNs 

The value of a model to continuously adapt to changing data is challenging to quantify. Here, we quantify 

the value of a machine learning algorithm at a given time as follows. 

 Utility = Benefit – (Cost of Model / Lifetime) – Cost of runtime 

 

 

Layer-wise Reconstruction Error as a measure of representation capability 

RE is computed at internal layer L within an AE by encoding an input sample through L encode layers, 

then propagating through the corresponding L decode layers to the output. An AE parameterized with 

weights W, biases b, and activation function s is described from input, x, to output as N encode layers 

followed by N decode layers. 

 Encoder: 

 Decoder:    

Then, the global RE at layer L is 

  

 

RESULTS PROBLEM:  How to expand trained deep nets to accommodate new data classes? 

 
 

The NDL algorithm adds and trains new nodes to a layer of an AE similar to layerwise 

pretraining when a critical number of input samples fail to achieve adequate representation. 

• Plasticity occurs as new nodes are added to represent novel data, then network  

• Stability occurs by leveraging both new data and replayed samples from previously 

seen classes. Samples from old classes are created using the representation capability 

of the AE in a process we call “intrinsic replay” (see below). 

Input: 2N-layer autoencoder AE trained on data classes {D1,D2,…,DU-1}, new class of data DU, vector 
of per-layer RE thresholds Th, vector of per-layer maximum nodes allowed to add MaxNodes, 
maximum number of samples allowed to have REL > ThL, MaxOutliers, Learning Rate LR 

Output: Autoencoder AE capable of representing data classes {D1,D2,…,DU}  

// Combine samples from the new class of data with replayed samples of old data 
AE_TrainingSamples  {DU U IntrinsicReplay(D1,D2,…,DU-1)} 

// Perform neurogenesis layer by layer 
numOutliers  |DU|  

for Layer L  1 to N 
 NewNodes  0 
 Outliers  {d  DU | RE𝐺𝑙𝑜𝑏𝑎𝑙,𝐿(d) > ThL} 
 𝑁𝑂𝑢𝑡   |Outliers| 

 𝑁𝑂𝑢𝑡
𝑃𝑟𝑒𝑣   𝑁𝑂𝑢𝑡+1 

 // Add and train new nodes to layer L 
 while 𝑁𝑂𝑢𝑡> MaxOutliers and NewNodes < MaxNodesL and 𝑁𝑂𝑢𝑡 <  𝑁𝑂𝑢𝑡

𝑃𝑟𝑒𝑣 

       AEL  (𝑊𝐿 , 𝑏𝐿 ; 𝑊𝑁+1−𝐿
′ , 𝑏𝑁+1−𝐿

′ ) from AE 

  Plasticity: Add a node with random weights to AEL and train on Outliers 
  Use LR to update encoder weights connected into new node only 
  Use LR/100 to update decoder weights 

  Stability: Train AEL on AE_TrainingSamples 

  Using LR to update all weights 

  (𝑊𝐿, 𝑏𝐿 ; 𝑊𝑁+1−𝐿
′ , 𝑏𝑁+1−𝐿

′ )  AEL 

  Outliers  {d  DU | RE𝐺𝑙𝑜𝑏𝑎𝑙,𝐿(d) > ThL}  

  𝑁𝑂𝑢𝑡
𝑃𝑟𝑒𝑣   𝑁𝑂𝑢𝑡  

  𝑁𝑂𝑢𝑡   |Outliers| 

  NewNodes  NewNodes+1 

  // Add connections from new nodes in layer L to existing nodes in layer L+1 and train 

 If NewNodes > 0 & L < N 

Plasticity: Add weights initialized to zero to AEL+1 connected to new nodes from layer L 

  Stability: Train AEL+1 on AE_TrainingSamples 

  (𝑊𝐿, 𝑏𝐿 ; 𝑊𝑁+1−𝐿
′ , 𝑏𝑁+1−𝐿

′ )  AEL 

Neurogenic Deep Learning (NDL) Algorithm 

We evaluate NDL on MNIST data, where a Deep AE is initially trained with two digits (1, 7), then learning a new 

task is simulated by progressively expanding the number of encountered classes (0, 2, 3, 4, 5, 6, 8, 9), one at a 

time. For each experiment, all training samples in a class are presented at once. For OL networks (A & C), the 

entire AE is retrained as each new class of data is presented. 

• NDL with IR (NDL+IR) - Figure D:  Starting network size of 784-200-100-75-20-75-100-200-784 

• OL with IR (OL+IR) - Figure C below:  Starting network size = NDL+IR generated network 

• NDL without IR (NDL) - Figure B below:  Starting network size of 784-200-100-75-20-75-100-200-784 

• OL without IR (OL) - Figure A below:  Starting network size = NDL generated network 

Our results who that NDL with IR enables training of new digits while minimally impairing original representations.  

• NG+IR outperforms OL not only overall, but in both the ability to represent the new data as well as 

preserving the ability to represent previously trained digits.  

• OL+IR performs well on new digits, but poorly on retaining original old digits, whereas the NG+IR process 

does well on all digits. 

• Apply Neurogenic Deep Learning to  Convolutional Neural Nets 

• Add new filters via neurogenesis 

• Test classification performance 

• Apply to streaming data to address concept drift 

FUTURE WORK 

Intrinsic Replay (IR) Algorithm 

 

 

 

 

 

 

 

 

 

Reconstructions of all digits by AE pre-trained on digits 1 and 7’ networks and  

progressive learning of new classes. 

Networks initially trained on (A) 4, 6, and 8’s and 

(B) 1 and 7’s and not yet trained on any of the 

other MNIST digits reconstruct those novel digits 

using features biased by their original training data.  

The first row of each panel is the original data, with 

the 2nd - 5th rows the reconstruction through the  

1st - 4th (full) encode and corresponding decode 

layers of the autoencoder, respectively. 

A-E:  Average REs of trained AEs after exposure to all 10 digits (legend  in Plot D applies to Plots A, B, & C; 

dotted line shows REs of the original AE trained just on 1 and 7). 

E:  RE Comparison of the output of each full AE showing the superior performance of NDL+IR. 

F:  Neurogenesis contribution to network size in NDL+IR networks 

Greedy Layerwise Neurogenesis on an Autoencoder.  

The goal is to learn new feature detectors for novel data. 

Neurogenesis in Layer L Training weights to Layer L+1 

Digits sampled via Intrinsic Replay from a trained  

784-1000-500-250-30-250-500-1000-784 autoencoder. 

Deep AE can faithfully reconstruct originally 

trained digit 7.  

AE fails at reconstructing novel digit 4.  

New nodes added to layers 2, 3, and 4 enable 

AE to be trained to reconstruct the 4.  

PROBLEM 

Existing AE can’t represent novel data 

SOLUTION 

Add new node(s) to each layer of an 

AE as needed to represent novel data 

Extending the lifetime of a model by adapting in response to real-world data 

changes (e.g., via neurogenesis) mitigates the high initial training costs of DNNs. 

New memories are encoded with the help of 

adult neurogenesis, whereby new neurons 

capture novel information allowing mature 

neurons to represent familiar features.  

Figure from Deng, Aimone, 

and Gage, Nature Reviews 

Neuroscience 2010. 

The hippocampus region of the brain is known to 

“replay” experienced activity to aid the consolidation 

of newly acquired information into memory. 

Figure from Mehta et al., Nature Neuroscience 2007 
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OL 

NDL 

OL + IR 

NDL + IR 

In contrast to biological neural systems, capable of continuous learning, DNNs 

have a limited ability to incorporate new information in a trained network, so 

methods for continuous learning may be highly impactful in enabling the 

application of DNNs to dynamic data sets. Inspired by adult neurogenesis in 

the hippocampus, we explore the potential for adding new nodes to layers of 

DNNs to facilitate their acquisition of novel information while preserving 

previously trained representations. Results demonstrate that neurogenesis is 

well suited for addressing the stability-plasticity dilemma that has long 

challenged adaptive machine learning algorithms. 

 

Acronyms 

AE: Autoencoder 

DL: Deep Learning 

DNN: Deep Neural Network 

IR: Intrinsic Replay 

NDL: Neurogenic DL 

OL: Online Learning 

RE: Reconstruction Error 
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μF = Mean(F),  ChF = Chol(Cov(F))     𝐼  = Decode(μF + N(0,1) * ChF) 
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Online Learning with Intrinsic Replay NDL with Intrinsic Replay 
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