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Silica Powders: A Visible Example of Morphological Dependence
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Silica Powers: An Infrared Example of the Morphological Dependence 
(as presented earlier today by Kulp et al. in Paper 9840-16)
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Silica Powers: An Infrared Example of the Morphological Dependence 
(as presented earlier today by Kulp et al. in Paper 9840-16)
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∙D(r) = ρ(r)
×E(r) = iωµH(r)
∙[µH(r)] = 0
×H(r) = J(r)-iωD(r) 
=-iωεE(r)

n+ik = c(εµ)1/2
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Our Goal, Method, and Focus

• Goal: Generate morphologically 
dependent spectra via physics-based 
modeling

– Part of HARD Solids multi-lab project described 
by Peltz et al. (Paper 9840-15)

– To account for spectral variation as reported by 
Kulp et al. (Paper 9840-16) and Beiswenger et 
al. (Paper 9840-17)

• Method: Develop radiative transfer 
(RT) model w/parametric inputs to be 
varied in optimizing agreement 
w/measurements

– Incorporate fundamental physical 
properties (n,k) and account for 
morphological characteristics with 
sufficient physical rigor

– Optimized, the model should demonstrate agreement with reflectance spectra…

– …while the extracted parameters should agree with independent measurements

• Focus: Match model to reflectance spectra of silica powders

As presented earlier today by Kulp et al. in Paper 9840-16
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Invertible Radiative Transfer Model Accounts for Morphological Effects

Particle 
size 

distribution

(1) Forward Model (2) Model Input Parameters
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Plane Albedo (Directional, Hemispherical Reflectance) Measurement

Baffle

Specular

Diffuse

Detector

Specular exclusion 
port plug in place

12o

Measuring plane albedo with 12o incidence angle
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Invariant Imbedding Solution

A
τ = 0
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Invariant Imbedding Solution

A
τ = 0

θ0

θ

φ
I(τ,θ,φ) 

τ
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Invariant Imbedding Solution

τ = 0

A’

dτ

τ = τ1

τ

A

Invariance relationship: Reflectance is 
unchanged with removal of thickness τ1.

θ0

Solve for reflectance R as a Fourier series in 
azimuth
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Ambartsumian Nonlinear Integral Equation

Pm Rm
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Springer (1997). 
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Solution Provided by Michael Mishchenko (NASA GISS)
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Solution Provided by Michael Mishchenko (NASA GISS)
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Our Canonical Geometry: Spheroids

• This range of shapes and aspect ratios (ARs) is greatly simplified

• Shape = spheroid, AR = one characteristic value

• 2 shape bins: one bin each per prolate, oblate

Prolate Oblate

50-100 mesh100-200 mesh

≥125 mesh≥200 mesh≥325 mesh
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Calculating Pm, ῶ
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Particle Size Distribution (PSD)

• Approximate with volume bimodal log-normal distribution

• 5 parameters: rg1, σg1, rg2, σg2, γ
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“Patching” the Scattering Properties

J.-C. Auger and B. Stout, “Local field 
intensity in aggregates illuminated by 

diffuse light: T matrix approach,” Appl. Opt. 
47, 2897-2905 (2008).

• The radiative transfer equation (RTE) 
is strictly applicable only for sparse 
media (packing density < 1%)

• S(θ): Static structure factor (SSF)

– Acts as a multiplier to the scattering 
cross section and phase function

– Analytical expression available for 
monodisperse spheres
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“Patching” the Scattering Properties

• The radiative transfer equation (RTE) 
is strictly applicable only for sparse 
media (packing density < 1%)

• S(θ): Static structure factor (SSF)

– Acts as a multiplier to the scattering 
cross section and phase function

– Analytical expression available for 
monodisperse spheres

– S(θ) = F(fSSF , u)

–

M. I. Mishchenko, “Asymmetry parameters 
of the phase function for densely packed 

scattering grains,” JQSRT 52, 95-110 
(1994).
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A

Surface Roughness

θ0

τ = 0

• Range of incidence angles: θ0 characterized by θ0,eff

• Rougher surface  Larger θ0,eff
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Impact of Packing Density on 1st-Surface Reflection

Interface treated as fractional area 
FFresnel of refractive index n+ik

Particulate medium treated as 
distribution of spheroidal 

particles of refractive index n+ik
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Optimizing Model to Measurements

fSSF

rg1, σg1, rg2, 
σg2, γ

θ0,eff

9 parameters
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Optimization via “nl2sol” in DAKOTA

• 121 λs: 4-16 µm @ 0.1 µm 
resolution

• The 121 λ-dependent 
calculations are divided among 
64 processors (4 nodes, 16 
cores/node)

• ~10 min/spectrum, 100+ such 
calculations required for 
convergence 

• The Jacobian (matrix of 1st-order partial derivatives) is numerically 
determined through forward difference calculations

• The Hessian (matrix of 2nd-order partial derivatives) is numerically 
approximated from special properties of the sum-of-squares
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Measured Reflectance Spectra of Silica Powders
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Modeled Reflectance Spectra of Silica Powders

RMSE = 0.0087 RMSE = 0.0078 RMSE = 0.0102

RMSE = 0.0100 RMSE = 0.0059
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Recalling my earlier Method statement…

“Optimized, the model should demonstrate agreement with reflectance 
spectra … while the extracted parameters should agree with 
independent measurements”

So compare model-extracted PSDs w/PSDs measured via laser diffraction

• Visible-light illuminates 
particles in a flow cell

• Resulting diffraction used 
to measure PSD

• As presented earlier 
today by Kulp et al. 
(Paper 9840-16)
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Measured PSDs vs Reflectance-Extracted PSDs
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Recalling my earlier Goal statement…

“Generate morphologically dependent spectra via physics-based 
modeling”

Gravimetrically measured fSSF



28

Modeling Results using Laser-Diffraction PSD and Gravimetric fSSF

RMSE = 0.0114 RMSE = 0.0095 RMSE = 0.0102

RMSE = 0.0092 RMSE = 0.0076
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Summary and Conclusions

• Demonstrated physics-based model for the reflectance spectrum of an 
optically thick particulate surface

– Requires as input both fundamental optical properties (n,k) and morphological 
parameters (PSD, packing density, surface roughness)

– Optimized, the model spectra demonstrate agreement with measured spectra

– And, with the exception of the ≥200 mesh, the extracted PSDs agree well with laser-
diffraction-based measurements

– Reflectance spectra can be calculated from measured PSDs and fill factors

• Further assessment(s) required
– Model demonstrated, as of yet, on only one material (silica)

– Additional materials will be tested as n,k values and ideal-system measurements are 
available, as presented in earlier today by Kulp et al. (Paper 9840-16)

– Approximation for packing density impact on 1st-surface reflection requires further vetting

– Ideal-systems of variable packing density being fabricated and measured

– Model calibration being pursued – to be presented by Engel et al. (Paper 9840-22)
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Thanks!  Questions?
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Extra Viewgraphs
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Modeling Results using Laser-Diffraction PSD and Gravimetric fSSF

RMSE = 0.0114 RMSE = 0.0095 RMSE = 0.0102

RMSE = 0.0092 RMSE = 0.0076

Mesh 
Range

θ0,eff FFresnel

≥325 0o 0.035

≥200 33o 0.017

≥120 55o 0.035

100-200 57o 0.144

50-100 57o 0.322
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T-matrix vs. Ray tracing

�D/λ = 120
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T-matrix vs. Ray tracing
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Paige, “Lunar surface roughness derived from LRO Diviner Radiometer 
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lunar regolith,” Icarus 141, 107-131 (1999).

• M. K. Shepard, R. A. Brackett, and R. E. Arvidson, “Self-affine (fractal) 
topography: Surface parameterization and radar scattering,” J. Geophys. 
Res. 100, 11709-11718 (1995).

• B. Hapke, “Bidirectional reflectance spectroscopy.  3. Correction for 
Macroscopic Roughness,” Icarus 59, 41-59 (1984).

But is this approximation sufficient?


