\\\\\

SAND2016- 3984C

Sandia

L service inthe national interest National
r Laboratories

e o S R

m——

;_Lk. ‘—'; |‘="'FJ..--=:-"‘

Multi-Level Memory — The Next Opportunity for Performance?

S.D. Hammond (and lots of help from people at SNL/NM)
Center for Computing Research,

Scalable Computer Architectures

Sandia National Laboratories, NM

sdhammo@sandia.gov

a‘:"-q‘ U.S. DEPARTMENT OF " WA bv" X .
) ENERGY I VA‘M Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

atmal N loar Sac oy Ao st Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivations rh)

Rich Design Options for Next-Gen Servers

4 GPUs per Node

2 GPUs por Node 3 GPUs per Node

— 14681z

Y @

THE SUPERCOMPUTER COMPANY

= Knights Landing (Trinity)* = CORAL (POWER + Volta GPU)
= “Two Memories” = Lots under NDA
= On-Package developed with Micron = NVLINK-Based GPU connections

= QOver 400GB/s (HBM) = Fast on-package memory

= >90GB/s (DDR) = Slower (but still fast) memory on
= Complex NUMA modes socket

= Complex cache options = Complex NUMA

Into the Future ..)

= Situation may get much more 3D XPowr™ TECHNOLOGY

complex...

X P
oox 3D XPoint
X

= Potential (transformative) use of
Non-Volatile Memory:

Storing data
Object Key/Value Store
= Fine-grained checkpoints

= Experimental data

= Data Analytics pushing towards
network/fabric attached
storage/memory

So what does this look like...) .

= Lots of “Levels” in the Parallel File System/
memory hierarchy Parallel Object Store

= But.. Near NV-RAM
(Switch/Cabinet)

= These aren’t really
“levels”

= They are memory pools

= Not always a clearly
strict ordering of
performance

DDR(4/5?)

= Huge opportunities when
using the “right” memory
for the task at hand

= Caches —temporary fix?

Local NV-RAM

What it Really Looks Like ...) .

= |s a total headache for application developers

= Where does any individual data structure go?
= May vary by physics package
= May vary by input deck
= May vary by time step
= Probably will vary by libraries used

= Probably will vary by machine/hardware
being used (algorithm/performance)

= Convergence between storage and memory
seen as a good thing

= Most won’t miss POSIX

An additional S0.02

Adding threading in many ways hasn’t been the hardest challenge
= But we have told ourselves that this is hard
= Probably because the programming models haven’t helped us

Sandia
National
Laboratories

= But the really hard challenge isn’t the threading, it’s the migration of data

structures to something which is more flexible

= | really think that performance is coming down to how best we can
optimize our data structure design more than our compute kernels

= When we get this wrong it really hurts (like 35X hurts)

= Going to be a much longer, harder and more intrusive change to our

applications than modify-as-you-go parallelism

Sandia
l"| National
Laboratories

SO WHY IS THIS A PROBLEM?

Bytes and FLOP/s 1) .

Higher = More Bytes
Requested/Written Per FP-Op

.
25

OII|||||”t

N
o

-
&)

-
o

Bytes/DP-FP Ratio

&)

R I O R L
<§<Q/ é‘((; SR \(\\Q \‘O\Q . \O’Q) g @\"1'93 &
A\ N\ NS N N N Q\Q\ Q)\O' 0‘01
) (‘\\V‘) (‘\\?‘
\ \\

APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)

Bytes and FLOP/s) i,

Higher = More Bytes
Requested/Written Per FP-Op

30 I Some Reuse
| (Generally Poor Locallty
25
:g Reasonable Cache Reuse I
§ 20 (Depending on Phase) |
o
o 15
&
% 10
S
e I I I I I
0
Q Q Ne-
© o) 8
/ , G / \\ (1/
A\ ®\ NS N N N Q\Q\ «\0'03 «0'6
‘vg) ’?g)
R N
3 3

APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)

Read/Write Ratio) .

Higher = More Bytes Read
Per Byte Written

12

-
o
|

(0]
|

(o))
|

AN
|

Bytes Read/Written Ratio

N
|

MiniFE LULESH MiniMD MiniPIC MiniAero STREAM

Simple Survey) .

= When we get machines capable of huge FLOP/s rates, we also need strong
memory systems

= Surprisingly, still the weak point of architectures nearly 20 years after
McKee’s famous “Memory Wall” paper

= Significant variation in how applications use the memory system

= All developers (application and libraries) will want to put everything into
high bandwidth memory

= Who is going to be the one to take on the pain?

= Huge downsides if you are the slowest point in the critical path (trust
me, I've worked with code teams who are in that)

= Needs us to recognize codes may go slower while we work this out

Sandia
l'I'! National
Laboratories

ANALYZING APPLICATION BEHAVIOR

Using the Structural Simulation Toolkit and APEX to characterize
behavior

These guys did all the hard work
Work with Arun Rodrigues, Gwen Voskuilen and Mike Frank (SNL/NM)

Initial Studies into Memory Systems @

= One of the biggest problems we have today are the metrics associated
with mixed-performance memory pools are not well understood

= Thisisn’t just a more is better thing, lots of trade offs including the very
limited budget the DOE has for machines and application modification

= Two studies:

Sandia
National
Laboratories

= Application Allocation/Accesses — what can we learn from looking at

the way our kernels operate today?

= Page-Based Memory Management Policies — can we do better by

having simple state machines in memory where we decide what they
do?

SST Models of the System) .

. Ariel (CPU)
— -4»-4»-4-»
- O &

—» BN« lle v E =
iy

Application (Execute) SST (Simulated Behavior)

Memory

Threading
(OpenMP/pthreads)

NN

DMA?

= Complex models — coherency, timing, back-pressure, prefetching etc

= Execution driven (but captured) application behavior for speed

= Configurable statistics and behavior analysis (during or post-simulation)
= Very extensible — HBM, HMC, DDR, NV-RAM, simple memory timing etc

http://www.github.com/sstsimulator

Application Behavior) .

Axis is typically >10K
S

1200 100%
o I

2 g 1000 = - 80% O
wn @ 1 N ~~
o =50 i - 60% & 32
O €600 ! S &
400 . o E
£ 5 i - 20% § 3
T O 200 : —=Size (MB) ==Accesses | ° g&

0 £ 1 0% @

Malloc call sites sorted from densest to sparsest
100%

(7))
8 N 80% 8
E M) Frequent Deallocations o “>’
< 2 ; - 60% &
q‘-“- (@ R
E S - 40% = g
n £ Q5
3 - 20% 2=

O —=Size (MB) ===Accesses | o

0%

Malloc call sites sorted from densest to sparsest

Access Density (HPCG)) .

1000 - 100%

i
100 : B
o i - 80% =
0 ©
9 10 E £
40 ’ o
-5 i vy
£2 1 : o
> (7)) 1 (/)]
:|: Q 1 (7))
a9 [;

Q . 1
g8 | :
@) ! ‘©
O 0.01 I e
; = ;
< | o
0.001 - i mm Density —Accesses o

1

1

1

0.0001 - | 0%

" Malloc call sites sorted from densest to sparsest

Application Behavior) .

= Typically, small number O(5-10%) capture vast majority of accesses and
the footprint

= Possibly implies we can focus our efforts on the most important and leave
automated mechanisms or defaults for the rest

= Reminder —that O(5-10%) of allocations is still a huge amount of work

= Qur focus is the density of use in the allocations (i.e. put higher density
allocations into HBM first)

= But —we have some excellent tools to capture this behavior now within
SST and our support performance analysis suite

(Smart?) Page Movement Engine @

Page Migration Engine

S
e ¥ =il

u

. Ariel (CPU)
=) =T
- e e

Memory

Threading
(OpenMP/pthreads)

NN

DMA?

—» e e v SEl <
——

Application (Execute) SST (Simulated Behavior)

Page Replacement Schemes) .

MiniFE: MLM Performance vs Policy ® BiLRU @ FIFO
14 OLRU ®m SCLRU
ﬁ ' B LFU8 @ LFU
1.2
3
c 14
©
€08 -
£
€06 -
o
0.4 -
02 B T T
addMFRPU addMFU addMRPU addRAND addSC addT addSCF
Add Policy

LULESH: MLM Performance vs Policy

® BiLRU @ FIFO
O LRU m SCLRU
B LFU8 O LFU

Performance
o O

8
.6
0.4 -
0.2 - .
addMFRPU addMFU addMRPU addRAND addSC addT addSCF
Add Policy

Performance is Relative to Standard LRU

Page Replacement Schemes) .

= Shows that a one-size-fits-all scheme may not be the best approach

= Do we want to be able to programmatically control page migration from
fast-to-slow memories?

* Probably something a runtime or O/S can handle?

= Today this requires a CPU core but we want specialized movement
engines

= By-pass caches (but still be coherent?)
= QOptimized load/store queues for migration?

= Greater energy efficiency?

Sandia
l"| National
Laboratories

PROGRAMMING TO THE MEMORIES

Performance Portability through Abstraction

Sandia
i National
Laboratories

Separating Concerns for Next Generation Applications..

|

Viemory Abstraction
Vlemory Spaces (“Where

- M-Level
- Logical Space (think UVM vs explicit)

viema dVU 10

- Architecture dependent index-maps
- Also needed for subviews

vViemo c

- Access Intent: Stream, Random, ...
- Access Behavior: Atomic

- Enables special load paths: i.e. texture

Parallel Dispatch

Execution Spaces (“Where”)

- N-Level
- Support Heterogeneous Execution

Execution Patterns (“How”)

- parallel_for/reduce/scan, task spawn
- Enable nesting

Execution Policies

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Performance Portability through Abstraction @&,

Separating Concerns for Next Generation Applications..

|
Paralel Dispac

Low Level API?

Execution Spaces (“Where”)

- M-Level - N-Level
- Logical Space (think UVM vs explicit) - Support Heterogeneous Execution

Execution Patterns (“How”)

- Architecture dependent index-maps - parallel_for/reduce/scan, task spawn

>| - Also needed foriuhyiewg - Enable nesting
T emory T |HigherLeveIAPI?L|
< O c

Execution Policies

- Access Intent: Stream, Random, ... - Range, Team, Task-Dag
- Access Behavior: Atomic - Dynamic / Static Scheduling
L - Enables special load paths: i.e. texturg - Support non-persistent scratch-pads

Sandia

Towards Portable Memory Allocatiof? &

= \Want to be able to describe:

= Properties of the Allocation — persistence, reliability level required

= Properties of the Accesses (perhaps for sections of code) — atomic,
streaming, random, mixed, don’t-cache (streaming loads/stores)

= Low-level functions and APl are important but these are for system
software/runtime developers and the application ninjas

= Like that some properties can be implied by a compiler

= Simply not scalable to expect us to modify all our allocations and know
what to do every time on every different machine

vin W

5a

. e

P PR

- —

maph AP” -
-

- THE LONG ROAD

AHEAD.

How is this going to work out?) .

Trinity and CORAL APEX and ECP
D2 >
Strong Scale>
Use Caching
H/W or S/IW
Single Mixed Mode Runtime
Memory Systems

(Based on Properties)

= Simply just too much to work on right now (applications teams are overloaded)

= Turned out threading was much easier than memory systems, but even this is
taking a long time

= My feeling is that for Trinity (and probably CORAL) we will see applications use
caching (H/W or S/W (UVM)) while we work all this out (performance cost)

Experiences on GPU Systems 1) .

Mixture of approaches seen in our codes
= Specific allocation of data structures on GPU
= Use of S/W management with UVM

= General path — UVM which effectively limits our maximum problem sizes

= Performance can vary quite a bit but when it works, it has worked very
well compared to contemporary dual-socket systems

= (Clear that future H/W directions (CORAL) address many of the more
pressing concerns (and make software much easier to write)

= Looking forward to NVLINK prototype systems very soon

National

Experiences on KNL) .

= |nitial work on KNL with mini-applications and some performance kernels
(from Trilinos) going very well

= For some applications, greater improvement than the hardware
specifications moving between memory

= Strongest application performance for some kernels on any GA-hardware
we have ever seen

= APl (memkind) bring up going well but we expect this to be low-level
(users do not like this and want it hidden away)

= Lots under NDA but results will most likely be shown at ISC'16

Mem Kind: http://memkind.github.io/memkind/memkind_arch_20150318.pdf
- "~~~

[e]e]

Q0

0000

00000# 0000
0000000
00000000800
CO000000000

Sandia
National
Laboratories

Exceptional service in the national interest

http://www.github.com/sstsimulator

