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Motivations rh)

Rich Design Options for Next-Gen Servers

4 GPUs per Node

2 GPUs por Node 3 GPUs per Node
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THE SUPERCOMPUTER COMPANY

= Knights Landing (Trinity)* = CORAL (POWER + Volta GPU)
= “Two Memories” = Lots under NDA
= On-Package developed with Micron = NVLINK-Based GPU connections

= QOver 400GB/s (HBM) = Fast on-package memory

= >90GB/s (DDR) = Slower (but still fast) memory on
= Complex NUMA modes socket

= Complex cache options = Complex NUMA



Into the Future .. )

= Situation may get much more 3D XPowr™ TECHNOLOGY

complex...
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= Potential (transformative) use of
Non-Volatile Memory:

Storing data
Object Key/Value Store
= Fine-grained checkpoints

= Experimental data

= Data Analytics pushing towards
network/fabric attached
storage/memory




So what does this look like... ) .

= Lots of “Levels” in the Parallel File System/
memory hierarchy Parallel Object Store

= But.. Near NV-RAM
(Switch/Cabinet)

= These aren’t really
“levels”

= They are memory pools

= Not always a clearly
strict ordering of
performance

DDR(4/5?)

= Huge opportunities when
using the “right” memory
for the task at hand

= Caches —temporary fix?

Local NV-RAM




What it Really Looks Like ... ) .

= |s a total headache for application developers

= Where does any individual data structure go?
= May vary by physics package
= May vary by input deck
= May vary by time step
= Probably will vary by libraries used

= Probably will vary by machine/hardware
being used (algorithm/performance)

= Convergence between storage and memory
seen as a good thing

= Most won’t miss POSIX




An additional S0.02

Adding threading in many ways hasn’t been the hardest challenge
= But we have told ourselves that this is hard
= Probably because the programming models haven’t helped us
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= But the really hard challenge isn’t the threading, it’s the migration of data

structures to something which is more flexible

= | really think that performance is coming down to how best we can
optimize our data structure design more than our compute kernels

= When we get this wrong it really hurts (like 35X hurts)

= Going to be a much longer, harder and more intrusive change to our

applications than modify-as-you-go parallelism
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SO WHY IS THIS A PROBLEM?




Bytes and FLOP/s 1) .

Higher = More Bytes
Requested/Written Per FP-Op
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APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)




Bytes and FLOP/s ) i,

Higher = More Bytes
Requested/Written Per FP-Op
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APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)




Read/Write Ratio ) .

Higher = More Bytes Read
Per Byte Written
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Simple Survey ) .

= When we get machines capable of huge FLOP/s rates, we also need strong
memory systems

= Surprisingly, still the weak point of architectures nearly 20 years after
McKee’s famous “Memory Wall” paper

= Significant variation in how applications use the memory system

= All developers (application and libraries) will want to put everything into
high bandwidth memory

= Who is going to be the one to take on the pain?

= Huge downsides if you are the slowest point in the critical path (trust
me, I've worked with code teams who are in that)

= Needs us to recognize codes may go slower while we work this out
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ANALYZING APPLICATION BEHAVIOR

Using the Structural Simulation Toolkit and APEX to characterize
behavior

These guys did all the hard work
Work with Arun Rodrigues, Gwen Voskuilen and Mike Frank (SNL/NM)




Initial Studies into Memory Systems @

= One of the biggest problems we have today are the metrics associated
with mixed-performance memory pools are not well understood

= Thisisn’t just a more is better thing, lots of trade offs including the very
limited budget the DOE has for machines and application modification

=  Two studies:
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= Application Allocation/Accesses — what can we learn from looking at

the way our kernels operate today?

= Page-Based Memory Management Policies — can we do better by

having simple state machines in memory where we decide what they
do?




SST Models of the System ) .
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Application (Execute) SST (Simulated Behavior)

Memory

Threading
(OpenMP/pthreads)

NN

DMA?

= Complex models — coherency, timing, back-pressure, prefetching etc

= Execution driven (but captured) application behavior for speed

= Configurable statistics and behavior analysis (during or post-simulation)
= Very extensible — HBM, HMC, DDR, NV-RAM, simple memory timing etc

http://www.github.com/sstsimulator




Application Behavior ) .

Axis is typically >10K
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Access Density (HPCG) ) .
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Application Behavior ) .

=  Typically, small number O(5-10%) capture vast majority of accesses and
the footprint

=  Possibly implies we can focus our efforts on the most important and leave
automated mechanisms or defaults for the rest

= Reminder —that O(5-10%) of allocations is still a huge amount of work

= Qur focus is the density of use in the allocations (i.e. put higher density
allocations into HBM first)

= But —we have some excellent tools to capture this behavior now within
SST and our support performance analysis suite




(Smart?) Page Movement Engine @

Page Migration Engine
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Page Replacement Schemes ) .

MiniFE: MLM Performance vs Policy ® BiLRU @ FIFO
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Page Replacement Schemes ) .

=  Shows that a one-size-fits-all scheme may not be the best approach

= Do we want to be able to programmatically control page migration from
fast-to-slow memories?

* Probably something a runtime or O/S can handle?

= Today this requires a CPU core but we want specialized movement
engines

= By-pass caches (but still be coherent?)
= QOptimized load/store queues for migration?

= Greater energy efficiency?




Sandia
l"| National
Laboratories

PROGRAMMING TO THE MEMORIES




Performance Portability through Abstraction
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Separating Concerns for Next Generation Applications..

|

Viemory Abstraction
Vlemory Spaces (“Where

- M-Level
- Logical Space (think UVM vs explicit)

viema dVU 10

- Architecture dependent index-maps
- Also needed for subviews

vViemo c

- Access Intent: Stream, Random, ...
- Access Behavior: Atomic

- Enables special load paths: i.e. texture

Parallel Dispatch

Execution Spaces (“Where”)

- N-Level
- Support Heterogeneous Execution

Execution Patterns (“How”)

- parallel_for/reduce/scan, task spawn
- Enable nesting

Execution Policies

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads



Performance Portability through Abstraction @&,

Separating Concerns for Next Generation Applications..

|
Paralel Dispac

Low Level API?

Execution Spaces (“Where”)

- M-Level - N-Level
- Logical Space (think UVM vs explicit) - Support Heterogeneous Execution

Execution Patterns (“How”)

- Architecture dependent index-maps - parallel_for/reduce/scan, task spawn

>| - Also needed foriuhyiewg - Enable nesting
T emory T |HigherLeveIAPI?L|
< O c

Execution Policies

- Access Intent: Stream, Random, ... - Range, Team, Task-Dag
- Access Behavior: Atomic - Dynamic / Static Scheduling
L - Enables special load paths: i.e. texturg - Support non-persistent scratch-pads
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Towards Portable Memory Allocatiof? &

= \Want to be able to describe:

= Properties of the Allocation — persistence, reliability level required

= Properties of the Accesses (perhaps for sections of code) — atomic,
streaming, random, mixed, don’t-cache (streaming loads/stores)

= Low-level functions and APl are important but these are for system
software/runtime developers and the application ninjas

= Like that some properties can be implied by a compiler

= Simply not scalable to expect us to modify all our allocations and know
what to do every time on every different machine
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How is this going to work out? ) .

Trinity and CORAL APEX and ECP
D2 >
Strong Scale>
Use Caching
H/W or S/IW
Single Mixed Mode Runtime
Memory Systems

(Based on Properties)

=  Simply just too much to work on right now (applications teams are overloaded)

= Turned out threading was much easier than memory systems, but even this is
taking a long time

= My feeling is that for Trinity (and probably CORAL) we will see applications use
caching (H/W or S/W (UVM)) while we work all this out (performance cost)




Experiences on GPU Systems 1) .

Mixture of approaches seen in our codes
= Specific allocation of data structures on GPU
= Use of S/W management with UVM

= General path — UVM which effectively limits our maximum problem sizes

= Performance can vary quite a bit but when it works, it has worked very
well compared to contemporary dual-socket systems

= (Clear that future H/W directions (CORAL) address many of the more
pressing concerns (and make software much easier to write)

= Looking forward to NVLINK prototype systems very soon
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Experiences on KNL ) .

= |nitial work on KNL with mini-applications and some performance kernels
(from Trilinos) going very well

= For some applications, greater improvement than the hardware
specifications moving between memory

= Strongest application performance for some kernels on any GA-hardware
we have ever seen

= APl (memkind) bring up going well but we expect this to be low-level
(users do not like this and want it hidden away)

= Lots under NDA but results will most likely be shown at ISC'16

Mem Kind: http://memkind.github.io/memkind/memkind_arch_20150318.pdf
- "~~~
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Exceptional service in the national interest

http://www.github.com/sstsimulator




