
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Multi-Level Memory – The Next Opportunity for Performance?

S.D. Hammond (and lots of help from people at SNL/NM)

Center for Computing Research,

Scalable Computer Architectures

Sandia National Laboratories, NM

sdhammo@sandia.gov

SAND2016-3984C

Motivations

 Knights Landing (Trinity)*

 “Two Memories”

 On-Package developed with Micron

 Over 400GB/s (HBM)

 >90GB/s (DDR)

 Complex NUMA modes

 Complex cache options

* = See: Intel Disclosure (https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing)

 CORAL (POWER + Volta GPU)

 Lots under NDA

 NVLINK-Based GPU connections

 Fast on-package memory

 Slower (but still fast) memory on
socket

 Complex NUMA

Into the Future ..

 Situation may get much more
complex…

 Potential (transformative) use of
Non-Volatile Memory:

 Storing data

 Object Key/Value Store

 Fine-grained checkpoints

 Experimental data

 …

 Data Analytics pushing towards
network/fabric attached
storage/memory

So what does this look like…

 Lots of “Levels” in the
memory hierarchy

 But ..

 These aren’t really
“levels”

 They are memory pools

 Not always a clearly
strict ordering of
performance

 Huge opportunities when
using the “right” memory
for the task at hand

 Caches – temporary fix?

CPU Acc. Acc.

DDR(4/5?)

N
IC

HBM HBM

Local NV-RAM

Near NV-RAM
(Switch/Cabinet)

Parallel File System/
Parallel Object Store

N
o
d
e
 L

o
ca

l

HBM

SP SPSP

Longer lines = Higher Latency (not drawn to scale)

What it Really Looks Like …

 Is a total headache for application developers

 Where does any individual data structure go?

 May vary by physics package

 May vary by input deck

 May vary by time step

 Probably will vary by libraries used

 Probably will vary by machine/hardware
being used (algorithm/performance)

 Convergence between storage and memory
seen as a good thing

 Most won’t miss POSIX

An additional $0.02

 Adding threading in many ways hasn’t been the hardest challenge

 But we have told ourselves that this is hard

 Probably because the programming models haven’t helped us

 But the really hard challenge isn’t the threading, it’s the migration of data
structures to something which is more flexible

 I really think that performance is coming down to how best we can
optimize our data structure design more than our compute kernels

 When we get this wrong it really hurts (like 35X hurts)

 Going to be a much longer, harder and more intrusive change to our
applications than modify-as-you-go parallelism

SO WHY IS THIS A PROBLEM?

Bytes and FLOP/s

0

5

10

15

20

25

30

B
y
te

s
/D

P
-F

P
 R

a
ti

o

APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)

Higher = More Bytes
Requested/Written Per FP-Op

Bytes and FLOP/s

0

5

10

15

20

25

30

B
y
te

s
/D

P
-F

P
 R

a
ti

o

Higher = More Bytes
Requested/Written Per FP-Op

Reasonable Cache Reuse
(Depending on Phase)

Some Reuse
(Generally Poor Locality)

APEX Application Characterization Tools (SNL Research, Compiled for Haswell, Intel Compiler)

Read/Write Ratio

0

2

4

6

8

10

12

MiniFE LULESH MiniMD MiniPIC MiniAero STREAM

B
y
te

s
 R

e
a

d
/W

ri
tt

e
n

 R
a

ti
o

Higher = More Bytes Read
Per Byte Written

Simple Survey

 When we get machines capable of huge FLOP/s rates, we also need strong
memory systems

 Surprisingly, still the weak point of architectures nearly 20 years after
McKee’s famous “Memory Wall” paper

 Significant variation in how applications use the memory system

 All developers (application and libraries) will want to put everything into
high bandwidth memory

 Who is going to be the one to take on the pain?

 Huge downsides if you are the slowest point in the critical path (trust
me, I’ve worked with code teams who are in that)

 Needs us to recognize codes may go slower while we work this out

ANALYZING APPLICATION BEHAVIOR
Using the Structural Simulation Toolkit and APEX to characterize
behavior

Work with Arun Rodrigues, Gwen Voskuilen and Mike Frank (SNL/NM)

These guys did all the hard work

Initial Studies into Memory Systems

 One of the biggest problems we have today are the metrics associated
with mixed-performance memory pools are not well understood

 This isn’t just a more is better thing, lots of trade offs including the very
limited budget the DOE has for machines and application modification

 Two studies:

 Application Allocation/Accesses – what can we learn from looking at
the way our kernels operate today?

 Page-Based Memory Management Policies – can we do better by
having simple state machines in memory where we decide what they
do?

SST Models of the System

 Complex models – coherency, timing, back-pressure, prefetching etc

 Execution driven (but captured) application behavior for speed

 Configurable statistics and behavior analysis (during or post-simulation)

 Very extensible – HBM, HMC, DDR, NV-RAM, simple memory timing etc

…

… M
e

m
o

ry
D

M
A

?

NoC

L2L1Ariel (CPU)

SST (Simulated Behavior)Application (Execute)

T
h

re
a

d
in

g
(O

p
e

n
M

P
/p

th
re

a
d

s)

http://www.github.com/sstsimulator

Application Behavior

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

P
e
rc

e
n

t
o

f
a
c
c
e
s
s
e
s

(c
u

m
u

la
ti

v
e
)

C
u

m
u

la
ti

v
e
 s

iz
e

(M
B

)

Malloc call sites sorted from densest to sparsest

Size (MB) Accesses

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

P
e
rc

e
n

t
o

f
a
c
c
e
s
e
s

(c
u

m
u

la
ti

v
e
)

C
u

m
u

la
ti

v
e
 s

iz
e

(M
B

)

Malloc call sites sorted from densest to sparsest

Size (MB) Accesses

H
P

C
G

 C
G

 S
o

lv
e

P
E

N
N

A
N

T Frequent Deallocations

Axis is typically >10K

Access Density (HPCG)

0%

20%

40%

60%

80%

100%

0.0001

0.001

0.01

0.1

1

10

100

1000

P
e
rc

e
n

t
o

f
 a

c
c
e
s
s
e
s
 (

c
u

m
u

la
ti

v
e
)

A
c
c
e
s
s
 d

e
n

s
it

y
 i

n
 l
o

g
 s

c
a
le

(a

c
c
e
s
s
e
s
/b

y
te

)

Malloc call sites sorted from densest to sparsest

Density Accesses

Application Behavior

 Typically, small number O(5-10%) capture vast majority of accesses and
the footprint

 Possibly implies we can focus our efforts on the most important and leave
automated mechanisms or defaults for the rest

 Reminder – that O(5-10%) of allocations is still a huge amount of work

 Our focus is the density of use in the allocations (i.e. put higher density
allocations into HBM first)

 But – we have some excellent tools to capture this behavior now within
SST and our support performance analysis suite

(Smart?) Page Movement Engine

…

… M
e

m
o

ry
D

M
A

?

NoC

L2L1Ariel (CPU)

SST (Simulated Behavior)Application (Execute)

T
h

re
a

d
in

g
(O

p
e

n
M

P
/p

th
re

a
d

s)

Page Migration Engine

0.2

0.4

0.6

0.8

1

1.2

1.4

 addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
a

n
c

e

Add Policy

LULESH: MLM Performance vs Policy

 BiLRU FIFO
 LRU SCLRU
 LFU8 LFU

Page Replacement Schemes

0.2

0.4

0.6

0.8

1

1.2

1.4

 addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
a

n
c

e

Add Policy

MiniFE: MLM Performance vs Policy BiLRU FIFO
 LRU SCLRU
 LFU8 LFU

Performance is Relative to Standard LRU

Page Replacement Schemes

 Shows that a one-size-fits-all scheme may not be the best approach

 Do we want to be able to programmatically control page migration from
fast-to-slow memories?

 Probably something a runtime or O/S can handle?

 Today this requires a CPU core but we want specialized movement
engines

 By-pass caches (but still be coherent?)

 Optimized load/store queues for migration?

 Greater energy efficiency?

PROGRAMMING TO THE MEMORIES

Performance Portability through Abstraction

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“How”)

Execution Policies

- N-Level
- Support Heterogeneous Execution

- parallel_for/reduce/scan, task spawn
- Enable nesting

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

- M-Level
- Logical Space (think UVM vs explicit)

- Architecture dependent index-maps
- Also needed for subviews

- Access Intent: Stream, Random, …
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

Parallel DispatchMemory Abstraction

Separating Concerns for Next Generation Applications..

Performance Portability through Abstraction

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“How”)

Execution Policies

- N-Level
- Support Heterogeneous Execution

- parallel_for/reduce/scan, task spawn
- Enable nesting

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

- M-Level
- Logical Space (think UVM vs explicit)

- Architecture dependent index-maps
- Also needed for subviews

- Access Intent: Stream, Random, …
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

Parallel DispatchMemory Abstraction

Separating Concerns for Next Generation Applications..

Low Level API?

Higher Level API?

Towards Portable Memory Allocation

 Want to be able to describe:

 Properties of the Allocation – persistence, reliability level required

 Properties of the Accesses (perhaps for sections of code) – atomic,
streaming, random, mixed, don’t-cache (streaming loads/stores)

 Low-level functions and API are important but these are for system
software/runtime developers and the application ninjas

 Like that some properties can be implied by a compiler

 Simply not scalable to expect us to modify all our allocations and know
what to do every time on every different machine

THE LONG ROAD

AHEAD…

How is this going to work out?

 Simply just too much to work on right now (applications teams are overloaded)

 Turned out threading was much easier than memory systems, but even this is
taking a long time

 My feeling is that for Trinity (and probably CORAL) we will see applications use
caching (H/W or S/W (UVM)) while we work all this out (performance cost)

Use Caching
H/W or S/W

Mixed Mode Runtime
Systems

(Based on Properties)

Strong Scaled

Single
Memory

Trinity and CORAL APEX and ECP

Experiences on GPU Systems

 Mixture of approaches seen in our codes

 Specific allocation of data structures on GPU

 Use of S/W management with UVM

 General path – UVM which effectively limits our maximum problem sizes

 Performance can vary quite a bit but when it works, it has worked very
well compared to contemporary dual-socket systems

 Clear that future H/W directions (CORAL) address many of the more
pressing concerns (and make software much easier to write)

 Looking forward to NVLINK prototype systems very soon

Experiences on KNL

 Initial work on KNL with mini-applications and some performance kernels
(from Trilinos) going very well

 For some applications, greater improvement than the hardware
specifications moving between memory

 Strongest application performance for some kernels on any GA-hardware
we have ever seen

 API (memkind) bring up going well but we expect this to be low-level
(users do not like this and want it hidden away)

 Lots under NDA but results will most likely be shown at ISC’16

Mem Kind: http://memkind.github.io/memkind/memkind_arch_20150318.pdf

http://www.github.com/sstsimulator

