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Why “Traditional”?

A high-level view of Equations of State (EOS):
» Preliminaries
» Modeling
» Data
» Tabulation
» Critiques
» Breaking With Tradition
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‘ The Big Picture
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» EOS/conductivity/strength models are closure relations for the
hydrocode governing equations.
» EOS typically split off of the full stress tensor via the trace.
» Closure relations have strong multi-scale character, reflected in how we
build EOS models. @ Sandia
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}.‘ A Bit of Thermodynamics

Nomenclature:
density (p), temperature (T), pressure (P), internal energy (E), entropy (S),
enthalpy (H), Helmholtz free energy (F), Gibb’s free energy (G)
Thermodynamic Potentials:
» Depend upon two variables, e.g. F(p, T) and E(p, S).
» Can be inverted to other forms, e.g. E(p, S) — S(p, E)
» Related through Legendre transforms, e.g. F = E+ TS.
» Have combined first and second law expressions, e.g.:
» dF = —-S8dT — PaV
» dE = TdS - PdV — dS = LdE + EaVv
Thermodynamic Relations:
» Calculus is the language of thermodynamics
» Variables are all related through the governing potential space
» Relations allow calculation of complex derivatives in the native
potential space, e.g. sound speed
= (%),= (%), + % &P, G,
A “complete” EOS model must specify a full thermodynamic
potential. @ Nandia
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Modeling
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} ¢ Modeling Paradigms

Code solvers typically operate in (p,E) space:
» Need P(p, E), T(p, E) and other variables.
» Appropriate potential is S(p, E).

Paradigm 1: analytic models in S(p, E) form

» Mie-Grilneisen forms common (P(p, E) = X(p) + Y(p)E)
» often incomplete

» More complicated models not tabulated.
Paradigm 2: invert from models built in F(p, T) form
» Natural form for using statistical mechanics
(F=—kgTlog2)
» Models usually tabulated, and in (p, T) space (SESAME)
» Allows for very costly/complex models

Herein focus will be on Paradigm 2, with the end goal of
producing a SESAME table.
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}‘ Model Building Flowchart

Three key aspects to model building:
» Choose the model and data
» Optimize the model parameters
» Tabulate the model
Iteration of these steps occurs until satisfied with result.

Choose model  J=

Choose data set
Choose weights % Optimize parameters ‘
Choose parameters

|s model
acceptable?

Optimal model
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Helmholiz free energy split:
F(p,T) = Fe(p) + Fi(p, T) + Fe(p, T)
» Individual phases built from set of submodels
» Submodels may contain one or more F; components

Model Assumptions

» Models evaluable at arbitrary locations

Several phase models may be joined to form a multi-phase
model.
» Stable phase has lowest Gibb’s free energy G(P, T).
» Phase transitions where G{(P, T) = Go(P, T).
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}' Common Models

Cold curve models:
» Parametrized forms (Birch-Murnaghan, Vinet)
» Series expansions — fit to desired behaviors
» Spline forms — directly represent DFT data
Thermal ionic models:
» Simple physics based (Debye, Einstein)
» Semi-empirical forms (Cowan, JDNUC, Generalized Metal)
» Variational models (soft-spheres, CRIS)
Thermal electronic models:
» Semi-empirical forms (Generalized Metal)
» Average-atom models (Thomas-Fermi (TF), TF-Dirac,
TF-Kirzhnits, QSM)
» Effective medium (INFERNO, Pergatorio)
» Direct DFT/OFDFT calculations
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Calibration Data Overview

Data Type Constrained Variables | Target Models
0 KDFT P E (p) Fec
Static compression P(p,T) Fc Fi
Shock compression :
DFT‘MD ShOCk PEpTUD(T07p0) FCFIFe
Isobaric expansion CpPSHpK(T,P) Fi Fe
Heated DAC
DFT-MD Phases Pphase (T) FiFe
DFT-MD Vaporization PE(p,T) Fi Fe

Parameter optimization performed both by hand and
automatically using local minimization in a stepwise process:
» Solid cold/ionic parameters to solid data
» Liquid cold/ionic parameters to low T liquid data
» Liquid parameters to all liquid data
» Solid parameters to all data (phase included)
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Copper Data and Model Notation

Examples of the data types and how models match them will
appear as follows:
» Data will be plotted on the left with lines and points.
» Table results will be plotted on the right.
» Data (and/or surrogate data model) shown as points.
» Copper table 3325 — red line (mine)
» Copper table 3320 — green line (Kerley)
» Copper table 3336 — blue line (LANL)
» Copper table 3331 — magenta (ANEOS)
» All copper models have solid and fluid phases with melt
and vaporization.

» All tables have Maxwell constructions in the vapor dome
except 3336.
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Static data — Diamond anvil cell (DAC) and piston experiments
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Shock Compression

Experimental Hugoniot with linear and quadratic fits
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Isobaric Expansion

Entropy from heat capacity measurements — IEX at high temperature
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Melting

DFT calculations — red line is experimental curve.
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% Vaporization
Van der Waals loops for 3325 directly from model (6 temperatures)
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} Visual Data Summary
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» Data provides skeleton across most of the range of interest
» Models must interpolate/extrapolate the remaining surface
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} Best Tabulation Practices

Tabulation goals:
» Speed up state computation in the codes.
» Represent the analytic EOS appropriately.
Problems:
» In general practice the first goal has taken precedence either
intentionally or through carelessness.
» Rectangular grid SESAME tables cannot naturally follow curves
or represent discontinuities on curves.
» SESAME style tables contain at least P and E on an arbitrary
rectangular (p, T) grid.
» Reverse interpolation on the energy table does not always give a
consistent temperature state. (Eo # E(p, T(p, Eo)))
» Inconsistent thermodynamics between P(p, E) and T(p, E).
» Meta-stable and equilibrium states do not play well together.

Best practices:
» Conform SESAME grid as well as possible to phase boundaries.
» Create fine-enough grid to make derivatives reasonable.

» Check the table for anomalous behavior before releasing. @ Sandia
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}' Tabulation: Temperature Grid
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Determine phase boundary topology

Choose pressure spacing at critical density

Compute equi-spaced temperatures

Choose min temperature for Maxwell constructions
Eliminate temperatures for interpolation efficiency and

accuracy @ ﬁg{ligi'?al
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Tabulation: Density Grid
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» Temperature grid fixed
» Add density points
1. Phase boundary intersections
2. Ensure point in Maxwell construction
3. Meet , log, and relative spacing constraints
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Critiques
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p Tabulation: Meta-stable Phase States

Van der Waals loops or Maxwell constructions?

Vapor dome tabulation practice is not consistent

Other groups typically use loops, Sandia constructions
Maxwell constructions guarantee a valid state everywhere
Van der Waals loops give some meta-stable behavior
Codes cannot currently handle region between spinodals
Do you trust the state of material that traverses this region?
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p Tabulation: (Meta-stable) Tensile States

Combining equilibrium and meta-stable states in single table
» Often only for tensile states
» Temperature boundary at boiling or triple point

» Multiple issues:
» Unphysical region at densities smaller than minimum

pressure
» Encounter interpolation difficulties across the boundary
» Resolve by using fake values that mitigate the issues
» Does your code use these values?

Pressure
Internal Energy

)

Density Density Sandia
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}.‘ Derivative Issues: Sound Speed

Recall the formula for sound speed:

vvyyvyy

C2

() = (&), + 5= 67, G2

Requires 3 derivatives on the tables
Requires the sum to be positive

Extremely sensitive to these values
Extremely important for stable time steps (At ~ c§1) and

dissipation (artificial viscosity ~ cg)
Sound speed along Hugoniot:
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rivative Issues: Thermodynamic Consistency

Is S(p, E) really a state function?

>

Integration between two points 10"
should be identical regardless of Error
path 10" 100 *

Consistency of P(p, E) and T(p, E)
surfaces:

o (35)e = T GE), - P (5E)

Pressure (Pa)
=

Often tested in (p, T) space:

2 (OE _ _ 87 10" Wi
p (8/))7— =P T(al-’:-,)p 010" 10° 10° 10 10t
Results for LANL 3718 (aluminum) pensity (kg/m~3)

shown in plot.
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What Does “EOS Model” Mean?

OS table and interpolation scheme is the real “EOS model”
» Codes actually query it for thermodynamic closure states
> Let’s pick on 3325 and Sandia’s codes:

>
>
>
>
>

ALEGRA simulation with 3325 and backup linear interpolation
ALEGRA simulation with 3325 and sound speed modifications
CTH simulation with 3325 and bad state clipping

Saying “Copper 3325” describes none of these accurately
They are not even the same as the model used to build 3325

» Ambient thermal expansion is one example (stair steps).
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}" Breaking With Tradition

The state of traditional EOS model development is not without
issues:

>
>
>
>

Lack of data to constrain models
Subjectivity toward goodness of models
Tabulation accuracy issues

Meta-stable state representation problems

We can do better and are actively working on such:

>

vVVvyVvYVvVyYyvyy

More accurate EOS models and calculation methods

UTri format to improve table fidelity

Automation of core model and table building activities
Strongly coupled EOS and conductivity

Integrated UQ information for EOS/conductivity sensitivity
Kinetics models for meta-stable state breakdown
Recoupling strength models and EOS with UQ information
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