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Abstract 

This work examines the variability of predicted responses when multiple stress-strain curves 

(reflecting variability from replicate material tests) are propagated through a transient dynamics 

finite element model of a ductile steel can being slowly crushed. An elastic-plastic constitutive 

model is employed in the large-deformation simulations. The present work assigns the same 

material to all the can parts: lids, walls, and weld. Time histories of 18 response quantities of 

interest (including displacements, stresses, strains, and calculated measures of material damage) 

at several locations on the can and various points in time are monitored in the simulations. Each 

response quantity’s behavior varies according to the particular stress-strain curves used for the 

materials in the model. We estimate response variability due to variability of the input material 

curves. When only a few stress-strain curves are available from material testing, response 

variance will usually be significantly underestimated. This is undesirable for many engineering 

purposes. This paper describes the can-crush model and simulations used to evaluate a simple 

classical statistical method, Tolerance Intervals (TIs), for effectively compensating for sparse 

stress-strain curve data in the can-crush problem. Using the simulation results presented here, the 

accuracy and reliability of the TI method are being evaluated on the highly nonlinear input-to-

output response mappings and non-standard response distributions in the can-crush UQ problem.  

Introduction 

This work examines the variability of predicted responses when multiple stress-strain curves 

(reflecting variability from replicate material tests) are propagated through an explicit transient 

dynamics finite element model of a cylindrical steel can being crushed. The can has welded lids 

and rests in a V-shaped support structure. The ductile steel can is crushed at a relatively slow rate 

with a displacement-controlled ram plate. A multi-linear elastic plastic (MLEP) constitutive 

plasticity model is employed in the large-deformation simulations. Over 70 response quantities 

of interest (e.g. displacement, Von Mises stress, and equivalent-plastic-strain and tearing-

parameter material damage indicators) at several locations on the can lids, welds, and walls and 

various points in time are monitored.   
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Each response quantity’s time behavior varies according to the particular stress-strain curves 

used for the materials in the model. The stress-strain curves originate from material tensile tests 

at two temperatures, 200C and 400C. Typically, replicate tests are performed and each yields a 

slightly but non-trivially different stress-strain curve. This variability reflects test-to-test random 

variations in the experiments, involving suspected stochastic material variability and also 

suspected variability of test conditions and measurement errors. Because the effects of random 

variability of test conditions and measurement errors are not presently deconvolvable from the 

effects of stochastic material variability in the tests, all the stress-strain curve variability is 

presently carried forward and interpreted as material variability.  

The test curves of measured engineering stress and strain are converted via an iterative fitting 

procedure into strain-rate-independent Cauchy stress, log strain curves for use in the multi-linear 

elastic plastic (MLEP) constitutive model [Wellman, 2012]. Necking of the cylinder test 

specimens is accounted for in the fitting procedure. Of interest is the sensitivity of the response 

quantities to various steps in the fitting procedure (e.g. whether smoothing of the raw measured 

stress-strain curves is performed, and if so, what type of smoothing is used). Of further interest is 

the variability of predicted response from the multiple replicate stress-strain curves.   

For the latter purpose it is important to note that each stress-strain curve comprises a discrete 

random function that has no readily identifiable parametric relationship to other stress-strain 

curves from the tests. Furthermore, a stress-strain curve bounded by two other stress-strain 

curves at that same temperature will not necessarily result in predicted model output results that 

are bounded by the model responses using the two bounding curves. This is because aggregate 

structural response depends on the history or path of a given stress-strain curve. Another 

difficulty in the current uncertainty quantification (UQ) problem is that the number of material 

variability tests (number of replicate stress-strain curves) is relatively small. When only a few 

samples of a random variable or function are available, these will usually significantly 

misrepresent the randomness properties of the source of variability that was sampled. The 

variability properties of the source (full population of random values or functions) generally 

cannot be accurately constructed from just a few samples of the population. Thus, substantial 

epistemic “sampling uncertainty” exists in addition to the aleatory uncertainty due to stochastic 

variability in the source population.  

The likely error that accompanies sparse sampling has a bias toward underestimating the true 

full-population variance. This unconservative bias is undesirable for many engineering purposes. 

If a structure or pressure-vessel model were perfect in every other way, use of the model with 

sparse samples of the random-data inputs would likely underestimate the (strength or 

displacement) response variance of the real system. In design and risk analysis one would 

normally want to avoid such underestimation.  

Appropriate UQ techniques for working from just a few samples from the full population of 

discrete random processes or functions is an active area of research. This paper describes the 



model and simulations used to evaluate a classical statistical method, Tolerance Intervals ([Hahn, 

G.J., and Meeker, 1991]; [Montgomery and Runger, 1994]), for dealing with sparse data. The 

approach treats the stress-strain curves as discrete random functions with no readily identifiable 

parametric relationship between them. Yet the approach recognizes that the stress-strain curves 

issue from the same characteristic population of discrete random functions. Furthermore, the 

approach mitigates chances of underestimating the full-population variability from relatively few 

data samples.  

The present paper describes the model, output quantities monitored, and supporting simulations 

for evaluation of the TI UQ method.  The TI method and a strategy for evaluating its 

performance are briefly summarized in this paper, with presentation of some interim results, but 

details of the method and its accuracy and reliability performance are currently under preparation 

in [Romero et al., 2017] and are not presented in this paper. The present work assigns the same 

material to all the can parts: lids, walls, and weld. Future work will investigate multi-material 

solid mechanics problems where only a few stress-strain curves exist for each material. 

Finite element model description 

An explicit transient dynamics finite element model was created to simulate slow crush of a 

ductile metal can type structure as depicted in Figure 1. Shown in ½ plane symmetry geometry, 

the model contains a ram plate that crushes the can into a wedged support structure. Lids are 

welded to the can top and bottom as shown.  

    

      (a)        (b)            (c) 

Figure 1 – Half-symmetry finite element model of can crush configuration showing: (a) 

geometry and components; (b) finite element mesh; (c) example simulation results of can 

deformation. 

All components of the can are contiguously meshed. The ram plate and support structure are 

modeled with a contact algorithm with the Sandia solid mechanics and dynamics analysis code 



[Adagio]. Table 1 lists the components of the can crush structure along with mesh specifications 

of the model. Figure 2 depicts an experimental setup used for model validation studies. 

Table 1 – Can crush configuration and model specifications 

Component Material Dimensions No. 

Elements 

No. thru 

thickness 

Ram Plate Rigid 1” wide x 0.1” tk 1200 2 

Wedge Rigid 1” wide x 0.1” tk 2400 2 

Lid 304L SSTL 3” dia x .062” tk 117264 4 

Can 304L SSTL 3” dia x 1” wide x .067” tk 74400 4 

Weld  304L SSTL 3” dia. x .03” wide x .062” tk 4800 2x4 

 

(a) (b)  

Figure 2 –Can crush test setup (a), with post-test can crush damage (b). Figure from Kramer et 

al. (2015). 

Material characterization and modeling 

Material characterization tensile tests to failure at elevated temperatures of 200C and 400C were 

performed (Antoun et al., 2016) with 304L stainless steel cylindrical rod specimens of 3 in. 

length and 0.25 in. diameter. The same billet of material is used to machine out the can crush 

components as well as for rod samples used for tensile testing and constitutive model material 

fits. In this series of testing, the rod material samples are taken axially from a billet that the can is 

made from. The samples are tested using a strain rate of 0.001/s at 200C and 400C with several 

repeats as depicted in Figure 3. Engineering stress vs engineering strain tensile test results with 

repeats are presented for 304L stainless steel at room temperatures through 800C. Some 

ratcheting is noted at 600C for these tests. Therefore these stress strain curves were smoothed by 

running-window averaging before fitting. Yield and ultimate stress decrease with temperature for 

all of these tests, while strain to failure (ductility) increases with temperature in the range from 



room temperature to roughly 600C, then increases with temperature in the range from 600 to 

800C. 

 

Figure 3 – Engineering stress vs engineering strain tensile test results with repeats for 304L 

stainless steel at room temperatures through 800C. 

Table 2 lists some temperature dependent mechanical properties used to characterize this 

material at 200C and 400C, for these low strain-rate tensile tests.  Values for Young’s Modulus 

and Poisson’s ratio were taken from literature sources [ASM, 1995] and [BSSA, 2014] 

respectively. Yield stresses were taken from test data at 0.2% strain offset.  A specialized finite 

element fitting procedure [Wellman, 2012] was used to convert the engineering stress-strain test 

results to Cauchy stress, log strain (or “true stress”, “true strain”) by modeling the experiments, 

including tensile material necking through failure as described next.  

Table 2 - Temperature dependent mechanical properties used to characterize the material at 200C 

and 400C. 

Low rate Modulus (MSI) Yield stress (ksi) Poisson ratio 

200C 30.7  24.6  0.28 

400C 25.4 21.1 0.29 

 



 

To characterize the material for use in the MLEP constitutive model, a model of the test 

specimens is created as shown in Figure 4. The modeled rod is pulled into tension by fixing one 

end and applying a displacement controlled deflection to the other end. This deflection produces 

stress and strain in the modeled specimen and it begins to deform uniaxially through yield. At 

yield, a slope-based estimate of a projected true stress and true strain is calculated. Adagio then 

runs a simulation using this definition (dashed partial red curve) to check how well the 

assumption fits (green curve) to the original test data (black curve). If the initial guess produced 

a bad fit outside a specified tolerance, a new estimate is made and the process is repeated until a 

full true stress, true strain curve is produced. As the true stress, true strain response gets 

computed, a tearing parameter measure of material damage is also computed and stored. At the 

point of failure when the test specimen separates in the necked zone, a critical tearing parameter 

is computed and defined.  

 

Figure 4 – Schematic showing the process of computing and checking true stress, true strain 

from test data and through FEA simulation.  Lower curves are measured engineering stress, 

engineering strain. The upper curves are true stress; true strain fits to measured data. 

In Figures 5 and 6, 304L stress strain curves are shown at temperatures of 200C and 400C, 

respectively. The upper curves are true stress, true strain fits to the measured lower curve data. In 

this case, low strain rate (0.001/s) fits are shown with repeats.  



 

Figure 5 – 304L room (200 C) temperature true stress, true strain material fits for low (0.001/s) 

strain rate tests. Lower curves are measured engineering stress, engineering strain. The upper 

curves are true stress; true strain fits to the measured data. 

 

 

Figure 6 – 304L (400 C) temperature true stress, true strain material fits for low (0.001/s) strain 

rate tests. Lower curves are measured engineering stress, engineering strain. The upper curves 

are true stress; true strain fits to the measured data. 

 

 



Finite element simulations and response to ductile crush 

The present work assigns the same material to all the can parts: lids, walls, and weld. An explicit 

transient-dynamics finite element modeling approach was used to perform ductile can crush 

simulations. A ram plate is used to crush the can into a wedged support structure, Figure 3.  As 

the ram loads the can in a displacement control mode, the ram and lid/can displacements are 

computed and stored, Figure 7. The averaged ram reaction load is also computed as shown in 

Figure 7.  

Figures 8 through 12 plot responses for several output variables at the positions shown. These 

outputs include displacements, Von Mises stress, and several computed measures of material 

damage: equivalent plastic strain (EQPS), tensile equivalent plastic strain (TEQPS) and tearing 

parameter (TP). For many of these outputs, a location-varying global maximum, and several 

fixed-location element or nodal maximums of the weld, lid and can are output, as shown in the 

figures and explained in their captions. Substantial time and effort was invested to select these 

output quantities and optimize the spatial locations for their output to ensure significant and 

diverse response signals were obtained.   

 

Figure 7 –Vertical ram displacement and the averaged reaction load to the ram from can vs time 

fraction for various stress strain curves tried in the model. 



 

Figure 8 – Tensile EQPS values tracked for weld, lid and can at the locations shown, as well as 

the global maximum in the weld material, for various stress strain curves tried in the model. 

 

Figure 9 – Von Mises stress values tracked for the weld, lid and can at the locations shown, as 

well as the maximum in the weld material, for various stress strain curves tried in the model. 



Figure 10 –EQPS values tracked for the weld, lid and can at the locations shown, as well as the 

global maximum in the weld material, for various stress strain curves tried in the model. 

Figure 11 –Tearing parameter values tracked for the weld, lid and can at the locations shown, as 

well as the global maximum in the weld material, for various stress strain curves tried in the 

model. 



Figure 12 –Buckle displacement values tracked for the lid at the location shown, as well as and 

global maximum in the lid, for various stress strain curves tried in the model. 

UQ Method Performance Testing Methodology and Interim Results  

The Tolerance Interval (TI) method for modeling the variability of predicted response from 

model runs with multiple replicate stress-strain curves is briefly summarized here, along with a 

strategy for assessing TI method performance,. Some intermediate results are presented. Details 

of application of the TI UQ method to the can-crush problem and in-depth evaluation of the 

method’s accuracy and reliability are currently under preparation in [Romero et al., 2017] and 

are not presented in this paper. 

Tolerance Intervals (TIs) are a simple approach to compensate for the epistemic sampling 

uncertainty introduced from non-infinite samples. Investigations by Romero et al. (2013a,b) 

confirmed that TIs provide reliably conservative estimates of the combined epistemic and 

aleatory uncertainty associated with very sparse data samples for normal, uniform, and right-

triangular random variables, and for distributions resulting from convolving various 

combinations of these three random-variable types. The TI approach is also much easier to use 

than the four other sparse-data methods investigated. However, it was also found that TIs can 

egregiously exaggerate the true variability when very few samples are involved. The approach of 

Pradlwarter and Schuëller (2008) worked well for sparse samples in many cases, with usually 

significantly less exaggeration of the true variability when few samples are available, but is 

somewhat more involved to implement and its performance remains to be broadly tested and 

characterized because the method is very new. The rather common practice of simply fitting the 



random data with a normal distribution was found to have substantial risk of under-estimating 

the true variability of the population being sampled—especially if the sampled distribution is 

Normal.  

TI robustness on several other distribution shapes is established in [Kanwar and Haftka, 2015]. 

They also found that the TI approach is more reliable than bootstrapping methods for numbers of 

samples below about 30.  

Although the TI UQ method has been recently used in several engineering applications at Sandia 

National Laboratories (Romero et al., 2014, 2015, 2016), it has not yet been verified on highly 

non-linear application problems and non-standard distribution shapes because of the 

computational expense of the application models and because of other time and resource 

constraints in those projects. Consequently, the can-crush model and UQ problem are being used 

as a test bed to evaluate the accuracy and reliability of the TI method on the highly nonlinear 

input-to-output response mappings and non-standard response distributions that arise in the can-

crush solid mechanics UQ problem.  

Figure 13 outlines a strategy of computational experiments and assessment methodology for 

characterizing the accuracy and reliability of the TI sparse-data UQ method. The process steps in 

Figure 13 are explained in detail in [Romero et al., 2017].    

 

 

 

 

 

 



 

 

 

Figure 13 –Computational experiments and assessment strategy for TI method performance. 
 

 

Figure 14 shows output results of 1000 can-crush simulations with the 1000 synthetic stress-stain 

curves shown in step 1 of Figure 3. 1000 random realizations of transient response are shown for 

each of 18 output quantities of interest (QOIs) introduced in Figures 7-12. All responses are 

catalogued in Figure 14 except for tensile EQPS for the weld element from Figure 8 

(inadvertently overlooked in the analysis) and ram displacement with time from Figure 7 (an 

input to the analyses so the same in each simulation). The transient responses are seen to be 

highly diverse and nonlinear in time, with substantial spreads or variance of the response 

populations, especially at later time fractions. Some response quantities retain their bottom-to-

top ordering relatively well over time, while others exhibit substantial crossing with time. As 

shown in Step 3 in Figure 13, the distributions (histograms) of response can differ significantly 

from the standard distribution shapes Normal, uniform, and right-triangular that TI performance 

has already been reasonably affirmed for (Romero et al., 2013a,b). 



 
 

Figure 14 –1000 random realizations of transient response for each of 18 output quantities. 
 

 

Conclusions 

The can-crush solid mechanics UQ problem appears to be an appropriate and challenging test 

bed to evaluate the accuracy and reliability of sparse-data UQ methods on the highly diverse and 

nonlinear input-to-output response mappings and non-standard response distributions that arise 

in the can-crush problem. Details of application of the TI UQ method to this problem, and 

evaluation of the method’s performance, are currently under preparation [Romero et al., 2017]. 

Future work will investigate multi-material solid mechanics problems where the can lids, walls, 

and weld are each a different steel material and only a few stress-strain curves are available for 

each material. 
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