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Why is Better Hardware Needed? 

 Google Deep Learning Study 
 16000 core, 1000 machine GPU cluster 
 Trained on 10 million 200x200 pixel images 
 Required 3 days 
 Training set size set by what can be  
      completed in less than one week, with  
      available hardware 

 What would they like to do? 
 ~2 billion photos uploaded to internet per day (2014) 
 Can we train a deep net on one day of image data? 
 Assume 1000x1000 nominal image size, linear scaling 

(both assumptions are unrealistically optimistic) 
 Requires 5 ZetaFLOPs to train in 3 days! 
     (ZetaFLOPs=1015 FLOPs; ~5 billion modern GPU cores) 
 Data is increasing exponentially with time 

 Solution: 1018 (Exa) Op-per-second on one chip 
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Q. Le, IEEE ICASSP 2013 
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Neural Processor Unit Estimated Final Design Specs; 

Comparison to Extreme Cases and TrueNorth 
Description NPU-1 NPU-2 NPU-3 TrueNorth 
System clock frequency 100kHz 1 MHz 10 MHz 1 kHz 
Synapses per neuron 500 500 500 256 

Average energy per device update 1 fJ 1 fJ 10 aJ 26 pJ 
Energy per update op cycle (per core) 250pJ 250pJ 2.5pJ   
Operations per second (per core) 250 GOPs 250 GOPs 250 GOPs   
Single core max power  25 uW 250 uW 25 uW   

Chip Area 4 cm2 4 cm2 4 cm2 4.3 cm2 
Cores per layer 800 k 800 k 800 k 4 k 
Layers per chip 10 100 10 1 
Neurons per chip 4 B 200 B 4 B 1 M 
Chip Max Power 200 W 10 kW 200 W 70 mW 
Chip Max operations per second 0.2 ExaMACS 10 ExaMACS 20 ExaMACS 28 GigaOps 

Operations per second per watt 1015 MACS/W 1015 MACS/W 1017 MACS/W 4x1011Ops/W 
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MACS = Multiply Accumulate per Second 
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Modified from Hasler 

and Marr, Frontiers in 

Neuroscience, 2013 

“Let physics do 

the computation” 

Our brain is the 

ultimate example 

of this paradigm 

Improvements Due to 

Moore’s Law 
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Neuromorphic Hardware Philosophy 
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Application 
Ex. Image/speech/pattern recognition, 

anomaly detection 

Algorithm 

Computation 

Kernels 

Architecture and 

Circuits 

Device 

Traditional: Backpropagation 

Emerging: HTM, RBM, recurrent 

networks, deep learning 

Traditional: Vector-matrix multiply, 

weight update 

Emerging: STDP 
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Communication Energy Analysis 

Maximize single chip computation  Need ultra dense, 3D compute device 

ReRAM accelerator cores 
6 

Sparse communication off chip  Maximize single chip computation 
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Case Study: Resistive Crossbar 
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Neural Accelerator Architecture 
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Run any neural algorithm on the same hardware 
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Computation Energy Analysis 

w11 

w21 

w31 

w41 

w12 

w22 

w32 

w42 

w13 

w23 

w33 

w43 

w14 

w24 

w34 

w44 

V1=x1 
+ - 

+ - 

+ - 

+ - 

V2=x2 

V3=x3 

V4=x4 

N
 r

o
w

s
 

M columns 

Energy to charge the crossbar is CV2; 

E ∝ C ∝ number of RRAMs ∝ N×M  
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M columns 

SRAM crossbar: ReRAM crossbar: 

SRAMs must be read one row at a time, 

charging M columns; 

 

E  = N Rows × M Columns × O(N) wire length 

     ~ O(N2×M) 

Implication: ReRAM is O(N) better than SRAM in energy 

consumption for vector-matrix multiply computations 
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Architecture can Accelerate Many 
Different Neural Algorithms 

Backpropagation 
Restricted 

Boltzmann 

Machines 

Hierarchical 

Temporal Memory 
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Next Step: System to Device Model 

 Right now, claims in the literature 
on possible energy efficiency with 
ReRAM Accelerator vary by 106 

 Architecture-level simulations do 
not include device accurate models 

 Device level simulations do not 
analyze system level attributes 

 Solution: 

 Model and simulation based on 
all device-level variability data 
and compact models 

 Model all system level 
components 

 Circuit-level energy analysis 

 Several groups have started this 
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Metal Oxide ReRAM Device 
 “Hysteresis loop” is simple method to visualize operation 

 (memory operated through positive and negative pulses) 

 Hypothesized oxide resistance switching mechanism 

 Positive VTE: low R – O-2 anions leave oxide 

 Negative VTE: high R – O-2 anions return 

 Despite progress, fine details of switching mechanism still debated 

 Scalable to <5nm 
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Experimental Device Characteristics 

Incorporated experimental device and circuit level electrical characteristics 
to determine the design space criteria for algorithm convergence: 

 Device: Write Variability, Write Nonlinearity, Asymmetry, Read Noise 

 Circuit: A/D, D/A noise, parasitics 
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Effects of Read and Write Noise 
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Training Accuracy vs Read and Write Noise 

for Different Bit Precisions 
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Fewer bits may be possible with better input/output ranges and stochastic rounding  

Read noise sigma 

Nbits = infinite 
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IBM Backprop Training with PCRAM 

 Thorough study; simulation trained MNIST on actual 
PCRAM chip and achieved ~85% accuracy w/ 20 level 

 Full numerical accuracy reached with ~200-500 
levels (7-9 bit) 

18 GW Burr et al, IEEE TED 2015 

Need ~500 levels 
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Device Requirements 

Requirements set by Simulation: 

1. Need write noise, σwrite, <0.05-0.001 

2. Linearity factor > 1 

3. Need symmetric conductance changes 
• 10MΩ on-state resistances required.  

• Read noise (σnoise<0.10) typically within experimental device capabilities 

• Scalability <10nm 

Device Research Tasks: 

 Measure and assess experimental devices against these 
requirements 

 Provide data to the system level model 

 Learn from system assessment and improve devices 

 

 

 

 

Never 

demonstrated 

experimentally 
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Device Characterization  
and Modeling 
1. Characterize repeated pulsing behavior 

2. Arrange data as required by circuit-level 
model and look-up table 

3. Create analytical noise model for 
higher-level numerical simulation 
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Asymmetry & Nonlinearity 

 Assymetric analog 

resistance change in 

filamentary TiN/TaOx cell 

 SET abrupt – thermal runaway? 

 RESET – gradual transition 

 Nonlinear, asymmetric G vs 

pulse curve 

 Need device  

    improvements! 

Vset = 0.65 V 

Vreset = -0.75 V 

Tpulse = 100µs 
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Key Points 

 Brain inspired computing has experienced a 
resurgence of interest… 

 Has it found a killer app? 

 New devices and hardware are needed 

 The brain is a piece of hardware! 

 Currently cannot apply neural algorithms to true 
internet-scale datasets 

 New algorithms should be developed in parallel 
with hardware 

 Coordination of multidisciplinary research 
needed: EE, CS, neuroscientists, material sci, etc 
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Possible Discussion Questions 

 What is the “killer app” for brain inspired 
computing? (asked in earlier RCS session) 

 What are the key kernels? 

 Matrix operations? Spike timing dependent 
plasticity? 

 What are the key new devices and circuits? 

 Resistive crossbars? 

 What level of energy efficiency and/or performance 
improvement is needed to justify a new device 
technology?  

 Tech development is very expensive! 
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