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Why is Better Hardware Needed? (@&
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Feature 1 # s °ﬁ$* “‘

= Google Deep Learning Study
= 16000 core, 1000 machine GPU cluster
= Trained on 10 million 200x200 pixel images
= Required 3 days
= Training set size set by what can be
completed in less than one week, with
available hardware

= What would they like to do? ) T
= ~2 billion photos uploaded to internet per day (2014) v e
= Can we train a deep net on one day of image data?
= Assume 1000x1000 nominal image size, linear scaling
(both assumptions are unrealistically optimistic)

= Requires 5 ZetaFLOPs to train in 3 days!
(ZetaFLOPs=10% FLOPs; ~5 billion modern GPU cores)

= Data is increasing exponentially with time Q. Le, IEEE ICASSP 2013

= Solution: 108 (Exa) Op-per-second on one chip

One layer




Neural Processor Unit Estimated Final Design Specs

Comparison to Extreme Cases and TrueNorth

Description NPU-1 NPU-2 NPU-3 TrueNorth

ISystem clock frequency 100kHz 1 MHz 10 MHz 1 kHz

ISynapses per neuron 500 500 5()_0_____ 256
verage energy per device update 1 1] 1 1] 26 pJ

[Energy per update op cycle (per core) [250p] 250p] 59

Dperations per second (per core) 250 GOPs 250 GOPs 250 GOPs

ISingle core max power 25 uW 250 uW 25 uW

khip Area 4 cm? 4 cm? 4 cm? 4.3 cm?

hores per layer 00Kk Lk e 800k 4 k

Layers per chip 100 110 1

I\Ieurons per chip B 200 B B 1M

KChip Max Power 1200 W 10 kW 00 W 70 mW

khip Max operations per second 0.2 ExaMACS §[10 ExaMACS EO ExaMACS 28 GigaOps

erations per second per watt 1015 MACS/W |1017 MACS/Wix10110ps/W
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Power Efficiency Scaling
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Modified from Hasler
and Marr, Frontiers in
Neuroscience, 2013
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Improvements Due to

Moore’s Law
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“Let physics do
the computation”
Our brain is the
ultimate example
of this paradigm
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Neuromorphic Hardware Philosophy® .

Feature 1 # ° Q\ ,'f' *’_ u .
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Ex. Image/speech/pattern recognition,
anomaly detection

Traditional: Backpropagation
Emerging: HTM, RBM, recurrent
networks, deep learning

Traditional: Vector-matrix multiply,
weight update
Emerging: STDP

Traditional: GPU, CPU
Emerging: Crossbar array, coupled
oscillators

Traditional: FET
Emerging: ReRAM, STT/MeRAM, FeFET
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Communication Energy Analysis

Sparse communication off chip 2 Maximize single chip computation

Maximize single chip computation = Need ultra dense, 3D compute device
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Case Study: Resistive Crossbar ) e,

Output
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Vector Matrix Multiply, Rank 1 Update: )

Key kernel used in many algorithms  Outputs to next layer
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Neural Accelerator Architecture
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Computation Energy Analysis )
SRAM crossbar: ReRAM crossbar:
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SRAMs must be read one row at a time, Energy to charge the crossbar is CV2:

charging M columns; E o C « number of RRAMs o« NxM

E =N Rows x M Columns x O(N) wire length ~ O(NxM)

~ O(N2xM)

Implication: ReRAM is O(N) better than SRAM in energy

consumetion for vector-matrix muItiEIx comeutations



Analog Core: Forward Propagation
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Analog Core: Back Propagation ) i
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Architecture can Accelerate Many (@i,
Different Neural Algorithms

Restricted
Backpropagation Boltzmann
Machines

Hierarchical
Temporal Memory
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Next Step: System to Device Model

= Right now, claims in the literature
on possible energy efficiency with
ReRAM Accelerator vary by 10°

= Architecture-level simulations do
not include device accurate models

= Device level simulations do not
analyze system level attributes

=  Solution:

= Model and simulation based on
all device-level variability data
and compact models

= Model all system level
components

= Circuit-level energy analysis
= Several groups have started this
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Example 1: 25,600 neurons

100,000 iterations/s
Chip Power
# of area % Power eff. over

Conﬁguration chips  (mm?) Active (W) Xeon
Memristor Analog (config 1) 1 3.7 9.7% 0.07 253,489
Memristor Digital (config 2) | 9.7 60.8% 0.62 27,546
SRAM (config 3) 1 352 60.8% 1.13 15,099
NVIDIA M2070 12 529.0 99.2%  2700.00 6
Intel Xeon X5650 179  240.0 99.9% 17005.00 1

Taha et al [IJCNN 2013
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Metal Oxide ReRAM Device

= “Hysteresis loop” is simple method to visualize operation
= (memory operated through positive and negative pulses)
= Hypothesized oxide resistance switching mechanism
= Positive V;;: low R — O2anions leave oxide
= Negative Vi high R—02anions return
= Despite progress, fine details of switching mechanism still debated

= Scalable to <5nm
V1e
T Current

Pt O? anions N
/exchange

Read Window

Ta (50-100 nm) <

switching VreseT * -
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%0 _~4"channel
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Highest current .-~

I switching process RESET

» Voltage




Experimental Device Characteristics 0.

Incorporated experimental device and circuit level electrical characteristics
to determine the design space criteria for algorithm convergence:

= Device: Write Variability, Write Nonlinearity, Asymmetry, Read Noise
= Circuit: A/D, D/A noise, parasitics

Variability and Nonlinearity
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Effects of Read and Write Noise

Accuracy vs ReadNoise
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Training Accuracy vs Read and Write Noise

for Different Bit Precisions

Nbits = infinite Nbits = 6
0.01 . ‘ .
0.008
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© 0.004
&
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c o o
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QO 0.01 0.01
=
| -
; 0.008 .008
0.006 .006
0.004 .004
0.002 .002
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.008
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Read noise sigma
Fewer bits may be possible with better input/output ranges and stochastic rounding
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Nbits = 5
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IBM Backprop Training with PCRAM @iz

" Thorough study; simulation trained MNIST on actual
PCRAM chip and achieved ~85% accuracy w/ 20 level

" Full numerical accuracy reached with ~200-500
levels (7-9 bit)

Need ~500 levels
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Device Requirements )

Requirements set by Simulation:
1. Need write noise, o <0.05-0.001 Never

2. Linearity factor > 1 —— demonstrated
experimentally

write?

3. Need symmetric conductance changes

—mm
* 10MQ on-state resistances required.

* Read noise (o, ....<0.10) typically within experimental device capabilities

noise

e Scalability <10nm
Device Research Tasks:

= Measure and assess experimental devices against these
requirements

= Provide data to the system level model
= Learn from system assessment and improve devices




Device Characterization = i
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and Modeling

1.
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Asymmetry & Nonlinearity ) .

! —a— Reset |
= Assymetric analog 3 :: -
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Key Points ) e,

= Brain inspired computing has experienced a
resurgence of interest...

= Has it found a killer app?
= New devices and hardware are needed
= The brain is a piece of hardware!

= Currently cannot apply neural algorithms to true
internet-scale datasets

= New algorithms should be developed in parallel
with hardware

= Coordination of multidisciplinary research

needed: EE, CS, neuroscientists, material sci, etc



Possible Discussion Questions ) .

"= What is the “killer app” for brain inspired
computing? (asked in earlier RCS session)

= What are the key kernels?

= Matrix operations? Spike timing dependent
plasticity?

= What are the key new devices and circuits?
= Resistive crossbars?

= What level of energy efficiency and/or performance
improvement is needed to justify a new device
technology?

= Tech development is very expensive!




