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Nanoparticle Size is Critical in @

Biomedical Applications

= Magnetic properties vary dramatically with size
(e.g. particle moment, colloidal stability,
relaxation time, etc).

= Many applications use magnetic nanoparticles:
Magnetic resonance imaging (MRI), Magnetic
Particle Imaging (MPI), Magnetic Relaxometry
(MRX), Hyperthermia.

= Market acceptance and regulatory approval for
medical use requires consistent performance.

n Many Of these depend upon the MRX system for biodetection
] . ] www.seniorscientific.com
superparamagnetic relaxation time (MPI, MRX,
hyperthermia) which has extraordinary size
dependence.




Nanoparticle Size Control @&

= Nanoparticles are a kinetic

product.

= Kinetic control of nanoparticle

size
= Reproducibility

= Focus on systematic size variation
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LaMer Mechanism

= Closed system

c © © O = Eventual size at reaction completion is
N e © © o determined by the number of nuclei
formed.

Nucleation is chaotic, non-linear and
very hard to systematically control.

= Nucleation is hard to reproduce using
c. different hardware or in different
/. . . locations (altitude, humidity).
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Our Approach

= Control everything that can reasonably be
LaMer and Dinegar, JACS 1950. controlled.
72(11): p. 4847-4854.

= Accept that nucleation can’t be
conveniently controlled.

= Nucleate, then grow to appropriate size
through precursor addition.




Extended LaMer

Classic LaMer
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Two goals of this work
« Systematic size control
* Improved reproducibility

Extended LaMer
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Reaction Scheme )

= Use a stoichiometric Fe oleate
source derived from Fe(acac)s.

= Constant temp. controlled to
+0.25° C

= Temperature stabilized in
absence of precursor.

= Continuous dropwise addition
into constant temperature hot
solvent.

= We control size with time of
addition (stoichiometry), not
heating rates.

Vreeland, et al. Chem. Mat. 2015, 27 (17), 6059-6066.
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Size Monitored by TEM

« Scale bars are 20 nm
« Aliquots are from a single reaction
» Particle are round and single crystal (HRTEM)

« Size focusing occurs early in the reaction

Percentage Composition (%)

Diameter (nm)
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Size Control with Extended LaMer ) i,
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Use benchtop SAXS to determine particle size of aliquots.

Yields near real time size determination.
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» Clearly see two growth regimes.
« Rapid growth in early stage is catalytic
« Size focusing as a result of differential reactivity
« Highly exothermic just after nucleation

« After period of rapid growth, steady state reaction
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» Reaction repeated in triplicate

» New precursor synthesized for each
reaction

 Particle diameter grows as t3

« Batch-to-batch coefficient of variation .04

« Particle volume grows linearly with t
« Similar starting points, differing slopes
« Why does slope differ?
« Each reaction has the same rate of
addition
« Steady state requires rate of addition to
equal rate of reaction
» All reactions produce material at the
same rate
« Variation in growth rate must mean that a
different number of particles are nucleated



Prediction of Growth ) Netona

Laboratories

« Same data as before

- - Take first four data points after
steady state reached

« Extrapolate and compare
extrapolation to actual data.

» Every data point is within 1.5%
of predicted value.
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« Why does this work better?

10 S .
« Extrapolation accounts for

® ¢ = Fitted Expt. Size

5 Predicted Size different number of nuclei
0 <& O Non-Fitted Expt. Size formed.
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Size Control Varying Surfactant (@&,

Concentration
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Vreeland, et al. Chem. Mat. 2015, 27 (17), 6059-6066.




Comparison of Real Data to Predicted Extended LaMer Behavior gy o
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Unreacted iron
concentration is related to
monomer concentration by
some unknown rate
constant.
Plotting unreacted Fe vs
time gives us a LaMer
style plot.
Behavior just after is
catalytic
« Growth is extremely
rapid for particles
below 10 nm
» Continues despite
decrease in
concentration of iron
Soon transitions to LaMer
behavior (diffusion of
reactive intermediate).



Systematic Control of Magnetic ) .

Properties
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Extended LaMer Approach is General
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» Fe (0) nanoparticles can be produced using the same continuous addition approach
« Surfactant is 2,4-pentanedione (acac).
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the Extended LaMer Mechanism
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Real time monitoring using UV-vis spectroscopy




Conclusions ) s,

 Extended LaMer mechanism allows us to ol o o] @
better control the size of particles produced. a
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» Reactions are both reproducible and
predictable.
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« Can systematically control size dependent
properties.

Monomer concentration ——
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* Approach is general and is being applied to
other systems including Fe (0) and gold.
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CINT is available to the scientific community

« World-class scientific staff

« Vibrant user community

» State-of-the-art facilities

« Afocused attack on nanoscience integration challenges
» Leveraging Laboratories’ capabilities

» Developing & deploying innovative approaches to nanoscale
integration

» Discovery through application with a diverse portfolio of
customers

« Learn more at: cint.lanl.gov
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