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Nanoparticle Size is Critical in 
Biomedical Applications

 Magnetic properties vary dramatically with size 
(e.g. particle moment, colloidal stability, 
relaxation time, etc).

 Many applications use magnetic nanoparticles: 
Magnetic resonance imaging (MRI), Magnetic 
Particle Imaging (MPI), Magnetic Relaxometry 
(MRX), Hyperthermia. 

 Market acceptance and regulatory approval for 
medical use requires  consistent performance.

 Many of these depend upon the 
superparamagnetic relaxation time (MPI, MRX, 
hyperthermia) which has extraordinary size 
dependence.

MRX system for biodetection
www.seniorscientific.com
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Nanoparticle Size Control

 Nanoparticles are a kinetic 
product.

 Kinetic control of nanoparticle 
size
 Reproducibility

 Focus on systematic size variation
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LaMer Mechanism
 Closed system

 Eventual size at reaction completion is 
determined by the number of nuclei 
formed.

 Nucleation is chaotic, non-linear and 
very hard to systematically control.

 Nucleation is hard to reproduce using 
different hardware or in different 
locations (altitude, humidity).

Our Approach
 Control everything that can reasonably be 

controlled.

 Accept that nucleation can’t be 
conveniently controlled. 

 Nucleate, then grow to appropriate size 
through precursor addition.

LaMer and Dinegar, JACS 1950. 
72(11): p. 4847-4854.
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Extended LaMer

Classic LaMer

Continuous addition of precursor

Extended LaMer

Two goals of this work
• Systematic size control
• Improved reproducibility
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Reaction Scheme

 Use a stoichiometric Fe oleate
source derived from  Fe(acac)3.

 Constant temp. controlled to  
± 0.25 °C

 Temperature stabilized in 
absence of precursor.

 Continuous dropwise addition 
into constant temperature hot 
solvent.

 We control size with time of 
addition (stoichiometry), not 
heating rates.

6

Vreeland, et al. Chem. Mat. 2015, 27 (17), 6059-6066.



Dale.Huber@sandia.gov 7

• Scale bars are 20 nm

• Aliquots are from a single reaction

• Particle are round and single crystal (HRTEM)

• Size focusing occurs early in the reaction

Size Monitored by TEM



Dale.Huber@sandia.gov 8

Size Control with Extended LaMer

• Use benchtop SAXS to determine particle size of aliquots.

• Yields near real time size determination.
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Size Control with Extended LaMer

• SAXS gives us great statistics.
• Clearly see two growth regimes.

• Rapid growth in early stage is catalytic
• Size focusing as a result of differential reactivity
• Highly exothermic just after nucleation

• After period of rapid growth, steady state reaction
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• Reaction repeated in triplicate
• New precursor synthesized for each 

reaction
• Particle diameter grows as t1/3

• Batch-to-batch coefficient of variation .04

• Particle volume grows linearly with t
• Similar starting points, differing slopes
• Why does slope differ?

• Each reaction has the same rate of 
addition

• Steady state requires rate of addition to 
equal rate of reaction

• All reactions produce material at the 
same rate

• Variation in growth rate must mean that a 
different number of particles are nucleated

Reproducibility
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Prediction of Growth

• Same data as before

• Take first four data points after 
steady state reached

• Extrapolate and compare 
extrapolation to actual data.

• Every data point is within 1.5% 
of predicted value. 

• Why does this work better?
• Extrapolation accounts for 

different number of nuclei 
formed.
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Size Control Varying Surfactant 
Concentration

Vreeland, et al. Chem. Mat. 2015, 27 (17), 6059-6066.
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Comparison of Real Data to Predicted Extended LaMer Behavior

• Unreacted iron 
concentration is related to 
monomer concentration by 
some unknown rate 
constant.

• Plotting unreacted Fe vs 
time gives us a LaMer
style plot.

• Behavior just after is 
catalytic

• Growth is extremely 
rapid for particles 
below 10 nm

• Continues despite 
decrease in 
concentration of iron

• Soon transitions to LaMer
behavior (diffusion of 
reactive intermediate).  
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Systematic Control of Magnetic 
Properties

14

Blocking Temperature

Hyperthermia
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Extended LaMer Approach is General
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• Fe (0) nanoparticles can be produced using the same continuous addition approach
• Surfactant is 2,4-pentanedione (acac).

Fe(CO)5
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Gold Nanoparticles Growth Through 
the Extended LaMer Mechanism

Real time monitoring using UV-vis spectroscopy

16
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• Extended LaMer mechanism allows us to 
better control the size of particles produced.

• Reactions are both reproducible and 
predictable.

• Can systematically control size dependent 
properties.

• Approach is general and is being applied to 
other systems including Fe (0) and gold.

Conclusions
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Center for Integrated Nanotechnologies
Sandia National Laboratories  •  Los Alamos National Laboratory

CINT is available to the scientific community

• World-class scientific staff

• Vibrant user community

• State-of-the-art facilities

• A focused attack on nanoscience integration challenges 

• Leveraging Laboratories’ capabilities

• Developing & deploying innovative approaches to nanoscale 
integration

• Discovery through application with a diverse portfolio of 
customers

• Learn more at:  cint.lanl.gov 


