

Exceptional service in the national interest

Digital Volume Correlation for Materials Characterization

Enrico Quintana

46th WANTO – JOWOG 39
April 27, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Digital Volume Correlation

- Digital volume correlation (DVC) is based on digital image correlation (DIC)
- DIC (1980's)
 - Optical imaging
 - Speckle pattern
 - 2D and 3D surface measurements
- DVC (1999)
 - Computed tomography (CT)
 - Naturally occurring speckle patterns
 - Seed particles for speckle pattern
 - 3D volumetric measurements

DIC Images acquired from a recent Sandia National Laboratories test

Ideal DVC Data Requirements

- Features need to be 3 to 5 voxels in size
- 3 to 4 features in a subset
- Step size ~half subset size
- Minimize noise
- High contrast

Material Applications

- Foam
- Bone
- Wood
- Composites
- Precipitate Metals
- ...Anything with naturally occurring voids, porosity, etc.

DVC Challenges

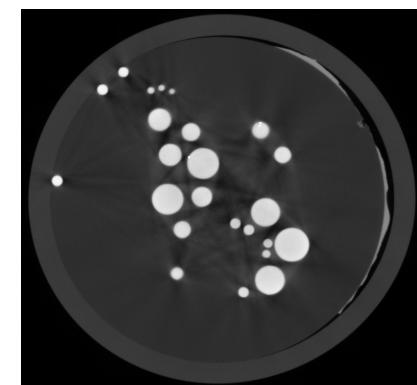
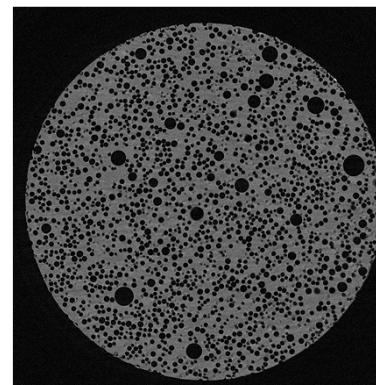
- CT scan process
 - Time
 - Spatial Resolution
 - Noise
 - Artifacts
- CT system hardware drift
- No control over naturally occurring structure

CT System Hardware

- Optical table to adequately (and accurately) assemble the CT system
 - Set up to use a variety of x-ray machines and detectors
- Need to finalize part manipulation setup

DVC Hardware

- CT Specific Tensile Stage
 - Allow for compression or tension mounted to CT stage
- Several Options
 - 500N
 - **5kN**
 - 25kN
 - Add-on temperature control

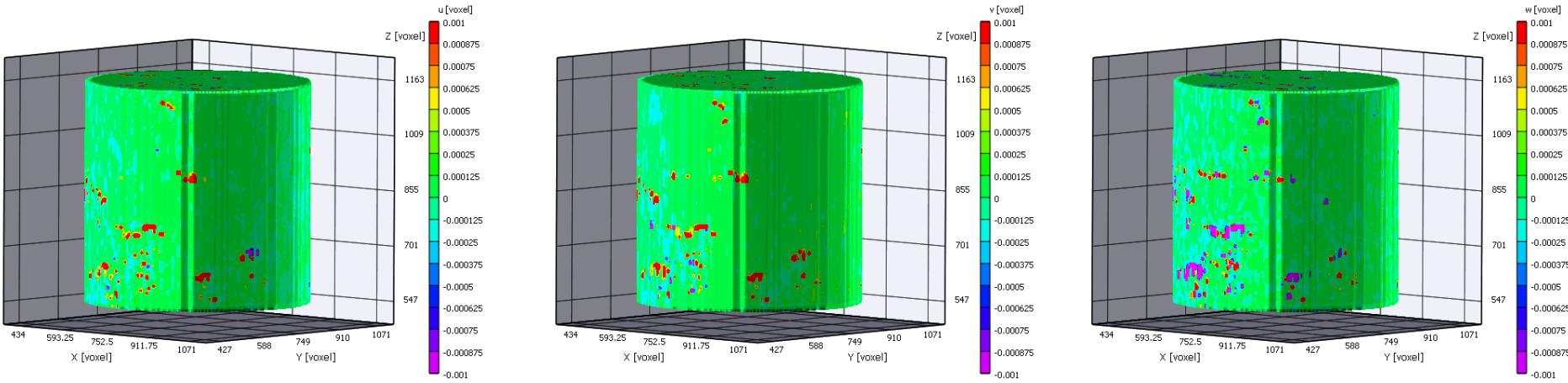


www.deben.co.uk

Software Solutions

- Commercial Options
 - LaVision
 - Correlated Solutions
- University Efforts
 - LMT-Cachan
 - Illinois-Urbana Champaign
 - Brown

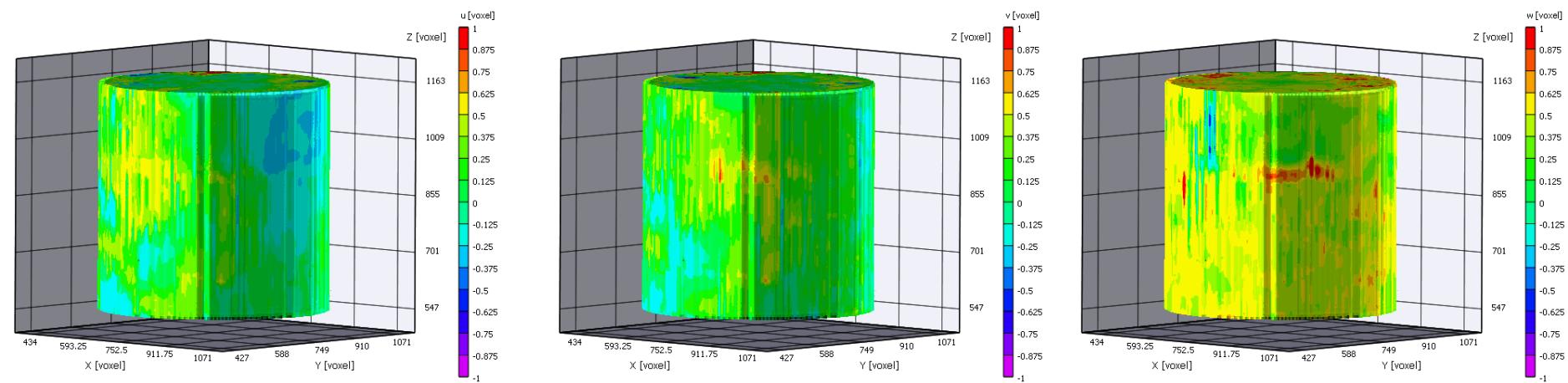
Part Development

- Part Development
 - Materials seeded in epoxy
 - Aluminum spheres
 - Plastic spheres
 - Glass Micro Balloons
 - Foams


Initial CT Scans

- Utilize part with aluminum spheres seeded in epoxy
- Operate x-ray machine at 100kV and 400 μ A (36W)
- Detector operated at 3.5 fps with 16 frame average
- Acquire 1099 projections
- No beam filter used
- Dimensions provide 3.5x magnification (36.4 effective voxel size)
- 94 minute scan

Single Scan Self-Correlation


- Determine subset size
- Determine step size
- General software familiarization

	u (voxel)	u (μm)	v (voxel)	v (μm)	w (voxel)	w (μm)
Mean	1.35E-04	4.93E-03	1.25E-04	4.55E-03	-9.69E-05	-3.53E-03
Standard Dev	1.62E-03	5.90E-02	1.61E-03	5.85E-02	2.47E-03	8.99E-02

Multi-Scan Noise Floor

- Scan part multiple times, one right after another
 - 4 scans
- Each scan took 94 minutes (Overall continuous beam time 6+ hours)

Multi-Scan Noise Floor Data

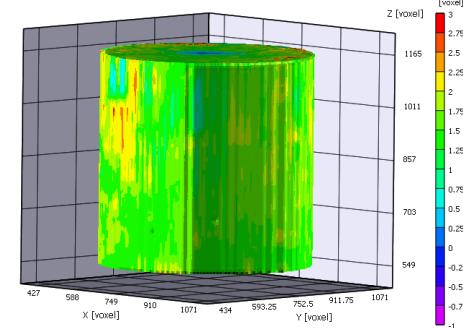
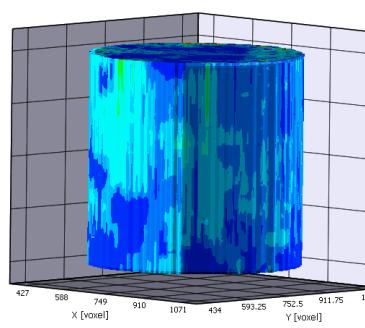
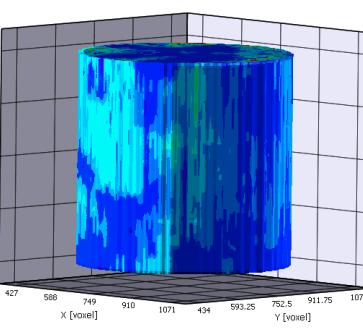
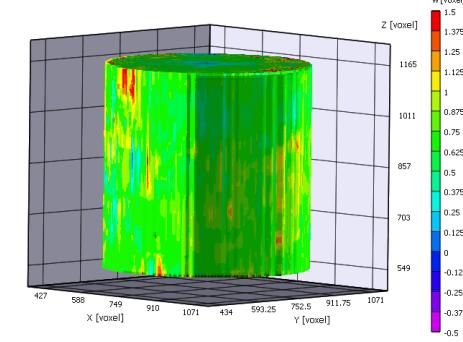
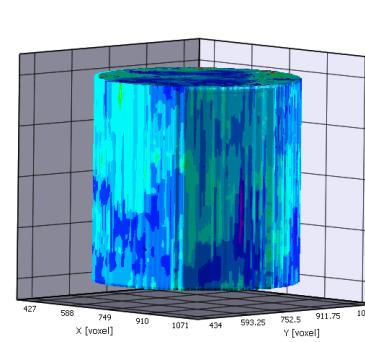
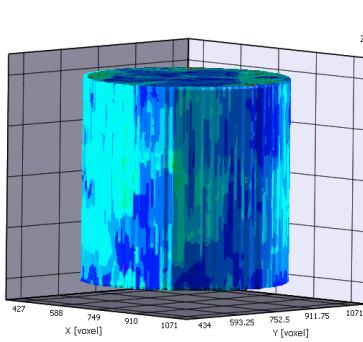
u-direction (movement in x)

	Scan 1&2	Scan 1&3	Scan 1&4	Scan 2&3	Scan 2&4	Scan 3&4
Mean (µm)	4.763	3.203	1.335	6.271	3.308	5.279
Standard Dev (µm)	10.762	12.59	15.73	12.22	10.88	12.91

v-direction (movement in y)

	Scan 1&2	Scan 1&3	Scan 1&4	Scan 2&3	Scan 2&4	Scan 3&4
Mean (µm)	5.006	3.079	3.052	7.343	6.761	8.082
Standard Dev (µm)	11.600	13.50	16.46	13.17	10.40	13.23

w-direction (movement in z)







	Scan 1&2	Scan 1&3	Scan 1&4	Scan 2&3	Scan 2&4	Scan 3&4
Mean (µm)	16.28	22.38	25.39	9.728	12.51	6.797
Standard Dev (µm)	7.460	12.78	16.40	5.822	5.866	6.598

mean noise floor

	u	v	w
Noise Floor (voxel)	0.344	0.354	0.252
Noise Floor (µm)	12.52	13.06	9.154

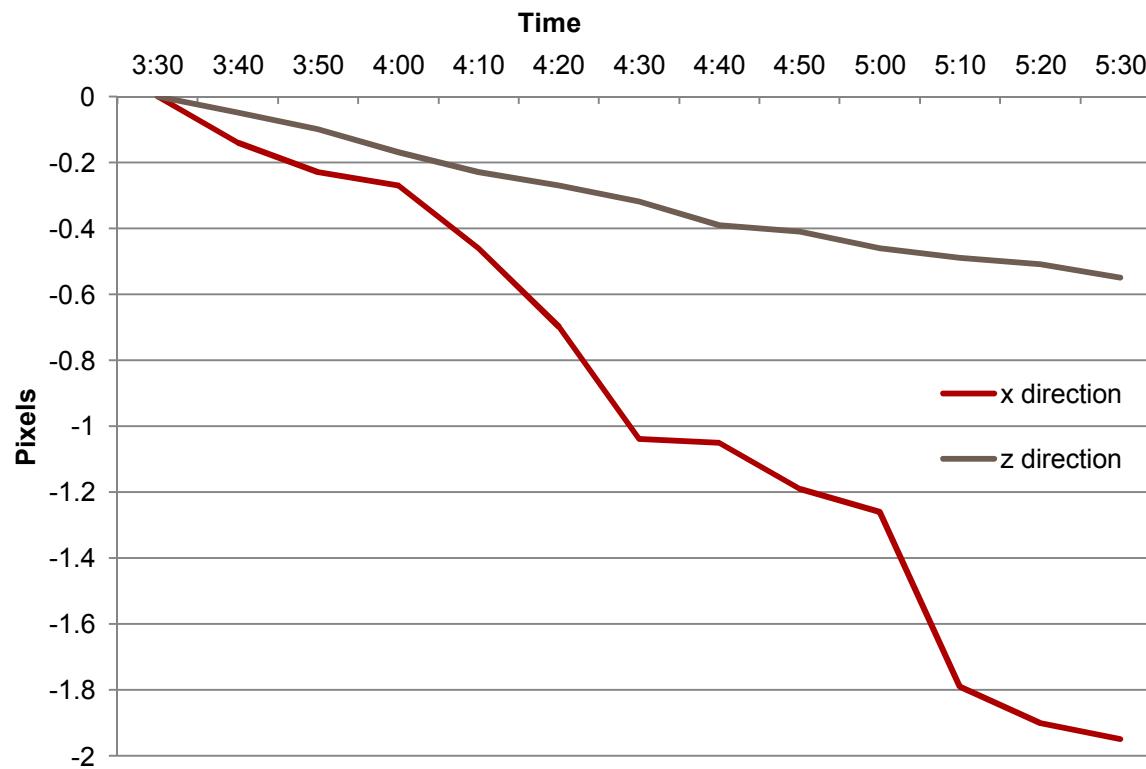
Rigid Body Translation

- Initial Scan
- Multiple Subvoxel Shifts
 - 10 μm in z-direction
 - 6 total scan, 50 μm total movement
- 10 μm shift should match noise floor data

Rigid Body Translation Data

	u	v	w
Mean (voxel)	0.166	0.151	0.451
Mean (µm)	6.037	5.493	16.41
Standard Deviation (voxel)	0.270	0.279	0.158
Standard Deviation (µm)	9.812	10.150	5.746

	u	v	w
Mean (voxel)	0.136	0.119	0.683
Mean (µm)	4.966	4.346	24.85
Standard Deviation (voxel)	0.231	0.244	0.235
Standard Deviation (µm)	8.415	8.897	8.541


	u	v	w
Mean (voxel)	0.163	0.166	1.024
Mean (µm)	5.951	6.049	37.28
Standard Deviation (voxel)	0.343	0.371	0.329
Standard Deviation (µm)	12.473	13.487	11.994

	u	v	w
Mean (voxel)	0.164	0.164	1.037
Mean (µm)	5.974	5.981	37.75
Standard Deviation (voxel)	0.330	0.348	0.336
Standard Deviation (µm)	12.017	12.675	12.239

	u	v	w
Mean (voxel)	0.092	0.130	1.504
Mean (µm)	3.356	4.725	54.753
Standard Deviation (voxel)	0.350	0.335	0.348
Standard Deviation (µm)	12.737	12.191	12.682

X-ray Focal Spot Drift

- Acquire target image every 10 minutes over 2 hour period
- Shutter x-ray beam to prevent detector burn

Path Forward

- Repeat translation experiment with high precision stage
- Conduct compression test
- Improve CT system calibration routines
- Continue search for material applications