

SAND2016-3905C

Layer of Protection Analysis LOPA

Rio Grande American Industrial Hygiene Association
New Mexico American Society of Safety Engineers
2015 Professional Development Conference

Timothy Stirrup, Principal Safety Basis Engineer
Sandia National Laboratories
October 2015

Layer of Protection Analysis Overview

- LOPA Definition
- LOPA History
- LOPA Common Elements
- LOPA Use – Motivating Factors
- LOPA Steps
- LOPA Limitations/Benefits
- LOPA Example
- LOPA References

Definition

- Simplified Form of Risk Assessment
- Order of Magnitude Categories
 - Event Frequency
 - Consequence Severity
 - Likelihood of Failure of Independent Protection Layers
- Builds On Qualitative Hazards Analysis
- Rule Based Implementation

Purpose

- Replace Quantitative Risk Assessment
- Determine if Sufficient Layers of Controls
- Use of LOPA as Semi Quantitative Hazard Evaluation
Tool for Judging Risk of Accident Scenarios
- Another Risk Analysis Tool that Must be Applied
Correctly

Common Elements

- Rules for Controls as IPLs
- Default Frequency Data
 - Event Frequencies
 - Credits for IPLs
- Procedure for Calculation
- Procedure for Application/Acceptance

History

- Origin with Company Specific Development
- Multiple Papers Published ~ 1997
- CCPS International Conference and Workshop on Risk Analysis in Process Safety (10/1997)
 - Recommendation for Book Describing and Defining LOPA
- Parallel Development of Safety Integrity Levels
- Draft IEC 61511 Part 3 ~ 1999
- CCPS Workshop ~ 2000

Common Events

- Consequence Classification Method
 - Typically Company Specific
- Numerical Risk Tolerance Criteria
 - Fatalities & Fire Frequencies
 - Required Number of IPL Credits
 - Maximum Frequency for Specified Categories
- Method of Developing Scenarios

Use

- Effectively Used Throughout Safety Life Cycle
- Preferred Use
 - Detailed Design Stages
 - Modifications to Designs
- Techniques Where Defining
 - Control Hierarchy
 - Control Requirements
- Use for Engineering/Administrative Controls

Steps

- Identify Consequence
- Select Accident Scenario
- Identify Cause-Consequence Pair
- Determine Frequency of Pair

Steps

- Identify Independent Protection Layers
- Identify Probability of Failure on Demand
- Estimate Risk
- Evaluate Risk
- Make Decisions to Reach Tolerable Risk

Benefits

- Less Time Than Quantitative Risk Analysis
- Simplified Framework for Understanding Risk
- Subsequent Improvements to HE Methods
- Rigorous Procedures
- Means of Comparing Risk

Example

- BP Petrochemical Disaster
 - Controls
 - Assignment of Values
 - Hierarchy Analysis

Benefits

- Defensible Process/Procedure
- As Low As Reasonably Possible Risk
- Defines Safety Integrity Levels
- Defines Hierarchy of Controls to Support Budget, Maintenance & Operations

Limitations

- Internal Risk Comparisons Valid Only When Using Same LOPA Method
- Result Values Are Not Precise
- Should Not Be Applied to All Scenarios
- Time/Resource Commitment
- Not Hazard Identification/Evaluation Tool
- External Risk Comparisons Not Typically Valid

References

- Guidelines for Hazard Evaluation Procedures, 3rd Ed; CCPS 2008
- Layer of Protection Analysis: Simplified Process Risk Assessment; CCPS 2001
- Guidelines for Initiating Events and Independent Layers of Protection Analysis, 1st Ed; CCPS 2014
- Guidelines for Enabling Conditions and Conditional Modifiers in Layer of Protection Analysis
- Layer of Protection Analysis; PII 2014