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E-NERGY UFD Storage and Transportation
Nuclear Energy R&D Objectives

B Verify and enhance the technical bases for maintaining used fuel
integrity and ensuring fuel retrievability during continued storage

B Develop the technical basis for transportation of high burnup fuel
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What we are learning indicates that spent
fuel is more robust than was previously
thought:
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Closing the high burnup used

fuel technical gap associated

with the fuel cladding: Strength

What is the fuel cladding issue?

Hydrogen diffuses into the fuel cladding which
can degrade mechanical properties.

* Reactor operations

Hydrogen is absorbed into the cladding
Fission gas build-up increases rod internal
pressures

Longer operating times

(High burnup fuel; > 45 GWd/MTU) increase
these effects

. Dry storage

Drying operations create a thermal spike that
may put H back into solution

H precipitates with subsequent cooling and
may re-orient to a radial orientation
Cladding mechanical properties may degrade
as a result

* Transportation loadings

Normal Conditions of Transport induce
cladding strain due to over-the-road (rail)

loadings

Cladding integrity during transport needs to
be demonstrated
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Closing the high burnup used
fuel technical gap associated
with the fuel cladding:

Mechanical testing on high burnup cladding:

Ring compression testing at Argonne National Laboratory
* Determines Ductile-to-Brittle Transition Temperature
(DBTT) of cladding, an indicator of material brittleness
* Highly dependent on internal rod pressure
* dependent on maximum temperatures seen during

drying
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Closing the high burnup used
fuel technical gap associated
with the fuel cladding: Fatigue

Nuclear Energy

Mechanical testing on high burnup spent fuel:

e Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) at
Oak Ridge National Laboratory
e Determines the flexural stiffness of the cladding/fuel “system”
« Stiffness provides a measure of fuel/cladding strength
under mechanical loads

* CIRFT testing provides valuable insights regarding
e Pellet-Clad interactions
* Pellet-Pellet interactions

e CIRFT testing provides a good measure of fatigue strength
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Thermal analyses on high burnup spent fuel in storage:

* DOE/EPRI Confirmatory Data Project cask loading with high burnup fuel:

* Best estimate given fuel vendor data and current drying processes
* Regulatory thermal analyses penalty factors removed
* Best estimate maximum cladding surface temperatures are << 400° C
* Indicating:
* Less Hydrogen going into solution that can re-precipitate in a radial orientation
* Lower internal rod pressures that effect H radial hydride reorientation (PV=NRT)
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End of Life internal rod pressure analyses:

FRAPCOM predicts EOL internal rod pressures from burnup histories:
* End of Life Rod Internal Pressure is a function of:
* Initial He fill pressure, fission gas release, temperature, void volume, creep down/swelling,
clad inner diameter, clad thickness (minus oxide layer)
* Indicates:
* Hoop stresses may be lower than expected and lower than RCT test conditions
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Normal Conditions of Transport (NCT) Loadings:

» Shaker table and Over-the-Road Truck and Rail (shaker table only) tests were conducted
on a surrogate PWR assembly to estimate realistic loadings that a spent fuel assembly
may see during transport.
* Accelerations and strains were obtained on both the surrogate assembly and the conveyance
* Placement of instrumentation was informed by analyses
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* Indicating:

» Large margin of safety relative to either elastic or fatigue failure criteria
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Closing the high burnup used
fuel technical gap associated
with the fuel cladding

FY16 Activities:

RCTs: Conduct additional RCTs to better understand DBTT
Zirlo results at 350° C:

e Higher H content?
Lack of radiation-hardening annealing at 350° C?

Offset Strain (%)

CIRFT Tests:

* Tests on TMI (low Sn Zirc) and Surry (Zirc) samples
Tests on lower sections of fuel rod

Thermal Analyses:

* Conduct best estimate analyses of other licensed storage
designs

Thermal Tests:
e Conduct thermal benchmark test to obtain maximum cladding
surface temperature data using higher design temperatures/pressures

Transportation NCT:
Plans are underway to conduct a full-scale ENSA ENUP-32P rail

cask with surrogate assemblies to obtain over-the-rail loading
data.
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SUMMARY

B UFD has identified gaps associated with cladding and is pursuing
closing them using an integrated approach

B Average discharge burnups are not as high as originally predicted they
would be

B Further testing will focus on cladding response and performance under
realistic temperatures, hoop stresses, and external stresses

M Indications are that cladding, including for high burnup fuel, will
continue to perform its safety functions during extended storage and
normal conditions of transport
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