

Exceptional service in the national interest

Nanoscale and Quantum Device Manufacturing at Sandia

Clark Highstrete
Manager, Solid State Microsystems Department
chighst@sandia.gov / (505) 284-8702

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

SNL Nanodevice & Microsystem Cornerstones

- National security mission + the national interest
 - Nuclear surety, non-proliferation, WMD detection, sensing, cyber
 - National interest: energy, transportation, industry, S&T innovation, HPC
- Three critical responsibilities
 - Strategically radiation-hardened electronics
 - Trusted systems and computing
 - Advanced nanodevice & microsystem R&D
- Sandia nanodevice & microsystem manufacturing focus
 - Low volume
 - High technology mix
 - High consequence

- Trusted Rad-Hard Microelectronics
 - Trusted foundry - ASICs, HBTs, mixed signal, heterogeneous integration
 - Anti-tamper, counterfeit detection, vulnerability analysis
- Optoelectronics and Photonics of the Future
 - Nano-optomechanics, nanolasers, plasmonics, low-power/high-speed
- Ultraportable Multi-function Sensor Systems
 - Sensitive, selective, rapid, low-power, autonomous, integrated
- Nanoscale and Microscale Enabled Devices
 - MEMs, atomic clocks & magnetometers, ion traps, Si quantum dots
- Beyond Moore Technologies
 - Atomic/quantum transistors, neural-inspired computing, quantum information science

Nano/quantum device manufacturing challenges

- Atomic/nano/quantum phenomena and device physics
- Comprehensive multiscale models and design
 - Wave-function engineering
 - QCAD
 - Nanoscale TCAD
 - Component models
 - Architectures and software
- Materials
 - Purity
 - Reliability
- Fabrication
 - Lithography
 - Chemistry
- Integration
 - Contacts
 - Interconnects
 - Packaging
 - Heterogeneous integration
(e.g. CMOS)

Key: scalability and reliability

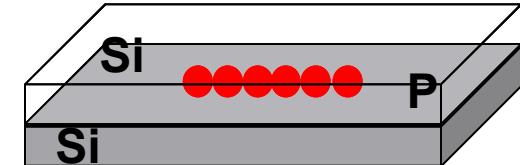
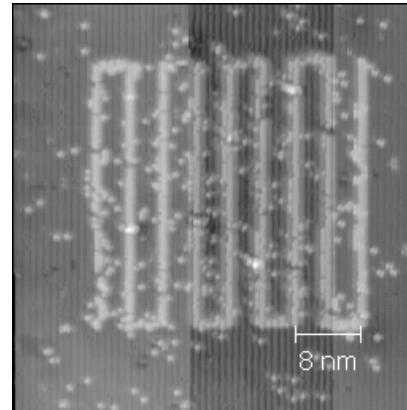
Resources

Facilities

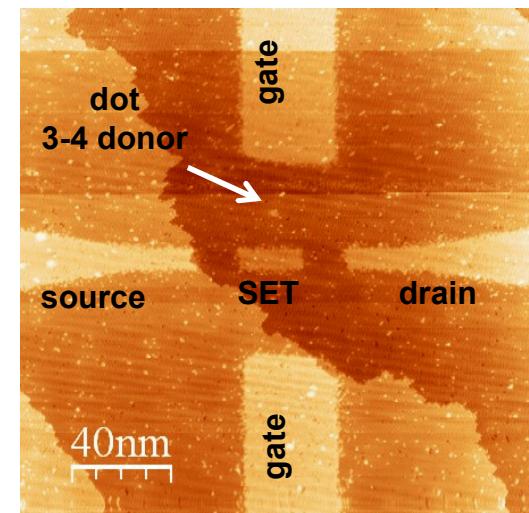
- MESA Silicon Fab
 - CMOS Trusted Foundry, rad hard, MEMS, photonics, heterogeneous, R&D
- MESA MicroFab
 - III-V compound fab, R&D
- Center for Integrated Nanotechnology
 - DOE/OS joint SNL/LANL user facility
- Ion Beam Laboratory
 - Implantation

Technology Centers

- Microsystems Science & Technology
 - nano/microsystem design, fab, test
- Materials Science & Engineering
 - 10 TEM (ACSTEM, I3TEM), 30+ SEM (MSEM)
- Physical, Chemical & Nano Science
 - eSTM, AFMs, ...
- Computing
 - DFT, MD, TCAD, QCAD, Xyce, HPC



Key: integrated comprehensive approach

Exemplar: atomic-scale manufacturing


Atomic-scale silicon fabrication capability

- Scanning tunneling microscope based lithographic tools
- Lithography of hydrogen passivated silicon on single atom scale – removal of H passivation
- Donor dopant incorporation (phosphorus)
- Leverages conventional silicon processing
- Multiscale devices – angstroms to microns

2. Dopant incorporation

- PH_3 bonds to exposed Si groups
- Anneal and epitaxial silicon cap
- P located at Angstrom precision

1. Hydrogen Lithography

- Hydrogen terminated silicon surface
- STM removes hydrogen “resist”
- Example:
 - 1 nm lines
 - 4 nm pitch

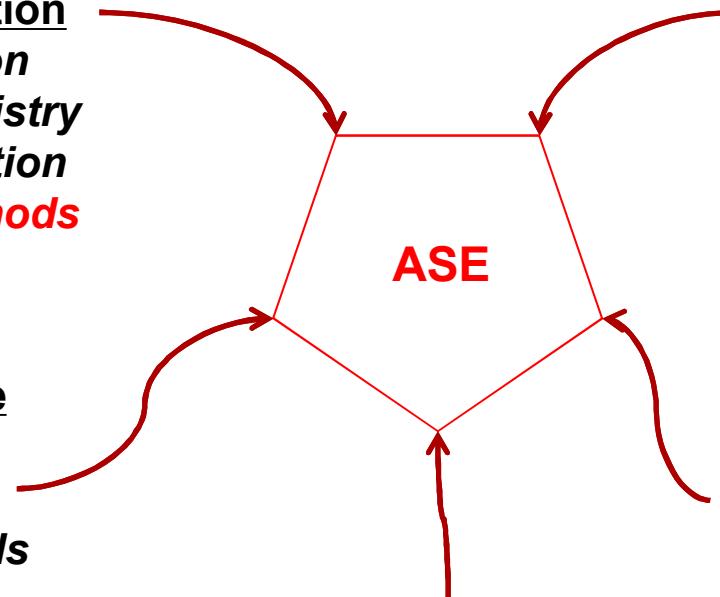
3. Precision device

- Quantum dot coupled to single electron transistor
- High conductivity nanowire leads
- Contacted with conventional silicon via technology

Sandia R&D direction

- 3D integration
 - Atomic scale etching and epitaxy
- Acceptor dopant incorporation (e.g. Boron)
- Extend to other materials (e.g. SiGe)
 - Ge and graphene have been demonstrated in literature
- Surface gate incorporation

Atomic scale engineering approach at Sandia


Atomic Scale Fabrication
Dopant incorporation
Surface science/chemistry
Nanofab/Gate integration
Novel fabrication methods

Materials and Device Characterization
Exotic dielectrics
Atomic-scale materials expertise
Materials characterization
Materials reproducibility, reliability

Quantum Device Modeling
Quantum CAD
Wave-function engineering
Device performance optimization

Measurement
Quantum measurement
Device performance
Reliability, yield, failure analysis
Circuit benchmarking

Architecture and Integration
Reduced circuit models
Architecture development
CMOS integration

Exceptional service in the national interest

Nanoscale and Quantum Device Manufacturing at Sandia

Clark Highstrete
Manager, Solid State Microsystems Department
chighst@sandia.gov / (505) 284-8702

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX