

INNOVATE NEW MEXICO™ TECHNOLOGY SHOWCASE

SAND2016-3818PE

April 26, 2016

INNOVATE NEW MEXICO™
Discover The State of Innovation

Magnetic vortex fluids offer new routes for non-contact mixing and heat transfer

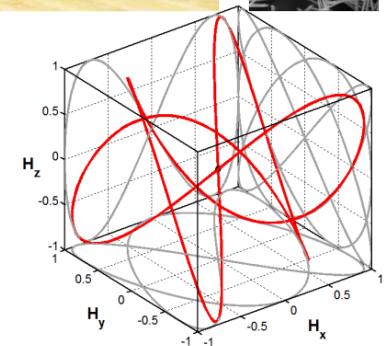
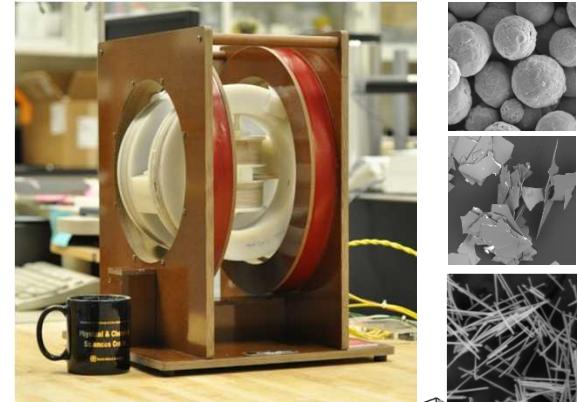
Presented by: Kyle Solis
Sandia National Laboratories
kjsolis@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

RESEARCHERS AND FUNDING

- **James E. Martin**
 - Distinguished Member of Technical Staff
 - Nanoscale Sciences Department
 - Sandia National Laboratories
 - Driven colloids, ER/MR fluids, composite materials, polymers

- **Kyle J. Solis**
 - Senior Member of Technical Staff
 - EM Systems Engineering & Qualification
 - Sandia National Laboratories
 - Applied electromagnetics, complex fluids, surface science



- **Funding**
 - Department of Energy, Office of Basic Energy Sciences, Division of Materials Science
 - SNL Laboratory Directed Research & Development

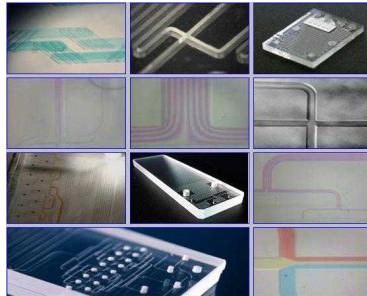
THE INNOVATION

- Create deterministic vorticity in particle suspensions by applying particular multiaxial, time-dependent, uniform magnetic fields (symmetry-breaking, rational triads [2:3:4]).
- A *vortex fluid* is a magnetic particle suspension possessing a *uniform torque density*.
- Implications: strong mixing, active wetting, negative viscosity, biomimetic dynamics & droplet control.

BACKGROUND

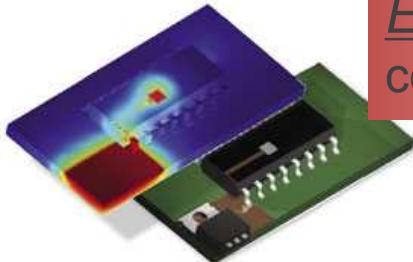
- *Emergent dynamics of driven colloids* is a growing research area.
(Annual CECAM* workshop Lausanne, Switzerland)
- Numerous possibilities by tuning various interactions: van der Waals, surface/interfacial & steric, Coulomb, dipolar, hydrodynamic etc.
- Limitations of conventional methods of moving liquids:
 - *Natural convection* requires **gravity** and a destabilizing **thermal gradient**.
 - *Forced convection* requires **moving parts**: pumps, impellers, valves & seals.
 - *Thermomagnetic convection* requires **thermal gradient** and **large field gradients**.
 - *Magnetohydrodynamics* requires **large currents** and **strong magnetic fields**.

*Centre Européen de Calcul Atomique et Moléculaire



APPLICATION

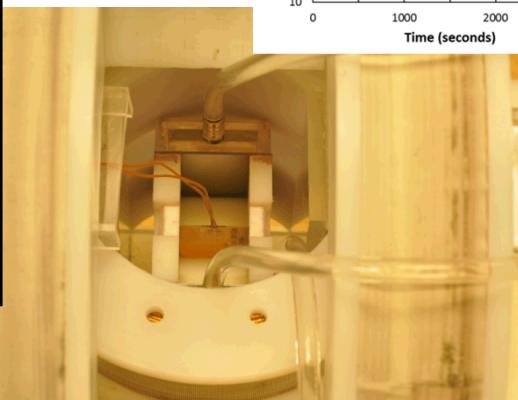
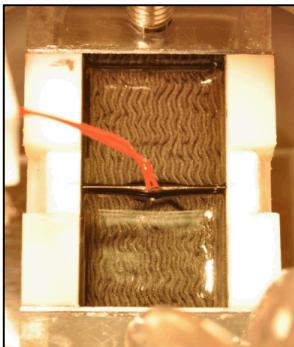
- Vigorous, *non-contact* fluid flow is important for technologies that employ mass/heat transfer.
- Magnetically-based systems offer a number of advantages for controlling transport phenomena:
 - Manipulate magnetic particles (move, orient, and arrange).
 - Magnetic fields easily penetrate most enclosure materials.
 - Easy to generate magnetic fields in practice.
 - Magnetic field of 35Oe has same energy density as electric field of 10kV/cm.
- Vortex fluids entail many benefits:
 - *Scale invariant*: The mixing torque is independent of particle size.
 - *Homogeneous mixing*: Efficient mixing throughout entire volume w/o instabilities.
 - *Adaptive to complex geometries*: Ideal for small, complicated channels/cavities.
 - *Easily-recoverable particles*: No complicated separation processes. Field gradient.
 - *Modest magnetic fields*: Efficient mixing with fields $\sim 0.01\text{T}$.


NEED/MARKET POTENTIAL

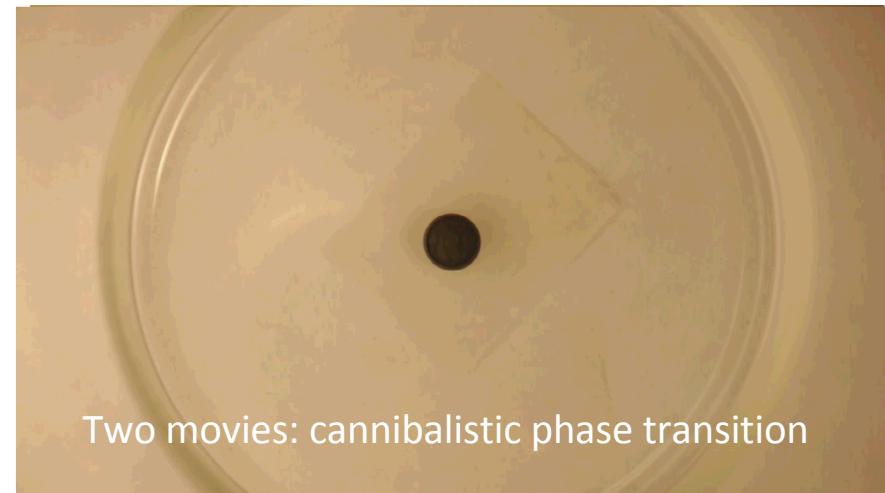
Biotechnology: noncontact control & mixing in microdroplet arrays for bioassays, microfluidic applications.

Aerospace: cooling in microgravity environments

Electronics: liquid-based cooling (no fan noise)



Chemical process industries: Surface-functionalized/heterogeneous particles: biological, catalysis, magnetic fluidized bed reactors.

DATA AND RESULTS


Thermal “valve”

- Resistance thermometry
- 100:1 control range
- Apparent thermal conductivity 18.3W/m·K

Biomimetic dynamics

- Non-equilibrium emergent phenomena
- Controlled dispersal/sequestration
- Controlling droplet transport

CURRENT STATUS

- 15+ publications, 3 cover articles, 1 patent pending, news releases.
- Quantified torque density of magnetic mixing.
- Quantified heat transfer efficiency/capabilities.
- Discovered 2 classes of fields: *symmetry-breaking* and *rational triads*.
- Developed symmetry theories to predict vorticity/mixing behavior.
- Demonstrated multi-axis control through field-symmetry transitions.
- **Remaining engineering challenges of developing application-specific technology.**