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Motivation and Objectives

 Source Physics Experiment 
- Series of chemical explosions at Nevada National
Security Site conducted to advance our ability to 
detect and characterize explosions in a variety of
complex media and different emplacement conditions

 Scientific objectives
- Improve existing explosion models using physics-based
numerical modeling techniques
- Near-field and far-field investigations of explosive signature
and impacts including S-wave generation and damaged zone

 Experiment to date
- Four explosions in the same shot location in granitic 
geology.  Differing yields and depths of emplacement.
- Attempts are made to predict waveforms before each 
shot.  Post-shot comparison with predictions allows for
iterative model improvement
- Next phase of experiment in Yucca Flats, alluvium 
geology
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Methodology: Data Sources and Collection

Well recorded in near and far field

Near field: 
- triaxial accelerometers in azimuthally distributed boreholes 
at 10 m and 20 m distance

Far field:
- Five short-period geophone arrays with 100 m spacing, 
extending out to 2 km
- Accelerometers and rotational sensors at 1 km
- Accelerometers and broadband seismometers at more 
distant locations
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Methodology: Full Waveform Inversion

From Smith et al. SEG 2010
Unstructured Marmousi2
from Martin et al. 2006

Code characteristics:

 Based on Discontinuous Galerkin method (DGM)
 Two or three dimensions
 Various physics available: Acoustic, Elastic, Anelastic, ViscoAnisotropic
 Various receivers available: Pressure, Velocity, Stresses
 Numerical fluxes: Lax-Friedrichs, Steger-Warming, Riemann
 Time integration: 4th order Runge-Kutta
 Allows for unstructured meshes, local polynomial
refinement, inhomogeneous material variation within an
element
 Good material representation of discontinuous material
interfaces at element boundaries
 Modal, nodal, or spectral elements
 Can invert for source or material properties (or both
simultaneously)
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Methodology: Source inversions 

 2D source inversions: fits 1 or 2 velocity components (R, Z or Z only)

 3D source inversions: fits 1 or 3 velocity components  (R, T, Z or Z only)

 Including topography

 Testing four different simple velocity models

 Full waveforms or only direct arrivals

 Peak frequencies of 20Hz

 polynomial order, minimum 2

 Element size 25 m

1 comp.
Acoustic

1 comp.
Elastic

2 comp.
Acoustic

2 comp.
Elastic

3 comp.
Acoustic

3 comp
Elastic

SPE2 ✔ ✔

SPE3 ✔ ✔

SPE4’ ✔ ✔ ✔ ✔ ✔ In progress
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Challenges

 Effects of topography on wave propagation and numerical handling of 

air/ground interface

 Smoothness and simplicity of velocity models 

 Computational expensiveness of three-dimensional modeling

 Complex waveforms: Signals from shear waves, structural reflections, noise, etc. 

not accounted for in model are incorporated into fit for source time function

 Fitting direct arrivals only: trade-off between accurately representing phase and

amplitude of raw data versus having a frequency content that can be well modeled 

numerically
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1. Shallow velocity data based on AWD
surveys along arrays  (“AWD”)

2.  Based on 3D tomography (Leiph Preston, SNL), 
2 km spatial resolution  (“Leiph”)

3. Based on ambient noise (LLNL, Pitarka et al. 2015,
Wagoner, 2014)  (“LLNL”)

4. Simple homogenous half space with granitic
properties (“Granite”)

A B A B

A B A B

Simple velocity models
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Lessons learned: Topography
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Lessons Learned: Complex waveforms and simple velocity models

Fitting direct arrivals only for SPE4prime, Acoustic and Elastic

Fitting full waveforms for SPE4prime, Acoustic, different models

(AWD model)

(Granite model)
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Lessons Learned: Filtering lessons

o1: 1st order
butterworth
filter
o2: 2nd order
butterworth
filter
MF: Mute, then
filter
FMF: filter, mute,
filter again

Comparison of SPE4prime raw data and muted first arrivals 
with different filtering Small differences in input waveforms result in non-zero 

offsets after integration

Station fits are similar for different filtering methods
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Preliminary Results: 2D Elastic and Acoustic results – SPE4prime

Acoustic Elastic

u u

v v

Acoustic pressure (p) Elastic Stresses (σ)   [p=-(1/2) tr(σ)]

σxx σyyp

Above: horizontal and vertical particle velocity profiles
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Preliminary Results – increasing number of components fit
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Preliminary Results – SPE2
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Preliminary Results – SPE3

Source

L1-01

L1-02

L1-03

L1-04

Line 1 velocity profile used for SPE3
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Preliminary Results – SPE5 predictions
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Conclusions and Future Work

 Source inversions using direct arrivals produce possible source time functions 

for SPE2, SPE3, and SPE4prime that can be used as predictors of SPE5 

source time function used for waveform predictions.

 Comparison of predictions and post-SPE5 waveforms will allow for 

improvement of models and methods

 Medium inversions and addition of complexity to velocity model will allow for 

inversions of more complex waveforms, higher frequencies, modeling of the 

damaged zone.
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