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Motivation and Objectives i Sandia
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e Source Physics Experiment
- Series of chemical explosions at Nevada National .
Security Site conducted to advance our ability to N4 ! | g% .‘,5 l
detect and characterize explosions in a variety of ///’ v A
complex media and different emplacement conditions

» Scientific objectives —
- Improve existing explosion models using physics-based &

numerical modeling techniques ,

: . : S : . Nevada National
- Near-field and far-field investigations of explosive signature Security Site
and impacts including S-wave generation and damaged zone

National Nuclear Security A dmfmstrarton

 Experiment to date
- Four explosions in the same shot location in granitic
geology. Differing yields and depths of emplacement.
- Attempts are made to predict waveforms before each
shot. Post-shot comparison with predictions allows for
iterative model improvement
- Next phase of experiment in Yucca Flats, alluvium

geology
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SPE 1
3/3/2011
54.9m

W 87.9 kg

Well recorded in near and far field

Near field:
- triaxial accelerometers in azimuthally distributed boreholes
at 10 m and 20 m distance

Harn
H{i3

" Far field:

-~ Five short-period geophone arrays with 100 m spacing,
extending out to 2 km

{ - Accelerometers and rotational sensors at 1 km

" - Accelerometers and broadband seismometers at more
| distant locations
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Code characteristics:

refinement, inhomogeneous material variation within an
element

interfaces at element boundaries

simultaneously)

Based on Discontinuous Galerkin method (DGM)

Two or three dimensions

Various physics available: Acoustic, Elastic, Anelastic, ViscoAnisotropic
Various receivers available: Pressure, Velocity, Stresses

Numerical fluxes: Lax-Friedrichs, Steger-Warming, Riemann

Time integration: 4" order Runge-Kutta

Allows for unstructured meshes, local polynomial

Good material representation of discontinuous material

Modal, nodal, or spectral elements
Can invert for source or material properties (or both

From Smith et al. SEG 2010
Unstructured Marmousi2
from Martin et al. 2006
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Methodology: Source inversions

1comp. |[1comp. |2comp. [2comp. | 3comp. | 3comp
Acoustic | Elastic Acoustic | Elastic Acoustic | Elastic
SPE2 v v
SPE3 v v
SPE4’ | v v v v v | Mmerogress
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e 2D source inversions: fits 1 or 2 velocity components (R, Z or Z only)

» 3D source inversions: fits 1 or 3 velocity components (R, T, Z or Z only)
* Including topography

» Testing four different simple velocity models

* Full waveforms or only direct arrivals

e Peak frequencies of 20Hz

e polynomial order, minimum 2

e Element size 25 m
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» Effects of topography on wave propagation and numerical handling of

air/ground interface

* Smoothness and simplicity of velocity models

 Computational expensiveness of three-dimensional modeling

 Complex waveforms: Signals from shear waves, structural reflections, noise, etc.
not accounted for in model are incorporated into fit for source time function

» Fitting direct arrivals only: trade-off between accurately representing phase and

amplitude of raw data versus having a frequency content that can be well modeled

numerically
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1. Shallow velocity data based on AWD
surveys along arrays (“AWD”)
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3. Based on ambient noise (LLNL, Pitarka et al. 2015,
Wagoner, 2014) (“LLNL”)
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2. Based on 3D tomography (Leiph Preston, SNL),
2 km spatial resolution (“Leiph”)
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4. Simple homogenous half space with granitic
properties (“Granite”)
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Fitting full

wav

eforms for SPE4

Lessons Learned: Complex waveforms and simple velocity models i

rime, Acoustic, different models
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Lessons Learned: Filtering lessons 7 Santia

Comparison of SPE4prime raw data and muted first arrivals

with different filtering Small differences in input waveforms result in non-zero
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Conclusions and Future Work = Sania

e Source inversions using direct arrivals produce possible source time functions
for SPE2, SPE3, and SPE4prime that can be used as predictors of SPES

source time function used for waveform predictions.

e Comparison of predictions and post-SPE5 waveforms will allow for

improvement of models and methods

e Medium inversions and addition of complexity to velocity model will allow for

inversions of more complex waveforms, higher frequencies, modeling of the

damaged zone.
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