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Optical Detection of ) i,
Radiation Overview

Laboratories
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» Optical radiation imaging correlates UV photons from
lonized nitrogen with radiation dose in air

» This same phenomenon
» Is used in ultrahigh energy cosmic ray astronomy
» Creates the aurora
» And is the source of “Teller Light” from an atmospheric
nuclear detonation

» This effect provides a powerful technique
» For long-range detection far beyond the range of primary
radiation
» And characterizing spatial distribution of radiation dose in air

» Radiation imaging has been demonstrated indoors and
outdoors with charged and neutral particles
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Phenomenology of
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Optical Radiation Detection
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Pierre Auger Observatory

» lonizing radiation interacting with nitrogen generates
excited molecular states.

» These molecules can de-excite through emission of
UV photons at characteristic wavelengths
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Nitrogen Fluorescence Can Be

i Nooua
Source of Auroral Light

Laboratories

Auroral light is caused by

» Collisions between energetic charged particles from the sun

» And gaseous molecules in the Earth’s atmosphere

Aurora colors

» The most common green color is produced by oxygen molecules located at
about 60 miles altitude

» Nitrogen produces blue or purple auroral light
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Gamma rays emitted from
nuclear detonation
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from The Effects of Nuclear
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"’ L 1 | | | | 1 1 1
A LT A - R T LT Y o 1

TIME (SEC)

Calculated time dependence of the gamma-ray energy output

per kiloton energy yield from a hypothetical nuclear explosion.

Dashed line refers to explosion at very high altitude.
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Teller Light Generation from a Nuclear Detonation

Initial gamma ray radiation is

>

>

Unique to a nuclear detonation in the
atmosphere
Creates enormous radiation dose
fields
And can be provide information
about the detonation fissions,
because
» A fraction of the gamma rays are
promptly emitted in the fission
reaction
Gammas generate Compton
scatter electrons which ionize and
excite nitrogen molecules
» Excited nitrogen molecules
fluoresce
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Iptical Detection of Ionizing Radiation

» lonizing radiation is rapidly attenuated in the atmosphere, limiting remote detection.
> lonizing radiation interacting with the air also causes near-UV nitrogen fluorescence.

» UV signal can be remotely observed with UV-optical telescopes to detect radiation

Est. count rate from 100 Ci Co-60 source in 1-m dia.
optical detector and 1-m dia. gamma-ray detector
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Potential Applications ) s,
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» Optical detection of radiation has several key
advantages over conventional detection methods

» Long distance remote detection possible

» Inherently direction sensitive

» Can detect radiation without receiving dose

» Does not require direct line-of-sight to radiation source

» These advantages could enable new capabilities for
nuclear forensics and related missions

» Improve searching speed for radiation dispersal devices

» More rapid collection for post-det. plume or fallout

» Reduce dose to personnel by identifying high radiation regions
» Assist in test ban treaty monitoring with remote surveillance
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Sandia
tical Rad. Detection: Why Now? &=
Recent game-changing improvements in CCD technology
have dramatically improved UV imaging sensitivity
» Back-illumination geometry has enabled UV QEs > 60%

» Improvements in Peltier cooling reduces noise in the field

» Sandia has experience with satellites, optics, atmospheric
transport and broad application perspective
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Optically Detecting Radiation ) e,
from an Alpha Source
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» UV photons were detected far beyond the dosed region

» Radiation range in air could be directly imaged

» UV emission highest where strongest radiations fields expected

» Dose rates, shielding and exposure time all affect radiation imaging

Radiation Field Imaging 500 pCi Po-210 Effect of Shielding and Energy
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" -~ ' Opftical Alpha Radiation )

National

o Laboratories
Detection Outdoors

> Pathfinder system developed to evaluate optical detection possibilities

» Radiation imaged at 500x primary range at night with man-made background

Po-210 Alpha Source Head-On View
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Optical Gamma Radiation
Detection Indoors: Planning and Set-up

Sandia’s Co-60 Gamma Irradiation Facility was identified as a testing site for proposed
gamma radiation imaging
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» Test concept: limit radiation dose to camera using mirrors, multiple scatters, distance and
shielding

» Image around corners to detect radiation fields near Co-60 linear array (223 kCi)
» Detect regions around pin to detect optical emission and dose rates

Test Layout

Predicted Dose Rates (rad/hr)

N

Y Position (m)
o

1
N

|

-4 -2 0 2 4 7)-__'-*- -
///A ' .! D%{ X Position (m) 11
AN 5

lear Security A



Optical Gamma Radiation
Detection Indoors: Analyzed Results

Light emission decays away from linear pin array with distance
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» Overlaid image shows that detected signal is highest between the pins
» Corresponds to longer optical path over which light is emitted
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Optical Gamma Radiation
Detection Outdoors: Set-up
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» Plan: Detect radiation from a low-dose remote location via optical path through ducts into high
radiation region within the cell

» Goal: Demonstrate optical radiation detection for gammas in outdoor conditions

Images of Loc_ation, Source, Mobile Platform
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Optical Gamma Radiation
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Detection Outdoors: Initial Results
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»  Distance: 75 m Background Sburce Up . olig=1o d,k{FiItered
»>  Exposure Time: 1 hour ol .
»  Source Activity: 110 kCi
»  Dose Rate (Cell): >10 krad/hr
»  Dose Rate (Camera): <0.2 mrad/hr
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Overlaid images from GIF with 110 kCi source on
optical emission spectrum of nitrogen fluorescence
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Optical Detection of ) i,
Radiation Overview

Laboratories
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» Optical radiation imaging correlates UV photons from
lonized nitrogen with radiation dose in air

» This same phenomenon
» Is used in ultrahigh energy cosmic ray astronomy
» Creates the aurora
» And is the source of “Teller Light” from an atmospheric
nuclear detonation

» This effect provides a powerful technique
» For long-range detection far beyond the range of primary
radiation
» And characterizing spatial distribution of radiation dose in air

» Radiation imaging has been demonstrated indoors and
outdoors with charged and neutral particles

15
| YA _J g%

NN A’ A4

lear Security A




