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« Adjoint-based error estimates '
* Multi-physics systems

Adjoint-based methods
Error estimation and UQ
Multi-scale and multi-physics
Bayesian inverse problems
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* Error estimation
» Uncertainty quantification
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Scales in the Subsurface
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Typical Reservoir Models

Typical Dimensions
1000ft x 1000ft x 100ft

Approx. 1 million elements

Degrees of freedom 1-40 million
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Areal Scales

Large Reservoir Model
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Multiscale Approaches in Subsurface Modeling

Objective: Incorporate fine scale information into a

coarse scale discretization.

Generalized Finite Elements
o Babuska, Osborn 1983

Heterogeneous Multiscale Methods
o E, Engquist 2003

Multiscale finite elements
o Babuska, Caloz, Osborn 1994
© Hou, Wu 1997
© Hou, Wu, Cai 1999
o Efendiev, Hou, Wu 2000
o Aarnes 2004
o Aarnes, Krogstad, Lie 2006

Multiscale finite volumes
o Jenny, Lee, Tchelepi 2003
o Tchelepi, Jenny, Lee, Wolfsteiner 2007
o Lunati, Jenny 2006, 2008

= Variational multiscale methods
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Hughes 1995

Brezzi 1999
Arbogast 2004
Arbogast, Boyd 2006

= Multiscale mortar methods
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[m]
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Arbogast, Pencheva, Wheeler, Yotov
2007

Girault, Sun, Wheeler, Yotov 2007
Ganis, Yotov 2009

Wheeler, Wildey, Yotov 2010
Tavener, Wildey 2013

= Multiscale domain decomposition
methods
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Aarnes, Hou 2002
Graham, Scheichl 2007
Nordbotten, Bjorstad 2008




What Are Mortar Methods?

Mortar: a workable paste used to bind
construction blocks together and fill the
gaps between them.

-Wikipedia

ICAC1 6, 2016 Int’l Conference on Advances in

Concrete Construction

Dear Colleagues:

We are very happy to announce the “2016 International Conference on Advances in Concrete Construction
(ICAC16)" as a participating conference of ACEM16/Structures16 to be held on August 28 - September 1. 2016, in
Jeju Island. Korea. The congress venue is International Convention Center Jeju (ICC Jeju).
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What Are Mortar Methods?

Mortar: a workable paste used to bind
construction blocks together and fill the
gaps between them.

-Wikipedia

Mortar methods: discretization methods for partial differential
equations, which use interface variables to connect/couple

discretizations on non-overlapping subdomains.
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Multiscale Modeling with Mortar Methods
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M. Balhoff (UT-Austin)

Features of Multiscale Mortar Approach
» Solid mathematical foundation [Arbogast et al 2007]

« Enables different discretizations, physics, and/or numerical methods
[Pencheva et al 2013, Girault et al 2008, Tavener, W. 2013]

« Easily incorporates non-PDE based models [Balhoff, Wheeler 2008]

* No upscaling/homogenization of parameters [Peszyriska et al 2002]

* Provides a concurrent multi-scale formulation

» Hierarchical structure easily extended to finer or coarser levels

» Related to hybridizable discontinuous Galerkin

» Provides new opportunities for V&V/UQ/optimization

« Straightforward to define continuous/discrete adjoints [Tavener, W. 2013]
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Domain Decomposition and Multiscale
Mortar Methods




Mixed Formulation

Model for flow in porous media:

u=—KVp, (Darcy’s Law)

V-u=f, (Conservation of Mass)

over {2 with p = g on 0f).

Weak formulation: Find u € H(div, ) and p € L*(Q) such that

(K~ 'u,v) = (0, V) = — (9,0 - 1) o
(Vu,w) :(faw)

for all v € H(div,) and w € L?(Q).

Laboratories



Model Domain Decomposition Problem

Domain Decomposition: P nonoverlapping subdomains,

Interfaces: I'; ; = 0€; N 0Q; with I' = J, ;< p I'i ;. Introduce A € L*(T').

Weak Formulation: On each subdomain,

(K = "’) — 0,V v)g, + AV -n)soar =— (9,0 n>GQ¢\F
(V-u,w)q, = (f,w)g,

Interface Conditions: Define [u];; = u; - n; — u; - n;:

>, g e LAy

1<i<j<P

Laboratories



Multiscale Mortar Mixed Finite Element Method

Define a partition of each subdomain.

Let V}; C H(div,Q;) and W), ; C L?(€;) be

mixed finite element spaces.

Define a coarse partition of each I'; ;.

Let My C L*(T") be space of
(dis)continuous polynomials.

MSMMPFEM: Find Up,; € Vh,i, Ph,i € Wh,i and
Ay € My such that weak formulation is satisfied
forall v e Vi, we Wy, and p € Mp.

Laboratories



Multiscale Mortar Mixed Finite Element Method

A priori error estimate for pressure:

P

Ip—pull < C ) _(Iplleoch® + pllssr/2.0,H T2 + |V - ulli0,h H
1=1

H + ||u|| g1 /20" H?)

A priort error estimate for velocity:
P
o = wnl) < O (el + Upllagr sz, HO T2+l o, 7 HY?)
i=1
Optimal convergence can be maintained by choosing H = O(hP).

For example, with lowest order RT'N mixed FEM and quadratic mortars
we take H ~ h?/5.

Laboratories



The Interface Operator

Since the subdomain problems are independent, we can reduce
the problem down to a coarse-scale interface problem.

In the case of two subdomains, the global discrete problem has the form:

Al 0 Bl 21 ll
0 A2 BQ 29| = l2
BT BT 0] |A 0

where A;, z; and [; are the matrix, solution and source term
corresponding to 2;.

Clearly a compatibility condition is required to guarantee a unique solution.

Reduction to an interface problem: SA = q.

BBl g8, — BE ANJBE g — S5 AT

Laboratories
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Applications




Slightly Compressible Flow with Transport

Conservation of mass and Darcy’s law:

0
u = —gK(Vp — pgVD),

where p is density, u is viscosity and ¢ is porosity.
Equation of state: p = prefe_c(p_pfef).

Model for reactive transport,

@—I—V'(CU—DVC)ZQC.
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Numerical Results: Heterogeneous Permeability

. 24 ft x 400ft x 400ft
. Grid sizes
. 2ft x 12.5ft x 12.5ft (12x16x16)
. 3ft x 16.6ft x 16.6ft (8x12x12)
. 3ft x 16.6ft x 16.6ft (8x12x12)
. 4ft x 25ft x 25t (6x8x8)
. Injection pressure: increase linearly
. 505 [psi] (initially)
. 1000 [psi] (50 days)
. Production pressure: decrease linearly
. 480 [psi] (initially)
. 350 [psi] (30 days)
. One species, initial concentrations:
. 100 [M/cu-ft] in first grid cell
. 0 everywhere else
. Continuous linear mortars
. High order Godunov for advection
. Van Leer slope limiting with parameter 0.85
. Molecular diffusivity: 1.0 [sq ft / day]
. Physical (Diffusion)-Dispersion:
. Longitudinal: 1.0 [ft]
. Transverse: 0.2 [ft]

TCOFX

=1 1013.89
= 781.83
| 549.765

317.7
85.635




Numerical Results: Heterogeneous Permeability
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Two Phase Immiscible Slightly
Compressible Flow

Mass conservation and Darcy’s law:

0 ko K
E@Sapa) + V- Uy =¢qa, Uy =— ,Oa(Vpa = pag)
Mo
Equation of state:
_ref co(pa—p) ¢ | porosity
e e € S, | saturation
Po | density

Physical constraints:
o | source term

k. | relative permeability

So+ 8w =1, pc(Sw)=Do— Pu- . :
e | VISCOSItY

Equations can be solved using either IMPES or fully implicit.

Sandia
Nationa
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Implicit Pressure — Explicit
Saturation (IMPES) Formulation

Following [Hoteit, Fizoozabado, 2008/, define mobilities,

ko
Na(Sw) = n = =E o

(0%

Define a primary and capillary velocity,
g =~ K (Vpy — pug), e = —16K(Vpe — (po — puw)g)
Solve an implicit (elliptic) equation for primary velocity:

V'UGZQt—Fqc—V'UC

Solve an explicit equation for saturation:

0 w
a(gbsw) i (n_ua> — Quw-

Tt

Laboratories



Example: Water Flood

Compare multiscale mortar solution with fine scale solution.

Fine scale: 180x180 = 32,400 fine scale degrees of freedom

Coarse scale: 4x4 quadratic mortars = 456 degrees of freedom on coarse scale
Channelized permeability.

Inject at one end, produce at the other.

Neglect gravity.

100 saturation time steps per pressure time step

4000
3000
2000
1000

Fine scale permeability

B A
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Fine Scale and Multiscale Velocities

x-velocity from multiscale solution:




Fine Scale and Multiscale Velocities

N - 2
~ st - D

4)" - - ' 0

- i

y-velocity from fine scale solution:
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Fine Scale and Multiscale Saturations




Fully Implicit Formulation

Mass conservation and Darcy’s law:

o koK
a(¢sapa)+v'ua:%x7 Uy — — pa(VPa_pag)

(0%

On subdomains, solve for a pressure, p,,, and a concentration, N, = p,S,.

Interface variables: A1 = p,, and Ay = N,,.

Interface conditions: [u,] =0

Interface Jacobian has block structure:

0 oy (B %
—F(A) 3 Bui 3ui
O O OAo

We use a finite difference method to approximate Jacobian. y

P Sandia
National
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Numerical Results: Two Phase Flow

20 [ft] x 100 [ft] x 200 [ft]
Second grid (finer)
. 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)
. 1 [ft] x 5 [ft] x 5 [ft] (20x20x20)
Layered permeability
Initial pressure: 500 [psi]
Initial water saturation: 0.22
Injection pressure: 505 [psi]

Production pressure: 495 [psi] 5P0?3|L19
Includes gravity and capillary pressure :
Discontinuous constant mortars '503.30

498.41

'493.52

488.63

india
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Numerical Results: Two Phase Flow

SWAT
0.78146

0.64160

0.50173

0.36187

0.22201

Finer Grid Avg. Interface Time Per Newton Multiscale Precond. Total Time
Iterations Step (min) Assembly Time (min)

No Precond. 157.7 7.86
Multiscale Precond. 7.2 0.41

Laboratories



Mortar Coupling for Elasticity and
Poroelasticity




Domain Decomposition

i
I'nv :
|
|
|
(12 :
- 12 Al | 7
Pl [
. ’ .
2 .~ | Reservoir
/,,
'/
I'p
(21 | Reservoir (pay-zone)
(25 | Nonpay-zone
Q| QUQ
I'15 | Interface between €27 and (25
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Pay-zone Model: Poroelasticity

* Equation for Cauchy stress tensor: o = o — apl

u | displacement
p | fluid pressure
o(u) = )\(dlv w)l 4 2pe(u) | effective stress tensor
e(u) = 5 (Vu+ (Vu)?) | strain tensor
I | identity tensor
A >0, u >0 | Lame coefficients
a > 0, | Biot-Willis constant

* Balance of linear momentum: {/ . & — fl

K
e Darcy’s Law: v = _M_f (Vp — Pfg)

vy | fluid flux
K | permeability tensor (SPD)
pr >0, pr >0 | fluid viscocity and density
g | gravitational force &

‘ Sandia
National
Laboratories

* Mass conservation: \/ - Vi q



Nonpay-zone Model and Interface Conditions

* Linear elastic model in nonpay-zone: V. -o = f2

f2 | body force in 2
u = 0 | Displacement on I'p
o(u)ng =ty | Traction on I'y

* Define the jump and average along interface
[U] = (0’91 o U‘QQ) |F12
1
{U} o 5 (U‘Ql T 0‘92) ‘F12

* Prescribe the following transmission conditions:

lu] = 0 | continuity of the medium
lo(u)] n12 = apmnys | continuity of normal stresses
——% (Vp—prg) -m12 =0 | no flow on the interface

S £
Nationa
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Variational Formulation

Find w € H} () and p € H'(21) such that

/Qa(u) . €(v) dw—a/glpdivvda::

/Qf-vdm%—/FNtN(s)-v(s) ds

K
/ —Vp Vﬁdaz—/ q 0 dx + —prg - VO dx
Q1 Ql Ql lu‘f

for all v € H} () and § € HY(y).

A unique solution exists under regularity assumptions.

Sandia
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DG with Lagrange Multipliers

Introduce the Lagrange multiplier A on I';5.
Elasticity and poroelasticity equations become:

9
Z/Q o(u;) : €(v;) da _/Q ap V - v1 dx+ €<—— Usual interior terms
e :

integration by parts

Z/ A+2u u; — A) 'vzds+2/ (uw; — A) ds +
'z z

I'i2

Z / - v; ds +/ S (o 0 s Interface terms from
12 M2

2
DG_terms/ :Z/ fi'vidw+/ tn - v; ds

on interface

Usual source

terms ,
/ Laboratories



DG with Lagrange Multipliers

Interface equation:

; B /Flg()\ & QM)Z_z(uz - A) U iy /1"‘12[0-(11’)] o Oép)le a2 ds

Pressure equation:

K K
/ —Vp-VHd:cz/ q 0 dx + —prg - VO dx
Ql 'LLf Ql Ql lu’f




Discretizations

Th.i,©=1,2 | two independent regular triangulations of size h;
['y | triangulation of I'y5 of size H
uy € Xy ; | continuous in §2; and {25, piecewise IP’;CZ, o> 1
pn € Mp 1 | continuous in §2;, piecewise PPp,, m > 1
"1 € Ag | continuous in I'y5, piecewise IP’?, 1




Error Estimates

Theorem

Assume the triangulations are regular in the sense of Ciarlet
and satisfy a quasi-uniformity assumption along the interface’.
Then there exists a constant C' > 0 independent of hq, ho and H
such that

E,+E.+Ef_+Ep <

- o H H 3
C h?( w—1) + hg( uw—1) 4 = 4 = H2m2 1
h1 ho

where Tu = mm(k + ]-7 S’u,)a T'p = mm(’m + ]‘7 Sp>7
T\ = mln(l + ]-7 Su — 1/2)

I For details, see Girault et al, M3AS, 2011.
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Mandel’s Problem

2FV

b

* Infinite domain subjected to a loading of 2F from above and below
*  Symmetry allows domain to be reduced to 2D upper right quadrant
e Analytical solution for pressure and displacements1

e Solution demonstrates the Mandel-Creyer effect.

T Mandel 1953, Abouslieman et al 1996




Extension of Mandel’s Problem

th:—F/a

a | 1
u, = 04 w, = hq E | 1x10*
y L1 / K | 100
e F | 2000
bR e e e e At | 1 x107®
u, = 0
* Extend Mandel’s problem to include an elastic domain
o
urwlonpay — ugay ymonpay _ o pay _ —b
* Piecewise linear finite elements and continuous linear mortars with H = h




Extension of Mandel’s Problem

Total Degrees of Error in Energy Predicted Rate Observed Rate
Freedom Norm
1,197 1.07E-2
4,387 4.91E-3 1 1.09
16,767 2.34E-3 1 1.05
65,527 1.14E-3 1 1.03
259,047 5.65E-4 1 1.01
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Goal Oriented Error Estimates




Goal Oriented Error Estimation

Our goal is often to compute a small number of quantities of interest

from a simulation.

Understanding the error and sensitivity of a Qol is critical.

Adjoint-based methods can provide both!

1.256-01 [

1.20E-01 |

Qol: Kinetic Energy

1.156-01 |

Qol

1.10E01 |

1.05E-01 |

* * ﬁ.\:\’
#Drekar Qol: K.E.

—Exact Qol: K.E.
®Drekar Qol: K.E. + Adj. Err. Est.

1.00E-01 ©
1.E-02

Adjoint Solution for resistive MHD (Drekar::CFD)

1.E-01 1.E+00
h=Lly /Ny

Can we estimate the error in a Qol from a ms-mortar simulation?
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Model Problem

For simplicity, we consider the model elliptic problem,
—V - (KVp)=f, x€Q
p=gp, x €I

where K is a sym., bdd. and uniformly positive definite, and
f and gp are sufficiently smooth.
Domain Decomposition: (2 = Ule Whge 10 5 = GKs 11 00

Let V; and M denote appropriate Hilbert spaces.

LetAZ‘ZWXW—)R,B@'ZMXW—)R,CZ'ZWXM—)R,aDd
D, : M x M — R be appropriate continuous bilinear forms.

Variational formulation: seek z;, € V; and A € M such that
.A@'(Zi,w,i):l'( )—BZ()\,’UJ@), Valee V,; Kai 0. . ., P

Mw

i(Zis ) + Di(A, ) =0, VueM

1:1 / '




Adjoint Problem

The continuous adjoint problem is given by

-V - (KV¢p)=1vy, x€
»=0, x€odf)

where 1) is chosen based on the quantity of interest.

Let A7: V; xV;, >R, B : Vi xM =R, C’: M xV; =R, and
Df : M x M — R be appropriate continuous adjoint bilinear forms.

Adjoint variational formulation: seek ¢; € V; and n € M such that

A;,k(z%wz) 5 ]Z(w’b) {1 C:()‘awz)a Vw; € ‘/ia 1=1,... 7P7
P
(Bi (¢s, 1) + Di(n, b)) =0, Vyue M.

L /

Sandia
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Adjoint-based Error Estimate

Let zp; € Vi C Vi and Ay € My C M be discrete approximations
and let I, ; : V; — V;,; and Qg : M — My be projection operators.

Define e, ; = z; — zp; and ex = A — Ag.

The error in a linear functional of the solution satisfies,

N

N
Z]z(ez,z) = Z (gsub,i + gmort,z') )
=1

i=1
where
Goubye — o= I}, ; dy) —AlEm iy — TIRS ONESEAG ERO S )
represents the subdomain discretization error, and
Emort,i = —Ci(Zn,i,n — Qun) — Di(Au,n — Qun),

represents the contribution to the mortar discretization error. Natoral




Example: Multiscale and Multinumerics

Let 2 = (0,1) x (0,1) with
K(x,y) = (1+ 0.8sin(4mx) cos(3my))L.
We choose f and gp such that

p(x,y) = 10x(1 — 2)y(1 — y) exp(sin(37x) sin(37y)).

FATARY TR AN
ARYAAGNRY % ARTATANY,
FATARYIOE FTARTIL
ARYTIARNY FAAAYTTAY,
FATATAATATAY L) ATATAY AT AN
ARRYTAGY FARAAYATYLY.
}§JV\I‘ }'u‘[‘ .1‘\

XAV W Ky
s i DG CG CG DG

CG | MIXED | MIXED | CG
L
CG MIXED | MIXED | CG
v FA¥ 4% FATAY,

ARYTAGNRY RRNAYY
FATARTIL T TRV,

YN, AN AT

ALY A¥L ¥

ALY A i
LT i -
TN TATATE RATATAYATAN DG CG CG DG P > 3
ARNRYIIANNY FAARATATATY B
AT AT AT T AV ATAT L KT
AT Py Py &

Subdomain numerical methods S

Domain decomposition / Laboratores




Example: Multiscale and Multinumerics

Qofl Esub (. True Error | Effectivity
1 -1.4960E-3 | -4.1564E-4 | -1.9166E-3 0.997
2 8.3416E-4 | 1.4993E-6 | 8.5018E-4 0.983
3 7.4364E-4 | 4.1535E-4 | 1.2002E-3 0.966

Table 1: Error estimates and effectivity ratios using three different quantities
of interest using multinumerics.

Sandia
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Example: Mortar Adaptivity

Consider layer 75 of SPE10 permeability field.
Decompose €2 = (0,1200) x (0,2200) into 55 subdomains (5 x 11)
Subdomains with wells are refined up to well-bore and use DG (SIPG

Remaining subdomains discretized using mixed methy -
Laboratories




Example: Mortar Adaptivity

Forward solution Adjoint solution. Qofl is the average
pressure at the production well.




Example: Mortar Adaptivity

—8— Jniform |
—®— Adaptive |

Mortar Error
o

10 ' '
0 500 1000 1500

Mortar Deqgrees of Freedom

We fix the subdomain meshes and refine mortars until mortar error is

comparable to subdomain error.
National
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Current and Future Directions




Predict/Control Performance of Additive Manufacturing of Materials
and Components with Quantified Uncertainty

AM Process Modeling

Process direction

Powder Melting point
Laser beam Applied matesial

Inert/ carrier gas Application zone

Wiorkpiece

*or LENS
24W Xt

38w el
077 Paratet Hizch —

(Edge & Camar) e

- _wrought
R
stress
03 Greater
initial yield

02 stress Less elongation

strain

Component performance
assessment
- J. Carroll (SNL)

Optimization
Under
Uncertainty

Material characterization
with quantified uncertainty
- J. Michael and D. Adams (SNL)




Multiscale Modeling for Materials

Previous work:

e Small number of subdomains: O(10)
e Many DOFs per subdomain/mortar: O(10%)

e Iterative DD methods applicable

Current work:

e Large number of subdomains: O(10°)

e Few DOFs per mortar: O(10)

e Iterative DD methods NOT applicable

L]




Relationship to Hybridizable DG Methods

At this extreme, we are very close to
another method

Hybridizable DG methods are
conceptually very similar

HDG methods have grown in
popularity in recent years

DOF for Global Probler

2.5

x10" Comparison on 3D NxNxN Mesk

——CG
——DG
| | —@— Hybrid

0 5 10 15

Polynomial Degre

Current work to show HDG is special case of multiscale mortar methods

(with Tan Bui - UT Austin)

/ ’
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Multilevel Solvers for Hybridized
Formulations




Hybridization of Mixed Methods

Introduce Lagrange multipliers on
the element boundaries:

M B (C u g
BT 0 o0 p|=|-f
cCt 0 0 A 0

.....

'''''''

O | Pressure degree of freedom
<~ Velocity degree of freedom L
8 | Lagrange multiplier dof . T‘:;:_L____'f:’?: 2% 5

Sandia
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Hybridization of Mixed Methods

#8 | Lagrange multiplier dof

Reduce to Schur complement for
Lagrange multipliers:

Al=g

Sandia
National
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Defining Coarse Grid Operators

Mixed

DG

Mixed

Another
method

Introduce interface\

Lagrange multipliers.

Compute local DtN maps

Al

How to upscale?

ay (A, )

a3(>‘7 :u)

as (A, 1)

ag (N, 1)

Ac ((27 1)

o

Use these to form
coarse grid DtN map?

. &
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A Multigrid Algorithm

Define a sequence of partitions
7—177'27“'77']\7 :7'h7
where each element Ej ; € Ti consists of a union of fine grid elements.

To prove convergence, we need to assume each Ej ; is sufficiently regular to
allow H3/2te regularity.

Assume there exists constants 0 < ¢ < C such that
chy < hg_1 <Chg, 1<k<N.

Define interface grids

GisEmered & — "G

with the corresponding nonnested Lagrange multiplier spaces,

P Sandia
National
Laboratories
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A Multigrid Algorithm

Decompose each My = My 1 & My, p.

%%% /_I\ )
\/9%* D V-

Interlor Boundary

Note that My_1 C My g for 2 <k < N.

Define a sequence of symmetric positive definite bilinear forms and energy
norms,

ap(,) s My x My = R, |llplll§ = ax(p,p), 1<k<N,
We associate with ag(-,-) an operator Ay : My — My, satisfying for any A € Mg,

<Ak:)\7:u>k 7 CLk()\,/L), \V/,LL € My.
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A Multigrid Algorithm

Given My, = My 1 © My, B, the operator Ay can be written as,

T (Ak,II Ak,[B)
Ax.Br Ak.BB

The intergrid transfer operators I : My_1 — M), are defined by

ja (_A];j[Ak:,IBJk>
B 7
k

where Jy, : M1 — My, p is the natural injection.

Each ag(-,-) is constructed such that the variational equality and norm equiva-
lence

ap—1(A 1) = ap(LeA, ), ||[Ae=1 = 1 eAlllk,
hold for all A\, u € My_+.
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A Multigrid Algorithm

On M; we define By = Al_l.

On level k, 2 < k < N, assume Bj_1 is defined.

Define Bjg as follows:

Initialization

Presmoothing

Local Correction
Coarse Grid Correction
Local Correction
Postsmoothing

Final result

B0 T G (i)

2@ — 21 4 T, (g — AgzD),

23 =22 + [ By 1Qp—1 (9 — Az,
R (St i e ot

20 = g 4+ Gy (g — At .
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A Multigrid Algorithm

If all of the above assumptions are satisfied and if the number
of smoothing steps on each level satisty

Bomp < mp_1 < Bime,

for some 1 < By < (1, then there exists 0 < § < 1 independent
of h such that,

an(({ — BNAN)p, ) < dan(p, 1), V€ Mny.
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Laplace Equation — Multinumerics

Model | Laplace equation

Domain (O, 1) X (O, ].) FAVAAYAVAYAY
Method | DG-NIPG; (Yellow) v
Method | Mixed-RT; (Pink) XX

Mesh | Triangles
True solution | p = :cye""zys
Tolerance | 1 x 107°

— EERRRW,
EEESEEESEE EREERE]
§33mmnae) ERERRES
»g\}g ‘; ;Jl§§
ST BRERRE
e BREEEE
RFRRERRRARL SEEERE
BEPRE B HBEESER
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Laplace Equation — Multinumerics

Model | Laplace equation

Domain (O, 1) X (O, ].) FAVAAYAVAYAY
Method | DG-NIPG; (Yellow) i
Method | Mixed-RT; (Pink) XX

Mesh | Triangles
True solution | p = xye""’zy3
Tolerance | 1 x 107°

Levels V-cycles MG Factor

3 224 8
4 960 8
5 3968 8
6 16128 8




Poisson Equation — Unstructured Mesh

Model
Permeability
Method
Tolerance

Degrees of freedom
Levels

V-cycles
Convergence rate

PCG Iters

Poisson equation
5.5esin(27ra:)
Mixed RT,

1 x 1076

11492
5!

29
0.51
11

AYa¥a

<:r
>
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Single Phase Flow with Heterogeneities
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Model
Domai

Method | Mixed RT

Mesh | Quadrilaterals

ity | Layer 75 from SPE10

Permeabil

Tolerance

Degrees of freedom | 52240

Levels
V-cycles

Convergence rate
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Conclusions




Conclusions

* Multiscale mortar methods provide a flexible modeling
framework with a solid mathematical foundation

* Avoids the need to upscale model parameters
* Applicable to multiphysics and multinumerics
* Related to non-overlapping domain decomposition and HDG

* Variational framework well-suited for
—Goal-oriented error estimates
— Optimization
—Embedded UQ

* New opportunities for modeling and simulation




Thank you for your attention!
Questions?




