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•  Adjoint-based error estimates 
•  Multi-physics systems 

•  Multi-scale methods 
•  Error estimation 
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•  Adjoint-based methods 
•  Error estimation and UQ 
•  Multi-scale and multi-physics 
•  Bayesian inverse problems 
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Scales in the Subsurface  

4 Courtesy of D. Zhang (LANL) 



Typical Dimensions 
•   1000ft x 1000ft x 100ft 

•   Approx. 1 million elements 

•   Degrees of freedom 1-40 million 

Typical Reservoir Models  



Vertical Scales 

100ft 

2500-10000ft 

Reservoir or saline 
aquifer 

Caprock 



Areal Scales 

Courtesy of Midwest Geological Consortium 

Large	Reservoir	Model	



Multiscale  Approaches in Subsurface Modeling 

§  Generalized	Finite	Elements	
ú  Babuska,	Osborn	1983	

§  Heterogeneous	Mul>scale	Methods	
ú  E,	Engquist	2003	

§  Mul>scale	finite	elements	
ú  Babuska,	Caloz,	Osborn	1994	
ú  Hou,	Wu	1997	
ú  Hou,	Wu,	Cai	1999	
ú  Efendiev,	Hou,	Wu	2000	
ú  Aarnes	2004	
ú  Aarnes,	Krogstad,	Lie	2006	

§  Mul>scale	finite	volumes	
ú  Jenny,	Lee,	Tchelepi	2003	
ú  Tchelepi,	Jenny,	Lee,	Wolfsteiner	2007	
ú  Luna>,	Jenny	2006,	2008	

§  Varia>onal	mul>scale	methods	
ú  Hughes	1995	
ú  Brezzi	1999	
ú  Arbogast	2004	
ú  Arbogast,	Boyd	2006	

§ Mul>scale	mortar	methods	
ú  Arbogast,	Pencheva,	Wheeler,	Yotov	
2007	

ú  Girault,	Sun,	Wheeler,	Yotov	2007	
ú  Ganis,	Yotov	2009	
ú  Wheeler,	Wildey,	Yotov	2010	
ú  Tavener,	Wildey	2013	

§  Mul>scale	domain	decomposi>on	
methods	
ú  Aarnes,	Hou	2002	
ú  Graham,	Scheichl	2007	
ú  NordboYen,	Bjorstad	2008	

8	

Objec>ve:		Incorporate	fine	scale	informa>on	into	a						 			
								coarse	scale	discre>za>on.	



What Are Mortar Methods? 

Mortar:	a	workable	paste	used	to	bind	
construc)on	blocks	together	and	fill	the	
gaps	between	them.	

-Wikipedia	

	



What Are Mortar Methods? 

Mortar:	a	workable	paste	used	to	bind	
construc)on	blocks	together	and	fill	the	
gaps	between	them.	

-Wikipedia	

	
Mortar	methods:	discre)za)on	methods	for	par)al	differen)al	
equa)ons,	which	use	interface	variables	to	connect/couple	
discre)za)ons	on	non-overlapping	subdomains.	
	



Multiscale Modeling with Mortar Methods 

The error at the pore-scale cannot be eliminated, and in fact,
there is no guarantee that the error defined in Eq. 7 will be
reduced by using finer mortar grids or higher-order basis
functions (the 8×8 quadratic result is actually higher than
some of the other errors) because the method is unable to
capture large fluctuations in pressure at the pore scale. For
example, consider two boundary pores at positions
x= 0.269, y = 0.294 and x= 0.272, y= 0.304, which nearly
coincide. For 4×4 quadratic mortars, the pore pressures are
found to be P= 0.206 and P= 0.207, respectively, which are
very close, as expected. However, the actual solution is
P= 0.198 and P= 0.210, respectively, which is a large
fluctuation for two adjacent pores. Regardless of the
discretization, the mortar is not intended to capture
heterogeneity at this scale.

Furthermore, it should be noted that extremely fine grids
on the mortars can actually lead to less accuracy at the
pore-scale for applications (such as the one here) where the
subdomains are discrete and have a finite number of pores.
In the extreme case, mortars can be chosen so fine that
some elements contain no pores and the system of
equations becomes singular. More generally, certain ele-
ments may contain a very small number of pores;
attempting to match pressures and fluxes across that
element may not be practical and can result in heterogeneity

in the pressure solution that is not associated with the
physics.

4 Results/discussion

4.1 Coupling different pore-scale models

Figure 7 shows four different pore-scale models coupled in
a 2×2 block pattern. The statistics of the blocks are given in
Table 3; block 1 is a computer-generated sphere packing
with 1,000 uniform spheres; block 2 is a computer-
generated sphere packing with 10,000 uniform spheres;
block 3 is a sandstone with 2,487 grains taken from the
Wall Creek Member of the Cretaceous Frontier Formation,
WY, USA [11, 23]; and block 4 is a sphere-packing with
10,000 spheres with a size distribution and a spatial
correlation. A 1D pressure gradient is imposed on the
porous media by imposing a constant pressure on each
boundary (P= 0.3 and P= 0.1 Pa) and no-flow boundaries
on the other four boundaries. The exterior boundary
conditions are obviously artificial; in reality, they would
be determined from additional coupling to other models.
The pore-scale models are coupled at each interface using
mortar spaces with 4×4 grids and quadratic basis functions.

Fig. 7 Schematic of four different pore-scale models arranged in a 2×2 block pattern that are coupled using mortars

Comput Geosci (2008) 12:15–27 23

M. Balhoff (UT-Austin) 

Features of Multiscale Mortar Approach 
•  Solid mathematical foundation [Arbogast et al 2007] 
•  Enables different discretizations, physics, and/or numerical methods 

[Pencheva et al 2013, Girault et al 2008, Tavener, W. 2013] 
•  Easily incorporates non-PDE based models [Balhoff, Wheeler 2008] 
•  No upscaling/homogenization of parameters [Peszyńska et al 2002] 
•  Provides a concurrent multi-scale formulation 
•  Hierarchical structure easily extended to finer or coarser levels 
•  Related to hybridizable discontinuous Galerkin 
•  Provides new opportunities for V&V/UQ/optimization  
•  Straightforward to define continuous/discrete adjoints [Tavener, W. 2013] 



Domain Decomposition and Multiscale  
Mortar Methods 

12 



Mixed Formulation  

13 

Model for flow in porous media:

u = �K⇥p, (Darcy’s Law)

⇥ · u = f, (Conservation of Mass)

over � with p = g on ��.

Weak formulation: Find u ⇥ H(div,�) and p ⇥ L2(�) such that

�
K�1u,v

�
� (p,⇧ · v) =� ⇤g,v · n⌅@�
(⇧ · u, w) = (f, w)

for all v ⇥ H(div,�) and w ⇥ L2(�).



Model Domain Decomposition Problem  

14 

Domain Decomposition: P nonoverlapping subdomains,

� =
P[

i=1

�i.

Weak Formulation: On each subdomain,

�
K�1u,v

�
⇥i

� (p,⌅ · v)⇥i
+ ⇥�,v · n⇤@⇥i⇥� =� ⇥g,v · n⇤@⇥i\�

(⌅ · u, w)⇥i
=(f, w)⇥i

Interfaces: �i,j = @⇥i \ @⇥j with � =
S

1i<jP �i,j . Introduce � 2 L2
(�).

Interface Conditions: Define [u]ij = ui · ni � uj · ni:

X

1i<jP

h[u]ij , µi�i,j
, µ 2 L2(�).



Multiscale Mortar Mixed Finite Element Method  

15 

Define a coarse partition of each �i,j .

MSMMFEM: Find uh,i 2 Vh,i, ph,i 2 Wh,i and

�H 2 MH such that weak formulation is satisfied

for all v 2 Vh,i, w 2 Wh,i and µ 2 MH .

Let Vh,i ⇢ H(div,�i) and Wh,i ⇢ L2(�i) be
mixed finite element spaces.

Let MH ⇢ L2(�) be space of
(dis)continuous polynomials.

Define a partition of each subdomain.



Multiscale Mortar Mixed Finite Element Method  

16 

A priori error estimate for pressure:

⇤p� ph⇤ ⇥ C

PX

i=1

�
⇤p⇤t,�ih

t
+ ⇤p⇤s+1/2,�i

Hs+1/2
+ ⇤⌅ · u⇤t,�ih

tH+

⇤u⇤r,�ih
rH + ⇤u⇤r+1/2h

rH3/2
�

A priori error estimate for velocity:

ku � uhk  C

PX

i=1

�
kukr,�ih

r
+ kpks+1/2,�i

Hs�1/2
+ kukr+1/2,�i

hrH1/2
�

Optimal convergence can be maintained by choosing H = O(h�).

For example, with lowest order RTN mixed FEM and quadratic mortars

we take H ⇡ h2/5
.



The Interface Operator 

17 

Since the subdomain problems are independent, we can reduce

the problem down to a coarse-scale interface problem.

In the case of two subdomains, the global discrete problem has the form:

2

4
A1 0 B1

0 A2 B2

BT
1 BT

2 0

3

5

2

4
z1
z2
�

3

5
=

2

4
l1
l2
0

3

5

where Ai, zi and li are the matrix, solution and source term

corresponding to ⌦i.

Clearly a compatibility condition is required to guarantee a unique solution.

Reduction to an interface problem: S� = q.

S = �BT
1 A

�1
1 B1 �BT

2 A
�1
2 B2, q = �BT

1 A
�1
1 l1 �BT

2 A
�1
2 l2.



Iterative vs Direct 

Iterative 

Compute	data	for	
interface	problem	

Subdomain 
solves 

Precondi)on	
data	

Solve	the	
interface	problem	

Solve	local	problems	
given	interface	values	

Apply 
precond. 

Multiple 
subdomain 

solves 

Multiple 
precond. 

applications 

Subdomain 
solves 

Direct  

Compute	data	for	
interface	problem	

Subdomain 
solves 

Compute	coarse	scale	
Interface	operator	

Solve	the	
interface	problem	

Solve	local	problems	
given	interface	values	

Multiple 
subdomain 

solves 

Standard parallel 
Linear solvers 

Subdomain 
solves 

18	



 Applications 

19 



Slightly Compressible Flow with Transport 

20 

Model for reactive transport,

�c

�t
+⇥ · (cu�D⇥c) = qc.

Conservation of mass and Darcy’s law:

@

@t
(�⇢) +r · u = q,

u = � ⇢

µ
K(rp� ⇢grD),

where ⇢ is density, µ is viscosity and � is porosity.

Equation of state: ⇢ = ⇢refe�c(p�pref)
.



Numerical Results: Heterogeneous Permeability  

21 

•  		24	T	x	400T	x	400T	
•  		Grid	sizes	

•  		2T	x	12.5T	x	12.5T	(12x16x16)	
•  		3T	x	16.6T	x	16.6T	(8x12x12)	
•  		3T	x	16.6T	x	16.6T	(8x12x12)	
•  		4T	x	25T	x	25T	(6x8x8)	

•  		Injec)on	pressure:	increase	linearly	
•  		505	[psi]	(ini)ally)	
•  		1000	[psi]	(50	days)	

•  		Produc)on	pressure:	decrease	linearly	
•  		480	[psi]	(ini)ally)		
•  		350	[psi]	(30	days)	

•  		One	species,	ini)al	concentra)ons:		
•  		100	[M/cu-T]	in	first	grid	cell	
•  		0	everywhere	else	

•  		Con)nuous	linear	mortars	
•  		High	order	Godunov	for	advec)on	
•  		Van	Leer	slope	limi)ng	with	parameter	0.85	
•  		Molecular	diffusivity:	1.0	[sq	T	/	day]	
•  		Physical	(Diffusion)-Dispersion:	

•  		Longitudinal:	1.0	[T]	
•  		Transverse:	0.2	[T]	

Production 

Injection 



Numerical Results: Heterogeneous Permeability  

22 



Two Phase Immiscible Slightly 
Compressible Flow 

23	

Mass conservation and Darcy’s law:

@

@t
(�S↵⇢↵) +r · u↵ = q↵, u↵ = �k↵K

µ↵
⇢↵(rp↵ � ⇢↵g)

� porosity

S↵ saturation

⇢↵ density

q↵ source term

k↵ relative permeability

µ↵ viscosity

Equation of state:

⇢↵ = ⇢ref↵ ec↵(p↵�pref
↵ )

Physical constraints:

S
o

+ S
w

= 1, p
c

(S
w

) = p
o

� p
w

.

Equations can be solved using either IMPES or fully implicit.



Implicit Pressure – Explicit 
Saturation (IMPES) Formulation 

24	

Following [Hoteit, Fizoozabado, 2008], define mobilities,

Define a primary and capillary velocity,

r · ua = qt + qc �r · uc

⌘
↵

(S
w

) =
k
↵

µ
↵

, ⌘
t

= ⌘
w

+ ⌘
o

.

u
a

= �⌘
t

K(rp
w

� ⇢
w

g), u
c

= �⌘
o

K(rp
c

� (⇢
o

� ⇢
w

)g)

@

@t
(�Sw) +

✓
⌘w
⌘t

ua

◆
= qw.

t

Solve an implicit (elliptic) equation for primary velocity:

Solve an explicit equation for saturation:



Example: Water Flood 

25	

§ 		Compare	mul)scale	mortar	solu)on	with	fine	scale	solu)on.	
§ 		Fine	scale:	180x180	à	32,400	fine	scale	degrees	of	freedom	
§ 		Coarse	scale:	4x4	quadra)c	mortars	à	456	degrees	of	freedom	on	coarse	scale	
§ 		Channelized	permeability.	
§ 		Inject	at	one	end,	produce	at	the	other.	
§ 		Neglect	gravity.	
§ 		100	satura)on	)me	steps	per	pressure	)me	step	

Fine scale permeability 



Fine Scale and Multiscale Velocities 

26	

x-velocity from fine scale solution: 

x-velocity from multiscale solution:  



Fine Scale and Multiscale Velocities 

27	

y-velocity from fine scale solution: 

y-velocity from multiscale solution: 



Fine Scale and Multiscale Saturations 

28	

Water saturation from fine scale solution: 

Water saturation from multiscale solution: 



Fully Implicit Formulation 

29 

Mass conservation and Darcy’s law:

@

@t
(�S↵⇢↵) +r · u↵ = q↵, u↵ = �k↵K

µ↵
⇢↵(rp↵ � ⇢↵g)

On subdomains, solve for a pressure, p
w

, and a concentration, N
o

= ⇢
o

S
o

.

Interface variables: �1 = p
w

, and �2 = N
o

.

Interface conditions: [u↵] = 0

Interface Jacobian has block structure:

@

@�
F (�) =

 
@u

w

@�1

@u
w

@�2
@u

o

@�1

@u
o

@�2

!

We use a finite di↵erence method to approximate Jacobian.



Numerical Results: Two Phase Flow  
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•  		20	[T]	x	100	[T]	x	200	[T]	
•  		Second	grid	(finer)	

•  		1	[T]	x	5	[T]	x	5	[T]	(20x20x20)	
•  		1	[T]	x	5	[T]	x	5	[T]	(20x20x20)	

•  		Layered	permeability	
•  		Ini)al	pressure:	500	[psi]	
•  		Ini)al	water	satura)on:	0.22	
•  		Injec)on	pressure:		505	[psi]		
•  		Produc)on	pressure:		495	[psi]		
•  		Includes	gravity	and	capillary	pressure	
•  		Discon)nuous	constant	mortars	



Numerical Results: Two Phase Flow  

31 

Finer	Grid	 Avg.	Interface	
Itera>ons	

Time	Per	Newton	
Step	(min)	

Mul>scale	Precond.	
Assembly	Time	(min)	

Total	Time	
(min)	

No	Precond.	 157.7	 7.86	 -	 1730.3	

Mul)scale	Precond.	 7.2	 0.41	 15.7	 105.7	



 Mortar Coupling for Elasticity and 
Poroelasticity 

32 



Domain Decomposition 

Reservoir 



Pay-zone Model: Poroelasticity 
•  Equa)on	for	Cauchy	stress	tensor:	

•  Balance	of	linear	momentum:	
	
•  Darcy’s	Law:	

• Mass	conserva)on:	

r · �̂ = f1

r · vf = q



Nonpay-zone Model and Interface Conditions 
•  Linear	elas)c	model	in	nonpay-zone:	

•  Define	the	jump	and	average	along	interface	

	
•  Prescribe	the	following	transmission	condi)ons:	

r · � = f2



Variational Formulation 

A unique solution exists under regularity assumptions.

Find u 2 H1
0 (⌦)

d and p 2 H1(⌦1) such that

for all v 2 H1
0 (⌦)

d
and ✓ 2 H1

(⌦1).



DG with Lagrange Multipliers 

2X

i=1

Z

⌦i

�(ui) : ✏(vi) dx�
Z

⌦1

↵p r · v1 dx+

2X

i=1

�
Z

�12

�(ui)ni · vi ds +

Z

�12

↵p n1 · v1 ds +

2X

i=1

Z

�12

(�+ 2µ)
�i

hi
(ui � �) · vi ds+

2X

i=1

Z

�12

�(vi)ni · (ui � �) ds +

=
2X

i=1

Z

⌦i

fi · vi dx+

Z

�N

tN · vi ds

Usual interior terms 

Interface terms from 
   integration by parts 

Usual source 
terms 

DG terms 
on interface 



DG with Lagrange Multipliers 

2X

i=1

�
Z

�12

(�+ 2µ)
�i

hi
(ui � �) · µ ds+

Z

�12

[�(u)]� ↵p)n12 · µ ds

Pressure equation:



Discretizations 



Error Estimates 

Theorem		
Assume the triangulations are regular in the sense of Ciarlet

and satisfy a quasi-uniformity assumption along the interface

†
.

Then there exists a constant C > 0 independent of h1, h2 and H
such that

†
For details, see Girault et al, M

3
AS, 2011.

E2
u + E2

p + E2
�12

+ E2
�D



C

✓
h
2(ru�1)
1 + h

2(ru�1)
2 +

✓
H

h1
+

H

h2

◆
H2r��1

◆



•  Infinite	domain	subjected	to	a	loading	of	2F	from	above	and	below	
•  Symmetry	allows	domain	to	be	reduced	to	2D	upper	right	quadrant	
•  Analy)cal	solu)on	for	pressure	and	displacements1		
•  Solu)on	demonstrates	the	Mandel-Creyer	effect.	

Mandel’s Problem 

1 Mandel 1953, Abouslieman et al 1996  



•  Extend	Mandel’s	problem	to	include	an	elas)c	domain	

•  Piecewise	linear	finite	elements	and	con)nuous	linear	mortars	with	H	=	h	

Extension of Mandel’s Problem 



Total	Degrees	of	
Freedom	

Error	in	Energy	
Norm	

Predicted	Rate	 Observed	Rate	

1,197	 1.07E-2	

4,387	 4.91E-3	 1	 1.09	

16,767	 2.34E-3	 1	 1.05	

65,527	 1.14E-3	 1	 1.03	

259,047	 5.65E-4	 1	 1.01	

Extension of Mandel’s Problem 



 Goal Oriented Error Estimates 

44 



Goal Oriented Error Estimation 

Our goal is often to compute a small number of quantities of interest

from a simulation.

Understanding the error and sensitivity of a QoI is critical.

Adjoint-based methods can provide both!

Adjoint	Solu)on	for	resis)ve	MHD	(Drekar::CFD)		 

	

	

	
	

	

Can we estimate the error in a QoI from a ms-mortar simulation?



Model Problem 
For simplicity, we consider the model elliptic problem,

�r · (Krp) = f, x 2 ⌦

p = gD, x 2 @⌦

Domain Decomposition: ⌦ =
SP

i=1 ⌦i, �i,j = @⌦i \ @⌦j .

where K is a sym., bdd. and uniformly positive definite, and

f and gD are su�ciently smooth.

Let Vi and M denote appropriate Hilbert spaces.

Let Ai : Vi ⇥ Vi ! R, Bi : M ⇥ Vi ! R, Ci : Vi ⇥M ! R, and
Di : M ⇥M ! R be appropriate continuous bilinear forms.

Variational formulation: seek zi 2 Vi and � 2 M such that

Ai(zi,wi) = li(wi)� Bi(�,wi), 8wi 2 Vi, i = 1, . . . , P,
PX

i=1

(Ci(zi, µ) +Di(�, µ)) = 0, 8µ 2 M.



Adjoint Problem 

�r · (Kr�) =  , x 2 ⌦

� = 0, x 2 @⌦

The continuous adjoint problem is given by

where  is chosen based on the quantity of interest.

Adjoint variational formulation: seek �i 2 Vi and ⌘ 2 M such that

PX

i=1

(B⇤
i (�i, µ) +D⇤

i (⌘, µ)) = 0, 8µ 2 M.

A⇤
i (zi,wi) = ji(wi)� C⇤

i (�,wi), 8wi 2 Vi, i = 1, . . . , P,

Let A⇤
i : Vi ⇥ Vi ! R, B⇤

i : Vi ⇥M ! R, C⇤
i : M ⇥ Vi ! R, and

D⇤
i : M ⇥M ! R be appropriate continuous adjoint bilinear forms.



Adjoint-based Error Estimate 

Let zh,i 2 Vh,i ⇢ Vi and �H 2 MH ⇢ M be discrete approximations

and let ⇧h,i : Vi ! Vh,i and QH : M ! MH be projection operators.

Define ez,i = zi � zh,i and e� = �� �H .

The error in a linear functional of the solution satisfies,

NX

i=1

ji(ez,i) =
NX

i=1

(E
sub,i + E

mort,i) ,

where

E
sub,i = li(�i �⇧h,i�i)�Ai(zh,i,�i �⇧h,i�i)� Bi(�H ,�i �⇧h,i�i),

represents the subdomain discretization error, and

E
mort,i = �Ci(zh,i, ⌘ �QH⌘)�Di(�H , ⌘ �QH⌘),

represents the contribution to the mortar discretization error.



Example: Multiscale and Multinumerics 

Let ⌦ = (0, 1)⇥ (0, 1) with

K(x, y) = (1 + 0.8 sin(4⇡x) cos(3⇡y))I.

We choose f and gD such that

p(x, y) = 10x(1� x)y(1� y) exp(sin(3⇡x) sin(3⇡y)).

Domain decomposition

Subdomain numerical methods



Example: Multiscale and Multinumerics 

QofI E
sub

E
mort

True Error E↵ectivity

1 -1.4960E-3 -4.1564E-4 -1.9166E-3 0.997

2 8.3416E-4 1.4993E-6 8.5018E-4 0.983

3 7.4364E-4 4.1535E-4 1.2002E-3 0.966

Table 1: Error estimates and e↵ectivity ratios using three di↵erent quantities

of interest using multinumerics.



Example: Mortar Adaptivity 

Consider layer 75 of SPE10 permeability field.

Decompose ⌦ = (0, 1200)⇥ (0, 2200) into 55 subdomains (5⇥ 11)

Subdomains with wells are refined up to well-bore and use DG (SIPG)

Remaining subdomains discretized using mixed method



Example: Mortar Adaptivity 

Forward solution Adjoint solution. QofI is the average

pressure at the production well.



Example: Mortar Adaptivity 

We fix the subdomain meshes and refine mortars until mortar error is

comparable to subdomain error.



Current and Future Directions 



Predict/Control Performance of Additive Manufacturing of Materials 
and Components with Quantified Uncertainty 

Op>miza>on	
Under	

Uncertainty	

AM Process Modeling 

Material characterization 
with quantified uncertainty 
- J. Michael and D. Adams (SNL) 

Multi-scale Modeling 

Component performance 
assessment 
- J. Carroll (SNL) 



Multiscale Modeling for Materials 

Previous work:

Current work:

• Small number of subdomains: O(10)

• Many DOFs per subdomain/mortar: O(103)

• Iterative DD methods applicable

• Large number of subdomains: O(106)

• Few DOFs per mortar: O(10)

• Iterative DD methods NOT applicable



Relationship to Hybridizable DG Methods 

At this extreme, we are very close to

another method

Hybridizable DG methods are
conceptually very similar

HDG methods have grown in
popularity in recent years

Current work to show HDG is special case of multiscale mortar methods
(with Tan Bui - UT Austin)



 Multilevel Solvers for Hybridized 
Formulations 

58 



Introduce Lagrange multipliers on 
the element boundaries: 

Hybridization of Mixed Methods 



Reduce to Schur complement for 
Lagrange multipliers: 

Hybridization of Mixed Methods 



Defining Coarse Grid Operators 

X 



A Multigrid Algorithm 

Assume there exists constants 0 < c  C such that

chk  hk�1  Chk, 1  k  N.

Define interface grids

E1, E2, . . . , EN = Eh,

with the corresponding nonnested Lagrange multiplier spaces,

M1,M2, . . . ,MN = Mh.

Define a sequence of partitions

T1, T2, . . . , TN = Th,

where each element Ek,i � Tk consists of a union of fine grid elements.

To prove convergence, we need to assume each Ek,i is su�ciently regular to
allow H3/2+� regularity.



A Multigrid Algorithm 



A Multigrid Algorithm 



A Multigrid Algorithm 



Theorem  

A Multigrid Algorithm 

If all of the above assumptions are satisfied and if the number

of smoothing steps on each level satisfy

for some 1 < �0  �1, then there exists 0 < ⇥ < 1 independent

of h such that,



Laplace Equation – Multinumerics 



Laplace Equation – Multinumerics 

Levels	 DOF	 V-cycles	 MG	Factor	

3	 224	 8	 0.19	

4	 960	 8	 0.19	

5	 3968	 8	 0.20	

6	 16128	 8	 0.20	



Poisson Equation – Unstructured Mesh 



Single Phase Flow with Heterogeneities 



Conclusions 



Conclusions 

• Mul)scale	mortar	methods	provide	a	flexible	modeling	
framework	with	a	solid	mathema)cal	founda)on	

• Avoids	the	need	to	upscale	model	parameters	
• Applicable	to	mul)physics	and	mul)numerics		
• Related	to	non-overlapping	domain	decomposi)on	and	HDG	
• Varia)onal	framework	well-suited	for		

– Goal-oriented	error	es)mates	
– Op)miza)on	
– Embedded	UQ	

• New	opportuni)es	for	modeling	and	simula)on	



Thank you for your attention! 
Questions? 


