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Outline ) i

" Low dimensional far infrared plasmonics
= GaAs/AlGaAs 2D plasmonic resonators

= Strong coupling of 2D plasmonic resonators
= Coupled oscillator & transmission line models

= Active control of plasmonic crystal band structure

= Edge photoresponse in inverted InAs/GaSb
double quantum wells




Low Dimensional Plasmonics ) g,
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FIR 2D Plasmonic Systems ) .
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From Plasmonic Arrays to Elements @

= Plasmon-plasmon coupling
= Plasmonic dispersion in coupled structures

= Plasmon damping & coherence length
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Integrated 2D Plasmonic Devices — .
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Inhomogeneous 2DEG Structures T
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Coupled Resonator Description ).
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Coherent Plasmonic Coupling ) 5.
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Plasmonic Crystal Band Structure
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Four Period Plasmonic Crystal
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Plasmonic Tamm States h) i,

600+

400 - %\ A~C AN NN /\/\
N 4 S NS \/\/
I ceoo**® E
2 " S
/7~ / \
" 200 f < VY Y \/

0.2 0.4 0.6 0.8 1.0
Y

Crystal surface states typically found in crystal band gap
that have complex Bloch wavevector (Im[kg] # 0)
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Defect Probing of Tamm States
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Coupled Tamm & Defect States ) .
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Quantum Spin Hall Insulators ) .
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Direct Current Phenomenology
« Spin Polarized Helical Edge Transport
* Quantized Conductance

Terahertz Response

« Lateral p-n rectifiers ?
« 2D plasmons ?
 Edge modes ?
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InAs/GaSb DQW Device
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DC Transport ) .
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180 GHz mm-Wave Response ).
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« Mirrored transverse signals(blue,
orange) imply edge response

« Longitudinal (green, red) and
diagonal (black, teal) signals
similarly track DC behavior

* Not a bulk self-mixing response:
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Polarization Sensitivity )

Signals peak with longitudinal

Possibilities: DC photocurrent =°
from AC excitation [1],
rectification of 1D edge
plasmons [2,3]

[1] B. Dora, et al., PRL 108, 056602 (2012).
[2] O. Roslyak, et al., PRB 87, 045121 (2013). .
[3] I. Appelbaum, et al., APL 98, 023103 (2011). 0 45 90 135 180
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Conclusion: AC driving of edge currents in_a
material that supports QSH effect and a Tl phase
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Conclusions ) i
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