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Outline 

 Low dimensional far infrared plasmonics 

 GaAs/AlGaAs 2D plasmonic resonators 

 Strong coupling of 2D plasmonic resonators 

 Coupled oscillator & transmission line models 

 Active control of plasmonic crystal band structure 

 Edge photoresponse in inverted InAs/GaSb 
double quantum wells 
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Low Dimensional Plasmonics 
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𝝎𝒑 = 𝒏𝟐𝑫𝒆
𝟐𝒒 𝟐𝝐𝒎∗  



FIR 2D Plasmonic Systems 
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Grating Gated Si MOSFETs 

S.J. Allen et al., PRL 38, 980 (1977) 

Grating Gated GaAs/AlGaAs HEMTs 

Graphene Gratings 

L. Ju et al., Nat. Nano. 6, 630 (2011) 

Grating Gated GaN/AlGaN HEMTs 

A.V. Muravjov et al., APL 

96, 042105 (2010) 

X.G. Peralta et al., APL 81, 1627 (2002) 



From Plasmonic Arrays to Elements 

 Plasmon-plasmon coupling 

 Plasmonic dispersion in coupled structures 

 Plasmon damping & coherence length 
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 Detection: depleted 2DEG 

 Coupling: log-periodic antenna 

 Resonance: 2D plasmon 

wavelength set by device 

geometry 

Integrated 2D Plasmonic Devices 
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G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) & G.C. Dyer et al., Appl. Phys. Lett. 100, 083506 (2012) 
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Inhomogeneous 2DEG Structures 
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G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) & G.C. Dyer et al., Appl. Phys. Lett. 100, 083506 (2012) 
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Coupled Resonator Description 
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Oscillator a 

(a(),a,fa,Qa)  
Oscillator b 

(b(),b,fb,Qb)  

Coupling 

(k) 



Coherent Plasmonic Coupling 
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Strongly coupled 

2D plasmonic 

resonators 

G.C. Dyer et al., Phys. Rev. Lett. 109, 126803 (2012) 

𝜸𝟏,𝟐 =
𝑽𝒕𝒉 − 𝑽𝑮𝟏,𝑮𝟐
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Plasmonic Crystal Band Structure 
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1D Kronig-Penney: 

𝒄𝒐𝒔𝟐𝒌𝑩𝒂 = 

𝒄𝒐𝒔𝒒𝟎𝒂𝒄𝒐𝒔𝒒𝟏𝒂 −
𝟏
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G.C. Dyer et al., Nature Photonics, 7, 925 (2013) 



Four Period Plasmonic Crystal 
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G.C. Dyer et al., Nature Photonics, 7, 925 (2013) 

𝑽𝑮𝟏 → 𝟎, 𝑳𝟏 → ∞ 

Detector 



Plasmonic Tamm States 
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Crystal surface states typically found in crystal band gap 

that have complex Bloch wavevector (𝐼𝑚[𝑘𝐵] ≠ 0) 

G.R. Aizin and G.C. Dyer, Phys. Rev. B 86, 235316 (2012) 
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Defect Probing of Tamm States 
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Detector 

Defect Crystal 

a a a a a 

G.C. Dyer et al., Nature Photonics, 7, 925 (2013) 



Coupled Tamm & Defect States 
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G.C. Dyer et al., Nature Photonics, 7, 925 (2013) 



C. Liu et al., Phys. Rev. Lett., 

100, 236601 (2008) 

Knez et al., Phys. Rev. Lett., 

107, 136603 (2011) 

Quantum Spin Hall Insulators 
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G.C. Dyer et al., App. Phys. Lett., 108, 013106 (2016) 

Inverted Band Structure 

I: p > n 

II: QSH phase 

III: n > p 

 

Normal Band Structure 

IV-VI: p-type, insulating, 

n-type 

Vf Vb 

Direct Current Phenomenology 

• Spin Polarized Helical Edge Transport 

• Quantized Conductance 

 

Terahertz Response 

• Lateral p-n rectifiers ? 

• 2D plasmons ? 

• Edge modes ? 



InAs/GaSb DQW Device 
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G.C. Dyer et al., App. Phys. Lett., 108, 013106 (2016) 
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DC Transport 
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G.C. Dyer et al., App. Phys. Lett., 108, 013106 (2016) 

V1 V2 V3 V4

V7 V6

Rbulk
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I50

• Bulk dominant (Rij << 25.8 kW) 

• Longitudinal resistances (green, 

red) non-identical 

• Mirrored transverse resistances 

(blue, orange) imply edge 

conduction 

• R67 > R41 indicates non-ballistic 

edge transport 



180 GHz mm-Wave Response 
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G.C. Dyer et al., App. Phys. Lett., 108, 013106 (2016) 

• Mirrored transverse signals(blue, 

orange) imply edge response 

• Longitudinal (green, red) and 

diagonal (black, teal) signals 

similarly track DC behavior 

• Not a bulk self-mixing response: 

𝝌 ≡ 𝑹𝟓𝟎,𝟔𝟕

𝝏 𝟏 𝑹𝟓𝟎,𝟔𝟕 

𝝏𝑽𝑮𝟐
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Polarization Sensitivity 
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• Signals peak with longitudinal 

THz field, VG2 ~ VCNP 

 

• Possibilities: DC photocurrent 

from AC excitation [1], 

rectification of 1D edge 

plasmons [2,3] 

G.C. Dyer et al., App. Phys. Lett., 108, 013106 (2016) 

[1] B. Dora, et al., PRL 108, 056602 (2012). 

[2] O. Roslyak, et al., PRB 87, 045121 (2013). 

[3] I. Appelbaum, et al., APL 98, 023103 (2011). 

Conclusion: AC driving of edge currents in a 

material that supports QSH effect and a TI phase 



Conclusions 

Edge photoresponse in 
inverted DQWs 
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Plasmonic cavity/waveguide 

Active control of 
plasmonic dispersion 
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