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Goal: design nozzle propulsion systems of
advanced aircraft that optimize aerodynamic
performance, thermal and pressure loads, and

fatigue



Problem Characteristics

Nonlinear governing equations
Computationally expensive simulations
Large number of design variable
Many sources of uncertainty
Large number of uncertain variables





Design is expensive

Optimization involves many evaluations of
model and gradient

At each step of the design we must quantify
certain statistics of uncertainty



A fundamental challenge facing UQ

Can we capture the salient features of a
high-fidelity, high-dimensional model from

limited simulation data



Given distributions on the input data we can
calculate statistical moments, distributions,

etc. of the QOIs


ξ1

ξ2
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ξd

 f (ξ)



We usually must sample from the input
distributions to calculate statistics


ξ1

ξ2
...

ξd

 f (ξ)

BUT...



Simulation models are computationally and
financially expensive


ξ1

ξ2
...

ξd

 f (ξ)



What are we doing to address these
challenges?

Multifidelity approaches

Dimension reduction

Compressed sensing
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Today I will focus on
compressed sensing



Polynomial Chaos Expansions (PCE)

Multidimensional approximation of f (ξ) with finite variance

f (ξ) ≈ fΛ(ξ) =
∑
λ∈Λ

αλφλ(ξ), λ = (λ1, . . . , λd)

Orthonormal basis

(φi (ξ), φj(ξ)) =

∫
Iξ

φi (ξ)φj(ξ)w(ξ) = δij

Assume ordering n = 1, . . . ,N assigned to elements of Λ

Askey scheme

Normal Hermite Hen(x) e
−x2

2 [−∞,∞]
Uniform Legendre Pn(x) 1

2 [−1, 1]



Why are PCE useful?

calculate moments and Sobol indices

µ = α0, σ2 =
∑
λ∈Λ

α2
λ

Tailor sampling to density

Weighted Leja sequences.

Surrogate for sampling methods

Computing PDFs, CDFs,
probability of rare events,

posterior-densities, etc. B
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How can we calculate PCE
coefficients

Pseudo spectral projection

αλ =
∫
Iξ

f (ξ)φλ(ξ) dρ(ξ)

Least squares

arg minα‖f (ξm)− fΛ(ξm)‖2

Compressed sensing

arg minα ‖α‖1 s.t. ‖f (ξm)− fΛ(ξm)‖2 ≤ ε



What does compressed sensing do?

Compressed sensing attempts to find a
sparse solution that is a “good”

approximation of the observational data

A sparse solution

s = #{λ : |αλ| > 0}

Typical “Good” approximation

‖f (ξm)− fΛ(ξm)‖2 ≤ ε



Why do we care about sparsity?

Occam’s razor — “when faced with
many possible ways to represent a

signal, the simplest choice is the best
one.”

“KISS”
The number of samples required grows

LINERALY with dimension
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Compressed Sensing

Generate M model runs

ΞM = {ξ1, . . . , ξM}, f = (f (ξ1), . . . , f (ξM))T

We want ‘good’ solution to
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Sparse solutions

A sparse solution

s = #{λ : |αλ| > 0}

`0-minimization (NP HARD)

arg minα ‖α‖0 s.t. ‖f (ΞM)− fΛ(ΞM)‖2 ≤ ε

`1-minimization

arg minα ‖α‖1 s.t. ‖f (ΞM)− fΛ(ΞM)‖2 ≤ ε



Why does `1-minimization produce a
sparse solution
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How well does compressed sensing
work?

`2-minimization

M ≥ N log(N) = dnd log(n)

`1-minimization

M ≥ s log3(s) log(N)L = ds log3(s) log(n)L





Are PCE representations of models
usually sparse?

NO

But...

PCE are compressible

s = #{λ : |αλ| > τ}
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How well does CS apply to
compressible signals?

Compressible signals∣∣αI(i)

∣∣ ≤ Ci−r



Recent contributions

I Reweighting

I Adaptive basis selection

I Change of measure

α? = arg min
α

‖α‖1 such that ‖WΦα−Wf‖2 ≤ ε



Requirements for finding a sparse
solution

Small mutual coherence µ

µ(Φ) = max
1<j<k≤N

˛̨̨
φ̃T

j φ̃k

˛̨̨
‚‚‚φ̃j

‚‚‚
2

‚‚‚φ̃k

‚‚‚
2

Small RIP constant δs

(1− δs) ‖αs‖2
2 ≤ ‖Φαs‖2

2 ≤ (1 + δs) ‖αs‖2
2

· · · φλj
(ξ1) · · · φλk

(ξ1) · · ·
· · · φλj

(ξ2) · · · φλk
(ξ2) · · ·

...
...

...
...

...
· · · φλj

(ξM ) · · · φλk
(ξM ) · · ·
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
φ̃j φ̃k

Φ =



Theorem: RIP bound for Orthonormal Systems
[Rahut and Ward 2010]

Consider the orthonormal system {φj , j ∈ [N]} with

sup
ξ∈D,j∈[N]

‖φj‖∞ ≤ K

and the matrix Φ ∈ RM×N with entries formed by i.i.d. samples drawn
from w . If

M ≥ Cδ−2K 2s log3(s) log(N),

then with probability at least 1−N−γ log3(s) the restricted isometry constant

δs of 1√
M

Φ satisfies δs ≤ δ for universal constants C , γ > 0



Change of measure
Enforce small coherence parameter

Scale basis functions by
√

W so that

L = K 2 = O(1)

This can be achieved using the Chirstoffel function

Maintain orthogonality

We can no longer sample from w(ξ) but must instead sample
from the biased density

w(ξ)/W (ξ)

The corresponding measure of this density is the equilibrium
measure µ where w/W ≈ dµ



The Christoffel function

WΛ(ξ) =
N∑N

n=1 φ
2
n(ξ)

Properties

I Generates bounded orthonormal system

I w/W → dµ, as n→∞

Rkl =

∫
Iξ

φk(ξ)φl(ξ)WΛ(ξ)dµ, 0 ≤ j , k ≤ N

R→ I, as N →∞



Theorem [Nevai et. al. 1994]

max
ξ∈[−1,1]

Nφ2
N(ξ)PN

k=0 φ
2
k(ξ)

≤
4N(2 +

p
α2 + β2)

2N + α + β + 2
= K

[Levin and Lubinsky 1994]

Similar more complicated bounds are known for unbounded variables
with weight functions of the form

w(x) = exp(− |ξ|α), α ≥ 1



The equilibrium measure

Given Iξ and w , we will be concerned with µ

I µ is a unique probability measure

I µ has compact support (even if Iξ does not)

I With d = 1, µ coincides with the weighted
potential-theoretic equilibrium measure (e.g.,
“Chebyshev-like” on 1D intervals)
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Equilibrium sampling:
all bounded variables

Let zi ∼ U[0, 1]

ξ = cos(zπ)

Equilibrium sampling: Normal

Let zi ∼ N(0, 1) and u ∈ [0, 1] with PDF
w(u) = (1− u2)d/2ud−1

y =
z

‖z‖2

u, ξ = y2
√

p

×2
√

p

p = 2

×2
√

p

p = 3

×2
√

p

p = 4



Motivation for the equilibrium
measure

`1-minimization

Allows one to bound weighted polynomials.

Regression

Ensures that the stability of the condition number can be
achieved using only log-linear, i.e. M = N log N.

Interpolation

It is necessary to sample from the equilibrium measure to
obtain a ‘good’ Lebesque constant.



Theorem: [Jakeman et al.]

Suppose that M sampling points (ξ(1), . . . , ξ(M)) are drawn iid according to
the equilibrium measure density vn and the diagonal matrix W with entries
given by Wii = WΛ(ξ(i)) Assume that the number of samples satisfies

M ≥ L(n)
‚‚‚R−1/2

‚‚‚2

1
s log3(s) log(N),

where R measures the deviation from orthogonality. Then the coeffi-
cient vector R1/2α is recoverable by solving the inequality-constrained
`1-minimization problem

R1/2α? = arg min
α

‖R1/2α‖1 such that ‖
√

WΦα−
√

Wf‖2 ≤ ε

and the error in α? satisfies

‖α−α?‖2 ≤ C1σs,1(R1/2α)√
sλmin(R)

+ C2
ε√

λmin(R)

‖α−α?‖1 ≤ D1σs,1

“
R1/2α

”‚‚‚R−1/2
‚‚‚

1
+ D2

√
s
‚‚‚R−1/2

‚‚‚
1
ε



Theorem: [Jakeman et al.]

L(n) has the following behavior:

1. There is a constant C = C(α, β) such that uniformly in n ≥ 1,

L(n) ≤ C .

2. There is a constant C = C(α) such that uniformly in n ≥ 1,

L(n) ≤ Cnmax{1/α,2/3} =


Cn2/3, α ≥ 3

2

Cn1/α, 1 < α < 3
2

3. There is a constant C = C(α) such that uniformly in n ≥ 1,

L(n) ≤ Cnmax{1/2α,2/3} =


Cn2/3, α ≥ 3

4

Cn1/2α, 1
2
< α < 3

4
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Standard `1-minimization Christoffel Sparse Approximation (CSA)

Sample iid ξm ∼ w Sample iid ξm ∼
dµIξ,w

dξ

Assemble Φm,n = φn(ξm)

fm = f(ξm)

Assemble Φm,n = φn(ξm)

fm = f(ξm), w2
m = N/

∑
n φ

2
n(ξm)

Precondition Φ← diag(w)Φ

f ← diag(w)f

Solve

arg minα ‖α‖1 s.t. ‖Φα− f‖2 ≤ ε

Solve

arg minα ‖α‖1 s.t. ‖Φα− f‖2 ≤ ε



Manufactured solutions

I Generate s-sparse vectors α
I Index of each non-zero entries chosen

i = 1, . . . , s ∼ U(1,N) without replacement
I Value of each non-zero entry αi ∼ N(0, 1)

I Use Basis Pursuit to recover coefficients α? from
noiseless data f (ξm) =

∑N
n=1 αnφn(ξ)

I Generate samples from w and ρIξ,w

I Recovery successful if ‖α−α?‖2 / ‖α‖2 ≤ 0.01

I Measure probability of recovery using 100 trials



Alternative pre-conditioning schemes

Beta

Let zi ∼ U(0, 1)

ξ = cos(πz), wm,m =
dY

i=1

(1− ξ2
i )1/4

p
w(ξ)

Gaussian

Let zi ∼ N(0, 1) and u ∼ U[0, 1]

y =
z

‖z‖2

u1/d , ξ = y
√

2
p

2p + 1

wm,m = exp(−‖ξ‖2
2/4)

I Asymptotic sampling: y are uniformly sampled in the unit ball.

I Equilibrium sampling: y are concentrated towards the center of the
unit ball.

Special mention: coherence optimal sampling based upon MCMC. (Hampton and Doostan 2015)



Uniform Variables (d=2,30)



Normal Variables (d=2,30)



Beta(2,5) Variables (d=2,30)



Approximating an Eliptic PDE

We want to approximate q(ξ) = u(1/2, ξ) where

− d

dx

»
a(x , ξ)

du

dx
(x , ξ)

–
= 1 (x , ξ) ∈ (0, 1)× Iξ

u(0, ξ) = u(1, ξ) = 0

with diffusivity log(a(x , ξ)) = ā + σa

Pd
k=1

√
λkϕk(x)ξk , where

{λk}dk=1 and {ϕk(x)}dk=1 are determined by Ca(x1, x2) = exp
h
− (x1−x2)2

l2c

i
I Compute PCE using Basis Pursuit (Least Angle Regression)

I Measure accuracy in PCE approximation qΛ by computing
M
−1/2
test ‖q − qΛ‖`2(w) using Mtest = 10000 samples from w(ξ).

I Measure mean error using 20 trials



Effect of dimension on performance
of CSA
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CSA vs. asymptotic method
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CSA vs. asymptotic method
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Applying CSA to the nozzle problem
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Applying CSA to the nozzle problem
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