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Goal: design nozzle propulsion systems of
advanced aircraft that optimize aerodynamic
performance, thermal and pressure loads, and

fatigue




Fringe. DEFAULT SCI. AZ Stalic Subcase. Stress [nvariants, Von Mises. . AtZ1

Problem Characteristics

Nonlinear governing equations
Computationally expensive simulations
Large number of design variable

Many sources of uncertainty
Large number of uncertain variables




Ideal and non-ideal nozzle aero
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Design is expensive

Optimization involves many evaluations of
model and gradient

At each step of the design we must quantify
certain statistics of uncertainty



A fundamental challenge facing UQ

Can we capture the salient features of a
high-fidelity, high-dimensional model from
limited simulation data



Given distributions on the input data we can

calculate statistical moments, distributions,
etc. of the QOls




We usually must sample from the input
distributions to calculate statistics




Simulation models are computationally and
financially expensive




What are we doing to address these
challenges?

Multifidelity approaches Compressed sensing

Regions

Today | will focus on
compressed sensing




Polynomial Chaos Expansions (PCE)

Multidimensional approximation of (&) with finite variance

Askey scheme

Normal Hermite He,(x)

Uniform Legendre Pp(x)




Why are PCE useful?

calculate moments and Sobol indices

Tailor sampling to density

Weighted Leja sequences.

Surrogate for sampling methods

Computing PDFs, CDFs,
probability of rare events,

posterior-densities, etc.




How can we calculate PCE
coefficients

Pseudo spectral projection

ax = [, f(&) éa(§) dp(§)

Least squares

argming [|£(€m) — fa(€m)ll2

Compressed sensing

argming, [levlls s.t. [ F(€n) — A(Em)z < &




What does compressed sensing do?

Compressed sensing attempts to find a
sparse solution that is a “good”
approximation of the observational data

A sparse solution l

Typical “Good" approximation

1£(&m) — fa(€m)ll2 < €




Why do we care about sparsity?



Why do we care about sparsity?

Occam's razor — “when faced with
many possible ways to represent a

signal, the simplest choice is the best
one.”



Why do we care about sparsity?

"KISS”



Why do we care about sparsity?

The number of samples required grows

LINERALY with dimension



Compressed Sensing

Generate M model runs

#2(&1)
#2(&2)

@2(éM)




Sparse solutions

A sparse solution l

lo-minimization (NP HARD)

argming, [|alo s.t. [|[F(Bum) — A(BEm)]2 < e

/1-minimization

argming, [laffy st [[f(Em) — A(Em)ll2 < &




Why does ¢1-minimization produce a
sparse solution




How well does compressed sensing
work?

f>-minimization

M > Nlog(N) = dn? log(n)

/1-minimization

M > slog3(s) log(N)L = dslog>(s) log(n)L







Are PCE representations of models
usually sparse?



Are PCE representations of models
usually sparse?

NO

But...



Are PCE representations of models
usually sparse?

PCE are compressible '




How well does CS apply to
compressible signals?

Compressible signals

10°
sorted index Z(i)




Recent contributions

» Reweighting
» Adaptive basis selection

» Change of measure

a® = argmin ||a||; such that |[W®a — Wf|, <e
@




Requirements for finding a sparse
solution

Small mutual coherence p

w(®) =

max T
1<j<k<n || 7 7
IR || Px

2

Small RIP constant ¢,

N 2 2 N 2
(1= 0s) [lasly < [[Pas|ly < (1+35) [lexsll;




Theorem: RIP bound for Orthonormal Systems
[Rahut and Ward 2010]

Consider the orthonormal system {¢;,j € [N]} with
sup )l < K
§€DJEN]
and the matrix ® € RV
from w. If

with entries formed by i.i.d. samples drawn

M > C6>K’slog’(s) log(N),

then with probability at least 1—N~7'°6"() the restricted isometry constant

s of \%W(I) satisfies ds < & for universal constants C,v > 0




Change of measure

Enforce small coherence parameter

Scale basis functions by v W so that
L=K?=0(1)

This can be achieved using the Chirstoffel function

Maintain orthogonality

We can no longer sample from w(&) but must instead sample
from the biased density

w(§)/W(€)

The corresponding measure of this density is the equilibrium
measure i where w/W =~ du




The Christoffel function

Properties

» Generates bounded orthonormal system

» w/W — du, as n — oo

Ru = // () DI(E)WA(E)dp, 0<j k<N
3

R—1Il as N—




Theorem [Nevai et. al. 1994]

Ny (§)  _ 4N+

maXx —_—
ee[-1,1] Zlkv:o $2(€) ~ 2N+a+p3+2

[Levin and Lubinsky 1994]

Similar more complicated bounds are known for unbounded variables
with weight functions of the form

w(x) = exp(~ [¢]*), a>1




The equilibrium measure

Given I¢ and w, we will be concerned with 1
» 1 is a unique probability measure
> 1 has compact support (even if l¢ does not)

» With d = 1, p coincides with the weighted
potential-theoretic equilibrium measure (e.g.,
“Chebyshev-like” on 1D intervals)

N
w=1on[-1,1] w = exp(—€) on [0, 00) w = exp(—£2) on (=00, 00)




Equilibrium sampling: Normal

Let zi ~ N(0,1) and v € [0, 1] with PDF
wlu) = (1 — u?)?/?u?

y= §£=y2\p

——u
Ilzll,

Equilibrium sampling:
all bounded variables

Let z; ~ UJ[0,1]

& = cos(zm)




Motivation for the equilibrium
measure

/1-minimization

Allows one to bound weighted polynomials.

Regression

Ensures that the stability of the condition number can be
achieved using only log-linear, i.e. M = Nlog N.

Interpolation

It is necessary to sample from the equilibrium measure to

obtain a ‘good’ Lebesque constant.




Theorem: [Jakeman et al.]

Suppose that M sampling points (5(1), . ,£(M)) are drawn iid according to
the equilibrium measure density v, and the diagonal matrix W with entries
given by Wi = Wa(£")) Assume that the number of samples satisfies

M > L(n) HR_l/QHj slog®(s) log(N),

where R measures the deviation from orthogonality. Then the coeffi-
cient vector RY?ax is recoverable by solving the inequality-constrained
£*-minimization problem

RY?a* = argmin |RY?a|; such that [[VW®a — VWF|; <&

and the error in a* satisfies

Cios 1(R1/2a)
5 + C £
=/ Pmm®) 2V omin(R)

o — a*|l, < Diosa (R1/2a) R1/2 +D2\/§HR*1/2 B
1

1

loc — ™|




Theorem: [Jakeman et al.]

L(n) has the following behavior:
1. There is a constant C = C(a, 3) such that uniformly in n > 1,

L(n) < C.

2. There is a constant C = C(«) such that uniformly in n > 1,

C,72/37

L <C max{1/«,2/3} — =
(n) = Ln Cnl/oz7 1<O[<%

3. There is a constant C = C(a) such that uniformly in n > 1,

L(n) < Cnmax{1/2a$2/3} :{




Left: |[R™2/2||, for Jacobi polynomials oo = f3.
Right: HR_1/2H1 for Hermite polynomials with w = exp(—x?) on
R, and Laguerre polynomials with w = exp(—x) on [0, o0).



Standard /;-minimization Christoffel Sparse Approximation (CSA)

Sample iid &, ~ w [Sample iid &, ~ "“d’z“‘]

S = f(€)

‘ Assemble ®,,,, = ¢,(&,,) ’ Assemble ®,,, = ¢,(&,,) ]

Jn = J(&)s Wi = N/ 32, 67(€1m)

Solve Precondition ® — diag(w)®

argmin, [|al; s.t. [[®Pa—f|;<e¢ f «— diag(w)f

Solve
argming, [lal; s.t. [|[®a—fl;<e




Manufactured solutions

» Generate s-sparse vectors «

» Index of each non-zero entries chosen
i=1,...,s ~ U(1, N) without replacement
» Value of each non-zero entry o; ~ N(0,1)

» Use Basis Pursuit to recover coefficients a* from
noiseless data (&) = ZnN:1 an®n(€)

» Generate samples from w and pj,

> Recovery successful if ||a — ||, / ||e]|, < 0.01

» Measure probability of recovery using 100 trials




Alternative pre-conditioning schemes

Beta

Let zi ~ U(0,1)

d
& =cos(nz), wmm=]](1-€)*VW()
i=1

Gaussian
Let zi ~ N(0,1) and u ~ U[0,1]
- W“Ud, £=yv2\2p+1
2

2
Win,m = exp(—||€[l2/4)
» Asymptotic sampling: y are uniformly sampled in the unit ball.

y

» Equilibrium sampling: y are concentrated towards the center of the
unit ball.

Special mention: coherence optimal sampling based upon MCMC. (Hampton and Doostan 2015)




Uniform Variables (d=2,30)




Normal Variables (d=2,30

MC, & ~ Normal(0. 1), = 2 CSA, & ~ Normal(0. 1), = 2 Asymptotic, & ~ Normal(0.1). 4

MC, & ~ Normal(0. 1) = 3 & ~ Normal(0. 1), d = 30 Asymptotic, ¢, ~ Normal 0.




Beta(2,5) Variables (d=2,30)




Approximating an Eliptic PDE

We want to approximate g(&) = u(1/2,&) where

d du

% {a(x,ﬁ)a(x,ﬁ)} =1 (x,&)€(0,1)x I
u(0,€) =u(1,§)=0

with diffusivity log(a(x, &)) = 3+ 02 >0_, VAkpk(x)&, where i
{Ye_; and {pk(x)}i_; are determined by C.(x1,x:) = exp [7%]
» Compute PCE using Basis Pursuit (Least Angle Regression)

» Measure accuracy in PCE approximation ga by computing
Mie/? lg = all () USing Mies: = 10000 samples from w(g).

» Measure mean error using 20 trials




Effect of dimension on performance

of CSA

10* 10° 10°

Number of samples M Number of samples M

A ————————————————————————————————————————————————

(Left) 30th degree Legendre polynomial in 2 dimensions. (Right)
4th degree Legendre polynomial in 20 dimensions



Effect of dimension on pefrformance

of CSA

10% ) 10°

Number of samples M Number of samples M

(Left) 30th degree Jacobi polynomial in 2 dimensions. (Right) 4th
degree Jacobi polynomial in 20 dimensions



CSA vs. asymptotic method

102 10° 10 10?

Number of samples M Number of samples M

(left) d = 2 Jacobi approximation and (right) d = 20 Legendre
approximation.



CSA vs. asymptotic method

Number

(left) d = 2 and (right) d = 20 Hermite approximation.



Applying CSA to the nozzle problem

D




Applying CSA to the nozzle problem




