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X-Ray Phase Contrast Imaging: Complementary Data ()
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Phase Contrast Dark-Field
Contrast between dense and  Fine structure within Sharp contrast at boundaries.
less-dense (low-Z) regions. the low-Z regions. Microstructures cause scattering.

Absorption
No material detail.

To acquire only attenuation data leaves out significant information
about the material properties

M. Bech, et. Al,, Z. Med. Phys., 20, 7, 2010.
4/19/2016

A. Dagel 4



Greater Sensitivity with Phase Contrast h) S

Phase shift

10" 4~ /
7

e X-ray absorption imaging is used for
non-destructive imaging

* Poor sensitivity to low
absorbing (low-Z) materials

P Absorption

21 °
10 I T T T T

0 10 20 30 40 50 60
Atomic Number

Phase contrast
FiG. 1. Atomic x-ray phase shift p and absorption u, for 1 A (solid line) and ..
0.5 A (dashed line) x-rays are plotted versus the atomic number Z. The 1000x more sensitive
value of p is almost a thousand times larger than u, for light elements.

Ref: A. Momose and J. Fukuda, Med. Phys., 22, 375, 1995.
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Grating-Based XPCI h) S

Talbot-Lau Interferometer

* Source grating: GO
* Enables use of conventional
x-ray tube
* Phase grating: G1
* Imposes a modulated phase
shift on wavefront
* Analyzer grating: G2
e Converts narrow fringe
pattern to intensity signal

-----

Detector

G2

X G1

Source grating enables
lab-based XPCI

M. Nielsen, et. al., Phys Med Biol, 57, 5971, 2012.
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Laboratory Based System at Sandia () i
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4/19/2016 A. Dagel 7




MATERIALS SCIENCE APPLICATIONS
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Electroplated Gold and DRIE Etched Si MEMs rih) it
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Gold electroplated magnetic coil and gold plated stylus ion trap

Absorption | Dark Field

4/19/2016 A. Dagel



Sandia

Microfabricated lon Trap (not packaged) i) i,

Transmission Dark Field Differential Phase
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Detection of Hidden Flaws in Aircraft Solid Lamina@ ot
Composite Structure
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Without
copper mesh

With copper
mesh
Absorption Phase Contrast Dark Field
Flaw: GRAFOIL
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Additively Manufactured Plastic in Metal Mount ()i
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Transmission Dark Field

.
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Additively Manufactured Plastic in Metal Mount (i) i

Wrag f Phase Unwrapped Phase




Phase Wrapping ) i
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— Si -- Si wrapped
.- _ Cu -- Cu wrapped
Gd -- Gd wrapped

Phase Shift (rad)

50
Distance (um)

= Phase wrapping process is nonlinear
" P(x) = @(x) + 2mk(x)

= kisaninteger;, —n< Y <7

= @(x) relates to some physical quantity
— SAR: surface topography

— XPCI: electron density/index of refraction

= Phase unwrapping problem: estimate ¢ (x) for ¢ (x) from
wrapped function Y (x

4/19/2016
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Phase Data rh)

= Continuous phase stored digitally: incomplete representation
= Measure continuous function at discrete points
= Samples span a limited extent of total signal

= |nsufficient sample spacing may preclude reconstruction to a
satisfying level of fidelity

= Wrapped phase extracted from sampled signal may not allow
unwrapping to any level of fidelity
= Noise can cause phase unwrapping failure
= Unwrapping captures a noisy estimate of tfl‘r% true phase

= Causes an effect analogous to aliasing A
Noise cloud phasor

Signal phasor
>Re
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Identifying Residues r) eons
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Unwrapped phases can be obtained by integrating (summing)
wrapped phase differences

= Inconsistencies detected by summing wrapped phase differences
(gradients) around every 2x2

= Nyquist sampling: phase change constrained to it rads/sample

= Helps localize source of each phase inconsistency
A=0 A=0.3

Sources of residues 0.1¢——— 0.1 «—— 0.2

= Zero magnitudes

= Phase discontinuities A=0.3 A=-0.1]1A=0.1 A=-0.8

= Noise 02 0.2 A=0.2

o : : -0.2—>0.2 ———>0.6 e

|n$:or'15|stent phase gradients A=0 4 A=0.4

" Aliasing _ 0.6-1=-0.4
The existence of residues =2 . .
path-dependencein 2-D phase ;=) A,=0 g= ) A=1
unwrapping i=1 i=1

A. Dagel
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Path Dependence i)

= |f the phase or its gradient Vsatisfy conditions for path
independence, phase unwrapping is path independent and
task is trivial

= Evaluate @(7) = fc Vo -dr + <p(§)) sequentially along a path that
covers domain D.
= |nreal data, usually violate path independence
= Need to choose a path that covers domain D and satisfies certain
properties, OR
= Use minimization criteria to get unwrapped phase estimates with
explicitly satisfying an integration path
= Aliasing, singularities or noise can make phase unwrapping
path dependent

= All 2-D path following phase unwrapping algorithms are concerned
with choosing a path

4/19/2016 A. Dagel 17




Methods of 2-D Phase Unwrapping rih) e
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= Find a function whose unwrapped phase gradients are close to the
measured wrapped phase gradients

_________ Global Local

e Unwrap all simultaneously e Solve along a path
* Minimum norm methods * Branch cuts connect residues of
e (Case: L2 norm: least squares opposite polarity; path doesn’t cross
* Transform (FFT,DCT) * Fast
e Matrix (weighting, nonlinear) e Efficient if low phase noise
* Fast e Optimization spatially incomplete in
e Sensitive to residues noisy regions

e Corruption spreads throughout image
* Doesn’t work well with

= Network Flow

= Local path to calculate residues = node; node connected by arcs; look for optimal
flow that minimizes sum for all arc flows

= Intensive memory usage and computational complexity
I ———————————————
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1-D Unwrapping is Insufficient ) et
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Advanced Phase Unwrapping Challenges ()&=
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Packaged microfabricated surface electrode ion trap

g\ﬁql e e L h .
@ Ba MY Ewﬂ‘ b f‘“'“‘] )
;,ugye hs ﬂlg, &

Transmission

)
)
O
L
(o
©
v
Q.
Q.
O
=

= . ; | l
ik V.'ur!" 1‘{11 *”#*f"{'l"" '

how 1|
Bl W BRI '*5% e el Sl
r?; :.:H Y A S %*%W«Wl“‘- &‘* adix J" b{ ’ ’.‘

i A L R

Dark Field
Unwrapped Phase




XPCl in Materials Science i) it

= |nspectionis critical to assuring functionality and security
= “Slice and dice” inspection = Limited imaging depth
= Randomly selected samples = Complicated sample preparation
= Labor intensive = Limited in materials that can be inspected

= X-ray phase contrast imaging (XPCl)

= Non-destructive
= Three orders of magnitude greater sensitivity to phase over
absorption imaging
= Complementary imaging modalities (absorption, phase, dark-field)
= Visualization of internal structure
= Compare part topography to CAD design
= Look for cracks, voids
= |dentify unfused powder

= Need advanced phase unwrapping algorithms
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XPCl in Materials Science i) it

= Non-destructive
= Three orders of magnitude greater sensitivity to phase over
absorption imaging
= Complementary imaging modalities (absorption, phase, dark-
field)
= Visualization of internal structure
= Compare part topography to CAD design
= ook for cracks, voids, delaminations

= Need advanced phase unwrapping algorithms

e
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BACK-UP SLIDES
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Phase Unwrapping: Analogies to SAR ri) fooe
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s ;"‘ Cone beam geometry? aka flat earth

flat-earth phase is the phase present
in the interferometric signal due to
the curvature of the reference
surface

4/19/2016



Flat Earth Phase rh) pea_

Slant Range
5,. Resolution

Grazing Angle

Ground Plane W

" =2 ~
6g Ground Range 6g
Resolution
Figure 1.6. Slant plane and ground plane imaging geometry (flat earth).
Viewing Position Spherical Earth Topography
‘Sdgvp ¥ JfVP*dfss 3 vaf d)§5+ g

Ref: Jackson, C.R., Chapter 1: Principles of Sythentic Aperture Radar from Radar Imaging Resources, Denver, CO
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SAR interferogram
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Fig 4 (a) Flat-earth phase Derived with Common Method Fi

Ai, B, Liu, K., Li, X. & Li,gD. . Flat-earth phase removal algorithm improved with

1000}

Flat-Earth Phase Derived with Conventional Frequency Shift Method
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A4 (b) Interferogram Flattened with Common Method ] ]
equency information of interferogram. in Proc. SPIE 7147, Geoinformatics
2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images 7147, 71471A-71471A-10 (2008).

fr
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Phase Unwrapping: Analogies to SAR rh)

Laboratories

i ;I'r Cone beam geometry? aka flat earth

S flat-earth phase:

the phase present in the
interferometric signal due to the curvature
of the reference surface

analyser grating detector

® Figure adapted from: Birnbacher, L. et al. Experimental Realisation of Grating-
based Phase-contrast Computed Tomography. Sci. Rep. 6, 24022 (2016).
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