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@ Introduction
e Forward UQ — Polynomial Chaos
Q Inverse UQ — Bayesian Inference

Q Advanced Topics
@ High Dimensional PC Surrogate Construction
@ Account for Model Error in Bayesian Inference

e Closure



Background

@ Ph.D. from U. of Michigan, Applied Math,, 2007
@ 2007-present: working in UQ at Sandia National Labs

@ US Department of Energy, Office of Science, Advanced Scientific
Computing Research (ASCR)
@ QUEST Institute (Quantification of Uncertainty in Extreme Scale
CompuTations)
o PI: Habib Najm
e www.quest-scidac.org
@ Advanced UQ methods development
e Reach out to application community
@ SNL-CA: 5-10 staff members, ~ 5 postdocs
@ Main research code: UQTk (www.sandia.gov/UQToolkit)

@ Lightweight C++/Python codebase
@ UQTk v3.0 to be posted soon
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UQ Software Packages under QUEST

@ The SciDAC Institute on Quantification of Uncertainty in Extreme
Scale Computations (QUEST) is developing and maintaining a
number of packages

http://www.quest—-scidac.org/

DAKOTA: http://dakota.sandia.gov/

UQTk: UQ Toolkit http://www.sandia.gov/UQToolkit/
GPMSA: Gaussian Process Modeling and Sensitivity Analysis

QUESO: Bayesian inference
https://github.com/libqueso/queso/releases

MUQ: MIT Uncertainty Quantification library
https://bitbucket.org/mitug/muqg

@ Many packages are becoming available outside QUEST (UQLab,
OpenTurns, SmartUQ, ChaosPy,...)
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http://www.quest-scidac.org/
http://dakota.sandia.gov/
http://www.sandia.gov/UQToolkit/
https://github.com/libqueso/queso/releases
https://bitbucket.org/mituq/muq

Uncertainty Quantification Toolkit (UQTKk)

@ A library of C++ and Python functions for propagation of uncertainty
through computational models
@ Mainly relies on Polynomial Chaos (PC) expansions for representing
random variables and stochastic processes
@ Target usage:
e Rapid prototyping
o Algorithmic research
e Tutorials / educational
@ Version 2.1 released under the GNU Lesser General Public License
C++ Tools for intrusive and non-intrusive UQ
Polynomial Chaos
Bayesian inference tools (various MCMC types)
Regression (polynomial, RBF, GP) tools
(Sparse) quadrature integration
o Rosenblatt transformation

e Python postprocessing and analysis tools k

@ Version 3.0 to be released very soon
@ Available at http://www.sandia.gov/UQToolkit
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http://www.sandia.gov/UQToolkit

Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Inverse & Forward UQ
Model validation & comparison, Hypothesis testing
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The Case for Uncertainty Quantification

UQ needed for... Uncertainty Sources
@ Model predictions e Model parameters

@ Model validation and comparison

Initial/boundary conditions
Confidence assessment

Model geometry/structure

Reliability analysis
@ Lack of knowledge

@ Dimensionality reduction

@ Optimal design ® Data noise

@ Decision support @ Intrinsic stochasticity
@ (Noisy) data assimilation @ Numerical errors, too
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Outline

e Forward UQ — Polynomial Chaos
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Polynomial Chaos — functional representation for RVs

@ First introduced by Wiener, 1938

@ Revitalized by Ghanem and Spanos, 1991

@ Convergent series if U has finite variance
@ Selection of order p is a modeling choice

@ Describes ar.v. U with a vector of PC modes (ug, u1, - . .

p
U~ > wthp ()
k=0

 Up)

@ Standard r.v. &, standard orthogonal polynomials ¢ (¢), i.e.

2
J i) (E)me(€)d€ = b5l
[[ PC Type [ Domain [[ Density ¢ (£) | Polynomial | Free parameters ||
2

Gauss-Hermite (—o00, +00) \/%e*% Hermite none
Legendre-Uniform | [—1,1] % Legendre none
Gamma-Laguerre | [0, +oo) ﬁzf;f) Laguerre a>-—1

. a(1_¢)P .
Beta-Jacobi [—1,1] % Jacobi a>-1,>-1

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral
@ Needamap U « &

_ 1
Uk = TRp, 12
(Uipy,) =

U~ 3 ourthi(§)

<U¢k>
JU®)

e (£)dE

@ If lucky, there is an explicit formula, e.g. lognormal U = e¢

1.
‘ — Exact Lognormal‘
0.
0.
HG PC Order 1
0.4
0.2 N\
L \\\\\\
. \\
’ 2 3 4
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Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral

@ Needamap U « &

_ 1
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Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral
@ Needamap U « &

_ 1
Uk = TRp, 12
(Uipy,) =

U~ 3 ourthi(§)

<U¢k>
JU®)

e (£)dE

@ If lucky, there is an explicit formula, e.g. lognormal U = e¢
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Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral
@ Needamap U « &

_ 1
Uk = TRp, 12
(Uipy,) =

U~ 3 ourthi(§)

<U¢k>
JU®)

e (£)dE

@ If lucky, there is an explicit formula, e.g. lognormal U = e¢

1.
‘ — Exact Lognormal‘
0.
0. M\
I HG PC Order 7

0.4 ’
qu \\
0 A
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Construction of 1D PC U~ 3P _qurti(€)

@ Orthogonal projection: up = H¢1H2<U¢k>

@ Need to compute integral (Uig) = [U(? me(€)dE
@ Needamap U « &

@ CDF transform helps:

o U=F; ( Ly if ¢ is Uniform, Legendre-Uniform PC

o U = F; (®(¢)) if ¢ is Normal, Gauss-Hermite PC

where Fy;(-) is the Cumulative Distribution Function (CDF) of U.
[and ®(-) is CDF for standard normal]
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Multivariate Polynomial Chaos

@ Multivariate polynomial

K
\I’k(g) = wal(fl) o 'wan (gn)
Ul = Z ulk\pk(glv cee 7§n)
o @ Usuallyd=n

Ko @ Construction non-trivial: e.g., capture
U, :ZUQk\I/k(fh...,fn) @ the PDF of U
k=0

@ select moments of U
@ some Qol h(U)

@ Multivariate normal is a special case

Kq
@ Multiindex (a1, ..., an) selection,
Ug = Z uar V€1, - -5 &n) Truncation; see later
k=0

@ Rosenblatt map
(multivariate CDF transform)
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Multivariate Polynomial Chaos

@ Multivariate polynomial
\I’k(s) = wal(gl) o 'wan (£n)
@ Usuallyd=mn

K
Uy =) ug®r(Sn,. ., 6n)
k=0

Ko @ Construction non-trivial: e.g., capture
U, :Zuﬂquk(gly-u;fn) @ the PDF of U
k=0

@ select moments of U
@ some Qol h(U)

@ Multivariate normal is a special case

Kq
@ Multiindex (a1, ..., an) selection,
Ug = Z uar V€1, - -5 &n) Truncation; see later
k=0

- @ Rosenblatt map
(multivariate CDF transform)

Fun example: X = ¢2 + £2 is exponential r.v. if ¢'s are i.i.d. gaussians.
However, no finite order 1D PC exists.
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Essential Use of PC in UQ U~ Zfzo up V(&)

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PC for uncertain parameters
@ Evaluate PC for model outputs

Advantages:

@ Computational efficiency

@ Utility

Moments: E[u] = ug, V[u] = 31, u2]| W42, ...

Global Sensitivities — fractional variances, Sobol’ indices

Uncertainty propagation
Surrogate for forward model

Requirements:
@ Finite variances (not a handicap in practice)
@ Smooth forward functions
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PC features: moment extraction

K
U~ upli(é)
k=0

@ Expectation: (u) = uy
@ Variance o2

K K K
= 3D ujur (W€ k(€)= D> uf || Wy
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PC features: Global Sensitivity Analysis ()~ u.u,(¢)
k=0

@ Main effect sensitivity indices

_ Var[EU€&)] _ Zwer, uill Vsl

S; =
Var[U(§)] k=0 Uil [Pk |2

o [, is the set of bases with only ¢; involved
@ S, is the uncertainty contribution that is due to i-th parameter only
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PC features: Global Sensitivity Analysis v() =~ w6

@ Main effect sensitivity indices

_ Var[EU€&)] _ Zwer, uill Vsl

S; =
Var[U(§)] k=0 Uil [Pk |2

o [, is the set of bases with only ¢; involved
@ S, is the uncertainty contribution that is due to i-th parameter only

@ Total effect sensitivity indices

 Var[EU(€]¢-5)] _ Zrerr willVell”
VarlU(§)] Dm0 Upl[Tl[?

17 is the set of bases with ¢; involved, including all its interactions.

E:
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PC features: Global Sensitivity Analysis ()~ u.u,(¢)
k=0

@ Main effect sensitivity indices

_ VarlBUEJ)] _ Ser, v Wl
VarlU(€)] 2 k>0 “iH‘PkHQ

Si

o [, is the set of bases with only ¢; involved
@ S, is the uncertainty contribution that is due to i-th parameter only

@ Joint sensitivity indices

Zkeﬂij ul%:H\IlkHQ
> k0 Url [Pkl [2

_ Var[E(U(€l&. &)

%= T VU (@)

— 8 -8, =

e I[,; is the set of bases with only ¢, and ¢; involved
e §;; is the uncertainty contribution that is due to (i, j) parameter pair
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PC features: uncertainty propagation

K K
U= wi(€) FU) =) fi(€)
k=0 k=0

@ Basic task: given PC for inputs, find PC for outputs.

@ Input-output map can also be defined implicitly, via governing
equations G(f,U) = 0.

@ Two approaches

o Intrusive: project governing equations
@ Results in set of equations for the PC modes
@ Requires redesign of computer code
@ PCEs for all uncertain variables in system

e Non-intrusive: project outputs of interest
@ Sampling to evaluate projection operator
@ Can use existing code as black box
@ Only computes PCEs for quantities of interest
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Non-intrusive Spectral Projection (NISP) PC UQ

K K
U~y uply(€) FU) = frP(€)
k=0 k=0
@ For any model output of interest f(X):
(fr)
fie = g2 = e | FX@) ve)me()de

@ Evaluate projection integral numerically
@ Relies on black-box utilization of the computational model
@ Integral can be evaluated using
— A variety of (Quasi) Monte Carlo methods
@ Slow convergence; ~ indep. of dimensionality
— Quadrature/Sparse-Quadrature methods
e Fast convergence; depends on dimensionality
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PC surrogate construction

@ Build/presume PC for input parameter U

K
U€) =Y upTi(€)
k=0

with respect to multivariate standard polynomials.
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PC surrogate construction

@ Build/presume PC for input parameter U

K
U€) =Y upTi(€)
k=0

with respect to multivariate standard polynomials.

@ E.g., uniform on an interval, or gaussian with known moments,

U=Uy+Ul¢
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PC surrogate construction

@ Build/presume PC for input parameter U

K
U€) =Y upTi(€)
k=0

with respect to multivariate standard polynomials.
@ If input parameters are uniform U; ~ Uniform[a;, b;], then

ai—l-bi bi—a,»
+

U =
2 2

&i-
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PC surrogate construction

@ Build/presume PC for input parameter U

K
UE) = upWi(€)
k=0

with respect to multivariate standard polynomials.

@ Input parameters are represented via their cumulative distribution
function (CDF) F(+), such that, with &; ~ Uniform[—1, 1]

i+ 1 .
U = Fy! <£;> fori=1,2,...,d.
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PC surrogate construction

Build/presume PC for input parameter U

K
U€) = urTy(€)
k=0

with respect to multivariate standard polynomials.

Input parameters are represented via their cumulative distribution
function (CDF) F(+), such that, with & ~ Uniform[—1, 1]

i+ 1 )
Uy = F;' <§; ) fori =1,2,...,d.

Forward function f(-), output Z
K
Z=[fU(¥)) Z=> frUi(&) = f.(£)
k=0

Global sensitivity information for free
- Sobol indices, variance-based decomposition.
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Outline

@ Inverse UQ - Bayesian Inference
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Inverse UQ — Estimation of Uncertain Parameters

Probabilistic setting
@ Require joint PDF on input space
@ Statistical inference — an inverse problem

Bayesian setting

@ Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle
— MaxEnt Methods
@ Given Data: PDF on uncertain inputs can be estimated using
Bayes formula
— Bayesian Inference
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Bayes formula for Parameter Inference

@ Collected data: {(@i, vi) Y,
@ Data model: yi = flxis ) + €
@ Bayes formula: Likelihood  Prior
p(ylA)  p(A
o) _ TuN 2
Posterior
p(y)
Evidence

Prior: knowledge of \ prior to data

Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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The Prior

@ Prior p(A\) comes from

. . Likelihood  Prior
e Physical constraints

o Prior data/knowledge p(\ly) p(ylA)  p(A)
@ Types of uninformative priors Posterior e

o Improper prior P(y)

o Objective prior Evidence

o Maxent prior

Reference prior
Jeffreys prior

@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters

@ The choice of prior can be crucial if data is not informative

@ When there is sufficient information in the data, the data can
overrule the prior
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Construction of the Likelihood p(y|))

Likelihood  Prior

@ Requires a presumed error model p(\y) p(ylA) p(A)

@ Data model: Yi = f(ﬂjl, /\) + € Posterior
p(y)

Evidence

@ Model this error as a random variable, e.g.

@ Error is due to instrument measurement noise
e Instrument has Gaussian errors, with no bias
o Measurements are independent

e~ N(0,0%)
@ For any given A, this implies
yilX, o ~ N(f(zs5X),0%)

\/%J exp (_ (yi — égu )\))2)

or

N
plylr o) =]]
=1
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Exploring the Posterior

@ Given any sample ), the un-normalized posterior probability can

be easily computed

Posterior Likelihood  Prior

p(Aly) < p(ylA) p(\)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
o Random walk with proposal PDF & rejection rules

— Computationally intensive, O(10%) samples
— Each sample: evaluation of the forward model

e Surrogate models

@ Evaluate moments/marginals from the MCMC statistics
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Forward and Inverse UQ in a nutshell

f

Model Surrogate /\ Data
Liksihood

C} Forward UQ @]—» Prediction p(h(\)|D)

B Inverse UQ Any model
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Bayesian inference: Noise! = Posterior uncertaintyt

@ True model y = tanh(3z — 0.9)
@ Increasing data noise level
@ Calibrating f(z;\) = A\je?o® — 2

@ Larger data noise = larger posterior uncertainty

1. 1.
e o Data, Noise = 0.1
1.0| — Predictive mean °
) ° 1.7
True function
0.
) 1.4
> 0. <
1.5
-0 d
. ~
1.4 Noise =0.1
-1. 'y . o
-1. 1
=10 05 0.0 0.5 1.0 06 07 08 09 1.0
X A
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Bayesian inference: Noise! = Posterior uncertaintyt

@ True model y = tanh(3z — 0.9)

@ Increasing data noise level

@ Calibrating f(z;\) = A\je?o® — 2

@ Larger data noise = larger posterior uncertainty

1. 1.
e e Data, Noise = 0.05
1.0 — Predictive mean q
. ) 1.7
True function e
0.
° 1.4
> 0. b & \
1.5 )
-0. @
1 - 1.4 Noise =0.05
-1. 1
=1.0 -0.5 0.0 0.5 1.0 5 06 0.7 08 09 1.0
A
X 1
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Bayesian inference: Noise! = Posterior uncertaintyt

@ True model y = tanh(3z — 0.9)

@ Increasing data noise level

@ Calibrating f(z;\) = A\je?o® — 2
@ Larger data noise = larger posterior uncertainty

1.
e e Data, Noise = 0.02
1.0| — Predictive mean Ss
True function o
O. L
e /
-0. s
—1.0¢ o i
-1.
=1.0 -0.5 0.0 0.5 1.0
X
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Bayesian inference: Noise! = Posterior uncertaintyt

@ True model y = tanh(3z — 0.9)

@ Increasing data noise level

@ Calibrating f(z;\) = A\je?o® — 2

@ Larger data noise = larger posterior uncertainty

1. 1.
e o Data, Noise = 0.1 — Noise = 0.02
- — Noise = 0.05
1.0 Predlctlve'mean : ° 11 — Noise - 01
True function
0.
. 1.4 L)
> 0 < %
1.5
-0 hd
: L 2
°.
—1. e...o z 1.4
-1. 1,
=1.0 -0.5 0.0 0.5 1.0 -5 0.6 0.7 0.8 0.9 1.0
A
X 1
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Bayesian inference: Data range = Correlation

@ True model y = tanh(3z — 0.9)

@ Collecting data at different locations

@ Calibrating f(z;\) = A\je?o® — 2

@ Correlation structure can change drastically

1.

1. -
. e

_1qse s
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Outline

@ Advanced Topics
@ High Dimensional PC Surrogate Construction
@ Account for Model Error in Bayesian Inference
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations

@ Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality
e Large number of input parameters
e Dense spatial/temporal grid
e PC truncation is a challenge

Low-rank (tensor) representations
Sparse learning, (Bayesian) compressive sensing

Expensive Models
Non-Linear Models, Discontinuities, Bimodalities

Intrinsic Stochasticity
Model Errors
Input Correlations

@ Time Dynamics

°
°
@ Scarce Data
°
°
°
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality
@ Expensive Models
e UQ studies seriously hindered
Need surrogates with few model simulations
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
e Polynomial representation not good enough
e Quadrature integration fails

Stochastic domain decomposition
Data clustering/classification

Scarce Data

Intrinsic Stochasticity
Model Errors

Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
Scarce Data

e Bayesian inference is prior-dominated
e Lack of parameter identifiability

Bayesian methods do quantify lack-of-data uncertainty
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities

@ Scarce Data

@ Intrinsic Stochasticity

e Quadrature and sparse quadrature methods fail
Averaged quantities
Bayesian regression

Model Errors

Input Correlations

Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality
@ Expensive Models
@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data
@ Intrinsic Stochasticity
@ Model Errors
e Models are not perfect
e Can not be ignored during parameter estimation

Additive model error as a Gaussian Process
Embedded model error

Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity

@ Model Errors

@ Input Correlations

e Hard to sample from

e Hard to interpret sensitivities

Rosenblatt transformation

Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations

@ Low-Probability (Tail) Events

e PC inaccurate in capturing regions of low probability

Use targeted PC germs £ with fat tails

Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations

@ Time Dynamics

e Large amplification of phase errors over long time horizon
e Chaotic dynamics

Increase order with time to retain accuracy
Ad-hoc corrections
Look at averaged quantities
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Outline

@ Advanced Topics
@ High Dimensional PC Surrogate Construction
@ Account for Model Error in Bayesian Inference
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Surrogate construction: scope and challenges
Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 26 /57



Surrogate construction: scope and challenges
Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity

Need to build accurate surrogates with as few
training runs as possible
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Surrogate construction: scope and challenges
Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity
Need to build accurate surrogates with as few
training runs as possible

e High-dimensional input space

Too many samples needed to cover the space
Too many terms in the polynomial expansion
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Alternative methods to obtain PC coefficients

K
~ > k(&)
k=0
o Projection fk - %
The integral (f(£) = [ (€)Ur(€)mg (€)dE is estimated by...

o Monte-Carlo

many(!) random samples

j=1
e Quadrature

Q
> FE) V(g w

j=1

samples at quadrature

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 27 /57



Alternative methods to obtain PC coefficients

K
~ > feT(€)
k=0
e Projection fk = 7“(%%25))
The integral (f(&) = [F(&) £(£)d£ is estimated by...

¢ Monte-Carlo
N

T3 e )
j=1
e Quadrature

Q
Z f(£]>‘llk(£])w3

e Bayesian regression

many(!) random samples

samples at quadrature

any (number of) samples

P(felf(&;)) o< P(f(&;)]fx)P(fx)
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Alternative methods to obtain PC coefficients

K
) =D feli(é)
k=0
* Projection fk. = %
The integral (f(£) = | F(&)¥i(€)me(€)dE is estimated by...
e Monte-Carlo
1 N
N > FE)W(E) many(!) random samples

j=1
e Quadrature

Q
Z f(é])\llk(sj)wj

j=1

samples at quadrature

e Bayesian regression —
P(f|D) x P(D|f) P(§) L any (number of) samples

Posterior Likelihood Prior
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Bayesian inference of PC surrogate

Posterior Likelihood Prior
K
Z = f(&) = > =0 [kYk(§) = f:(§) P(f|D) < P(D|f) P(f)
e Data consists of training runs
D ={(&, Z)}L

o Likelihood with a gaussian noise model with o2 fixed or inferred,

) e (-485)

e Prior on f is chosen to be conjugate, uniform or gaussian.

o) = Poif) = (5

e Posterior is a multivariate normal
f € MVYN(uX)

e The (uncertain) surrogate is a gaussian process
me ©Tf € GP(EE) n ¥(EDT(E)T)
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Bayesian inference of PC surrogate: nhigh-d, low-data regime
Z = f(&) ~ Tieo fr Uk (8)
\Pk(§17 527 ceey gd) = 1/%1 (gl)wkz (52) e ¢kd (fd)

e Issues:

. how to properly choose
the basis set?

Dim 2
© 4 M w s e @ N o ©
©or® © © © © 0 © 0 0 o o

o o o
8 9 10

“re © © © © 0o © o o o
Ne @0 0 @ © 0 0 0 O
we © 6 © 0 0 o ©
~&r® © ©6 © ©0 o o

Jote © © © 0 @

ot®e © © 0 ©

~re © o o

o

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community
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\Pk(§17 527 ceey gd) = 1/%1 (gl)wkz (52) e ¢kd (fd)

e Issues:

. how to properly choose
the basis set?

Dim 2
© 4 M w s e @ N o ©
©or® © © © © 0 © 0 0 o o

“r®e © © © © o0 © o0 o o o
Ne @0 0 @ 0 0 0 0 0 0 ©
we © 6 0 e e © 0 0 o o
~&r® ©6 ©6 © © © © o0 o o o
otf® ©6 ©6 © @ 0 © 0 0 0 o
N~ © 6 6 © o o o o o o
®l® ©6 6 0 0 0 0 0 0 0 0
©t® ©6 6 0 0 0 0 0 0 0 0

© 6 06 0 0 0 0 0 o0 o o

Sole © 6 06 6 © © 06 © © o
3

o

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 29/57



Bayesian inference of PC surrogate: nhigh-d, low-data regime
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e need to work in underdetermined regime
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Bayesian inference of PC surrogate: nhigh-d, low-data regime
Z = f(&) ~ Tieo fr Uk (8)
\Pk(§17 527 ceey gd) = ’lplﬂ (gl)wkz (52) e ¢kd (fd)

e Issues:

Dim 2
© 4 M w s e @ N o ©
©or® © © © © 0 © 0 0 o o

. how to properly choose
the basis set?

e 0 o o o
6 7 8 9 10

~le o © © o o o
N @ © 0 o o
wre © 6 o o
~le o 0 o
Sate © o

o

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community
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Bayesian inference of PC surrogate: nhigh-d, low-data regime
Z = f(&) ~ Tieo fr Uk (8)
\Pk(§17 527 ceey gd) = ’lplﬂ (gl)wkz (52) e ¢kd (fd)

e Issues:

Dim 2
© 4 M w s e @ N o ©
©or® © © © © 0 © 0 0 o o

. how to properly choose
the basis set?

“re © © o o
[T R )
wte 0 ©
~r0 ©

ol e

e o o o
7 8 9 10

ECI-Y

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community
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In a different language....

e N training data points (&;, Z;) and K + 1 basis terms ¥ (-)
e Projection matrix PV *E+D with P, = Wy (x;)
e Find regression weights f = (fo, ..., fx) so that

Z ~Pf Zi = Yo ¥k (€))

or
e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K + 1 = (p + d)!/(p!d!) terms.

e For limited data and large basis set (IV < K) this is a sparse signal
recovery problem = need some regularization/constraints.

o Least-squares argming {||Z — P f||2}
e The ‘sparsest’ argming {||Z — P f||2 + || fllo}
e Compressive sensing argming{||Z — P fl|2 + o||f||]1}
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In a different language....

e N ftraining data points (¢;, Z;) and K + 1 basis terms W(+)
o Projection matrix PV *E+D with P, = Wy (x;)
e Find regression weights f = (fo,..., fx) so that

Z~Pf Zi~ Zfzofk‘lfk(&)

or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K + 1 = (p + d)!/(pld!) terms.

e For limited data and large basis set (V < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argming {||Z — P f||2}

e The ‘sparsest’ argming {||Z — Pf|l2 + a||fllo}

e Compressive sensing argming {||Z — P fl|2 + o||f]]1}
Bayesian Likelihood Prior
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

e Dimensionality reduction by using hierarchical priors

1 I a ook
.0,2 — T
p(filod) = <= = plotla) = S
k

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

e Dimensionality reduction by using hierarchical priors

1 _ fl% o ool
Tk _ao?
p(filor) = \ﬁak 7k p(oila) = 3¢
o Effectively, one obtains Laplace sparsity prior
K—1
p(Fla) = H plislodptotiaaot = [T Ve A

e The parameter a can be further modeled hierarchically, or fixed.

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

e Dimensionality reduction by using hierarchical priors

i

1 _202 2 « 7&(‘)‘%
7 F ounla) = —e
pUJil k) rgk p(ok|) 5
o Effectively, one obtains Laplace sparsity prior
K—-1
a - « .
p(fla) = Hp fk|0'k Uk‘a)do'i = ]:!:J(:) ge Vol fil

e The parameter a can be further modeled hierarchically, or fixed.
o Evidence maximization dictates values for o2, ., 0 and allows exact
Bayesian solution
c~ MVN(p, X)

with
p=o025P"y % = o*(P" P + diag(c®/o7))

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

e Dimensionality reduction by using hierarchical priors

, 1 -k , o ool
o) = e 2% oula) = = 2
o Effectively, one obtains Laplace sparsity prior
K-1
@ _Jalf
p(fle) = Hp frlot)p(oile)doi, = H %6 Velil
k=0

e The parameter « can be further modeled hierarchically, or fixed.
o Evidence maximization dictates values for o2, o, o2 and allows exact
Bayesian solution
c~ MVYN(p,X)
with
p=o0’SP"u S = o*(PT P + diag(c” /o)) !

e KEY: Some o7 — 0, hence the corresponding basis terms are dropped.

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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BCS removes unnecessary basis terms

fz,y) = cos(x + 4y) f(z,y) = cos(a” + 4y)

Order (dim 2) Order (dim 2)
2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

-2

-4

-6

-8

-10 :

-12

-14

-16

" 10

The square (i, j) represents the (log) spectral coefficient
for the basis term «;(z)y; (y).
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BCS recovers true PC coefficients with increased
number of measurements

e
o O O
d & A

Coef magnitude, |¢,|

=
o
N

[{® @ Truth IR

[
S
2]

-9 | i i
1070 20 2 60 80 100
Coef Id, k&
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BCS recovers true PC coefficients with increased
number of measurements

T
o O
S O

Coef magnitude, |¢,|

=
o
N

[{® @ Truth LSS EE Pt PP
* K BCSw/N=50| .

-9 | i i
1070 20 2 60 80 100
Coef Id, k&
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BCS recovers true PC coefficients with increased
number of measurements

e
o O O
d & A

Coef magnitude, |¢,|

=
o
N

[{® @ Truth I

[
S
2]

-9 | i i
1070 20 2 60 80 100
Coef Id, k&
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Bayesian Compressive Sensing

e Dimensionality reduction by using hierarchical priors

2 1 _2.75 2 o %%
o) = —F—¢€ k oplae) = —e 2
p(frlok) N p(oil|a) 2
e Effectively, one obtains Laplace sparsity prior
K-—1
o _Ja
plela) = Hpmak (oFlo)do? = U\f valsl

The parameter o can be further modeled hierarchically, or fixed.
¢ Evidence maximization dictates values for o2, a, o2 and allows exact
Bayesian solution
f ~ J¥4){A/(AL’§:)
with
p=o0’SP"u = o> (P" P + diag(c” /o))"

KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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Weighted Bayesian Compressive Sensing

e Dimensionality reduction by using hierarchical priors

17 2
2 1 _Tnkf 2 ap Yk
ag = e k oL|lag) = — 2
p(felok) Toeon ploilar)
e Effectively, one obtains Laplace sparsity prior
K-—1
VA ~ L
c|a = pr”gk O'k‘ak)do'i = kliIO 5 e Vo | fil

e The parameter oy, can be further modeled hierarchically, or fixed.
e Evidence maximization dictates values for o2, a., 0 and allows exact
Bayesian solution
.f ~ MVN(/J” E)
with
p=0cSP"u S = o* (PP + diag(0” /o))"

e KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f
Weighted compressive sensing: min||W f||; suchthat Z ~ P f
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f
Weighted compressive sensing: min||W f||; suchthat Z ~ P f

For sparse signals, Z = P f*, with || f°||o = S < K, ideal weights are

W = diag <\f ’> li.e., Wi = 4o if fi =0]
k

In practice, the true signal coefficients are not known, so...
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f
Weighted compressive sensing: min||W f||; suchthat Z ~ P f

For sparse signals, Z = P f*, with || f°||o = S < K, ideal weights are

W = diag < ) li.e., Wi = 4o if fi =0]
|7l
In practice, the true signal coefficients are not known, so...

Iterative re-weighting

WD = diag <Z)1> [e < 1 for stability]
‘fk |+ €
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Weighted lterative BCS

@ [terative BCS: We implement an iterative procedure that allows
increasing the order for the relevant basis terms while maintaining the
dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

@ Combine basis growth and reweighting!

Model data

O

Initial Basis —>

Weighted
BCS

[ Sparse Basis ]——»[ Final Basis ]

Iterations

(&
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Basis set growth: simple anisotropic function

Dim 2
W

40 ® @

®
® O
T2

3 4 5 6 7
Dim 1
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Basis set growth: ... added outlier term

Dim 2
W

o® O @

®
O-@
T2

3 4 5 6 7
Dim 1
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The UQ Challenge for ACME Land Model

http://www.cesm.ucar.edu/models/cim/

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 70 input parameters; some dependent
@ Non-smooth input-output relationship
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 68-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data

12 12

100

61 32-q10_mr
61 - crit_onset_spyi

61 59 _onset

o0 Site # 51 1 Site # 51
GPP TOTVEGC
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 68-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data

1072

TOTSOMC

EFLX_LH_TOT]|

TOTVEGC

GPP! . 10—3

FROOTCN
FROOT_LEAF|
BDNR

BR_MR
Q10_MR

CN_S1.

CN_S3

RF_L252|
R_MORT
FSTOR2TRAN|
RIT_ONSET_FDD
RIT_ONSET_SWI
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 68-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data

e GPP
gross primary
productivity
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Outline

@ Advanced Topics
@ High Dimensional PC Surrogate Construction
@ Account for Model Error in Bayesian Inference
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Main target: quantification of model error

Model error = deviation from ‘truth’, or from a higher-fidelity model

e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework
Numerical discretization

o ...will be useful for

Model validation

Model comparison

Scientific discovery and model improvement
Reliable computational predictions

e Inverse modeling context

Given experimental or higher-fidelity model data,
estimate the model error
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Motivation: can’t afford ignoring model error

e o Data, N=5

=1.0 -0.5 0.0 0.5 1.0
X

Model-data fit

@ Given noisy data — Gaussian noise

@ Y= girue(T) +¢€
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Motivation: can’t afford ignoring model error

e Data, N=5
1.0| — Predictive mean
[ Predictive stdev L7

=1.0 -0.5 0.0 0.5 1.0 L .5 06 07 08 09 10 1.1
X M
Model-data fit Posterior on parameters

@ Employ Bayesian inference to fit an exponential model: y,, = f(x; \)

@ Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise: y = f(z;\) + eq

@ Plotted:

o Posterior density on the parameters
o Preditive mean and standard deviation
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Motivation: can’t afford ignoring model error

e Data, N=5
1.0| — Predictive mean
[ Predictive stdev

- True function

o — 1.4
_1;1_.0 -0.5 0.0 0.5 1.0 L .5 06 07 08 09 10 1.1
X A
Model-data fit Posterior on parameters

@ Employ Bayesian inference to fit an exponential model: y,, = f(x; \)

@ Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise: y = f(z;\) + eq

@ True model g(z) — dashed-red — differs from fit model f(z, \)
@ Actual discrepancy includes both data and model errors

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 42 /57



Motivation: can’t afford ignoring model error

e o Data, N =20
1.0| — Predictive mean
[ Predictive stdev
0.5/| == True function

1.7
1.4
1.5

0.5 1.0 05 06 07 08 09 10 11
)‘|

Model-data fit Posterior on parameters

Ay

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model
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Motivation: can’t afford ignoring model error

L 1
e e Data,N=50 /
1.0 — Predictive mean .
[ Predictive stdev . / 1.7
0.5 === True function -~

/ 1.6

&

1.5

1.0 05 06 07 08 09 10 11
)‘|

Model-data fit Posterior on parameters

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model
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Motivation: can’t afford ignoring model error

+ « Data, N =50 / + « Data, N =50
1.0| — Predictive mean = 1.0| — Predictive mean

[ Predictive stdev . / [ Predictive stdev
0.5/| == True function °/ 0.5 - True function

1.0 =1.0 -0.5 0.0 0.5 1.0

Model-data fit What we want

@ If the model has structural uncertainty, more data leads to biased and
overconfident results

@ We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

e Cannot ignore model error

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 42/57



Model Error — Challenges with current methods

+ Data, N =50

Total error budget | — Predictive mean

[ Predictive stdev

---- True function

Yi = f(@i; A) + 0(@;) +e
—_

Truth g(z;)

@ Ignoring model error §(x) leads to incorrect predictive errors

@ Conventional statistical modeling (Kennedy and O’Hagan, 2001)

e makes it difficult to disambiguate model/data errors
@ may violate physical constraints
e not meaningful for prediction of other Qols

@ Issue is highlighted in model-to-model calibration (¢; = 0)
@ no a priori knowledge of the statistical structure of the discrepancy
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Model Error — Key idea: probabilistic embedding

Cast input parameters )\ as a random variable A

yi=f@sA) +0(zi) +& ————— yi=flzisA) +e

@ Embed model error in specific submodel phenomenology

e a modified transport or constitutive law
e a modified formulation for a material property
e turbulent model constants

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ Naturally preserves model structure and physical constraints
@ Disambiguates model/data errors
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Model Error — Bayesian density estimation
yi = flzis A) + &
@ Parametrise embedded random variable A:
e PDF form ma(-; )
e Polynomial Chaos (PC): A = )", ax V()

A = a0 +anés

Ao = agp + a21&1 + @222
e Multivariate Normal (MVN):

Ag = aqo + aqgi&y + agés + - + aqaéy

@ Inverse modeling context
o Parameter estimation of A = PDF estimation of A =
= parameter estimation of a

e Bayesian formulation
p(aly) o< Ly(a) p(a)
N—— ~——

Posterior Likelihood Prior
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Model Error — Likelihood options

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246-276, 2015.

Prior p(«)

Data

Likelihood

) yi=flesA) +e

Prob. model for A

Posterior p(«a|y)
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Model Error — Likelihood options

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.
International Journal for Chemical Kinetics, 47(4): pp 246-276, 2015.

Model Data

Likelihood
p(yla)

yi=flesA) +e

Prob. model for A

Posterior p(«a|y)

@ Full Likelihood: L(a) = p(y|a) = p(y1, - .., yn|a) = 7(y)

Degenerate if no data noise
Requires multivariate KDE or high-d integration

Gaussian approximation:

L(a) o< exp (=5(y — p(@)) " ) (y — p(a)))

o Non-intrusive spectral projection with Polynomial Chaos relieves
the expense and provides easy access to mean u(«) and

covariance X(«)
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Model Error — Likelihood options

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246-276, 2015.

Data

Likelihood

B(yla) UERALTT A

Prob. model for A

Posterior p(«a|y)

@ Marginalized Likelihood:
L(a) = p(yla) = [T, p(yile) = [T, 7 (i)
o Requires univariate KDE
o Neglects built-in correlations
o Gaussian approximation:

L(a) ocexp (=3 XL, 25 (@) — il@)?)
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Model Error — Likelihood options

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.
International Journal for Chemical Kinetics, 47(4): pp 246-276, 2015.

Model Data

Likelihood

flai; A) o)

yi=flesA) +e

Prob. model for A

Posterior p(«a|y)

@ Approximate Bayesian Computation (ABC):
L{a) = L (#S252))
@ Mean of f(x;;A) is “centered” on the data

@ The width of the distribution of f(z;; A) is consistent with the spread of the
data around the nominal model prediction

L(a) x exp (212 z [(Hi(a) - yz (Vv Zii (@) — vlpi(e Z/2|)2}>
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Model Error — Predictions
flxs A) = f (253, an¥r(§)) = Dok frlz; a)Tr(§)

@ Non-intrusive spectral projection (NISP) will be employed for
o Likelihood computation
o Posterior/pushed-forward predictions

e Easy access to first two moments:

wlz; a) = folz; a), 02(1';a) = Zf/f(x,a)||‘1’k|\2
k>0
@ Predictive mean Ey(z) = Eo[u(; )]

@ Decomposition of predictive variance

Vy(@)] = Ea[o®(z; 0)] + Valp(z; )] + 07

Model error Poserior/Data error
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = ¢=0-5% 4 ¢=2*

Linear-exponential f(x,\) = er1 2%

10°f

10"

e o Data from truth
— Predictive mean
I Predictive stdev
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® e Data from truth
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I Predictive stdev
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = ¢=0-5% 4 ¢=2*

. _ : — A1+ . . 2
Linear-exponential f(z,\) =e Quadratic-exponential f2(z, \) = e\ tA2e+Ase
0_0 ’[))raetjicf{iovr;l :T::;hn e e Data from truth
icti — Predictive mean
100 I Predictive stdev o I Predictive stdev
10 h
.
N
. ¢
N
G
.
-1 .
10 10"
0 I 2 B 3 4 5 0 T 2 3 4 5
X
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More data leads to ‘leftover’ model error

Callibrating a quadratic f(x) = Ao + A1z + A22®
w.r.t. ‘truth’ g(z) = 6 + 2% — 0.5(z + 1) measured with noise ¢ = 0.1.

N =20 N =50 N = 1000

ta noise

(=] ta noise
B predictive stdev: model error

v dat data noise
Predictive stdev: model error

=
B Predictive stdev: model error

(=]
=1
0

-1.0 -05 D).(D 0.5 1.0 = -0.5 0).(0 0.5 1.0 =1.0 -0.5 OXO 0.5 1.0
1
Summary of features: 10
. . . 10°
@ Well-defined model-to-model calibration
8 101
@ Model-driven discrepancy correlations k "
£ 102

@ Respects physical constraints
@ Disambiguates model and data errors +-e Model error

=--a Data noise
@ Calibrated predictions of multiple Qols

10! 10? 10° 10* 10° 10°
Number of Samples
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Chemistry problem — ABC

@ Homogeneous ignition, methane-air mixture
@ Single-step global reaction model calibrated against a detailed
chemical kinetic model

@ Data: ignition time; range of f
initial 7' & equivalence ratio £
@ Single-step model: 25
CHy 4 205 — CO3 + 2H,0 .2
R = [CH4][Oo]ky
14. &
kf = A eXp(—E/ROT) 1000 yo50 o . 1°.<Z>' '

1200

emp,, 70

@ (InAE)=3, ap¥(€)

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 50/57



Quiality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the

detailed-model data. -
°3

Over the range of (7°, ®): 2 £
@ MAP predictive mean :32 ‘;j
ignition-time is centered | -4

5 =

on the data

@ MAP predictive stdv
is consistent with the
scatter of the data

0.8
1300 0.6

K. Sargsyan, H.N. Najm, and R. Ghanem
"On the Statistical Calibration of Physical Models”
Int. J. Chem. Kin., 47(4): 246-276, 2015
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TransCom3 Experiment of C'O, Flux Inversion
[Gurney et al., Tellus B, 2003]

e Observations d at N = 77 sites around the world
e Inverse problem: find fluxes s at M = 22 locations
e Linearized ‘response’ model R, such that d ~ Rs

dZRS'i‘Ed

Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies
€q is meant to capture data errors, but is ‘entangled’ with
model errors
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Consider 14 different response models R

GISS.prather . .prather3 JMA-CDTM.maki

IS
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S
=a-
S
S

]
c
@
£
g
S
@
o
o
=

Measurements
Measurements

W
<)
w
S
w

510 15 20 %7510 15 20 0 5 10 15 20 %75710'15 20 510 15 20 510 15 20 05 10 15 20
Sources Sources Sources Sources Sources Sources Sources

Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢

e Embed probabilistic model for fluxes s:
d = R(us + Cs¢)
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Consider 14 different response models R

MATCH.law

=
S

»
S

8
=
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5
2
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Measurements

W

N
w
1<)

05 10 15 20 05 10 15 20 %5710 15 20 07571015 20 05 10 15 20 510 15 20 %5710 15 20
Sources Sources Sources Sources Sources Sources Sources

Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢

e Embed probabilistic model for fluxes s:
d = R(us + Cs¢)
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Inferred fluxes show less variability across models

Region Ind09
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Reqgion Ind11

K. Sargsyan (ksargsy@sandia.gov)
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Inferred fluxes show less variability across models

Region ocn01
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Region ocn04

1.5

Inferred fluxes show less variability across models
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{uey THAMS
{uend'NaQy
{ryonbey TIIN
{aonAssew'SHIN
{MEI'HOLVIN
{ueyd HOLVIN
{IeIMYNIq HOIVIN
{eW W.LAD-VINI
{exoyyead SSID
{zieyiead SSIO
{reyrerd-SSIO
16uny'sSSIo

{1e3eq N.LOD

{fouanb-nsH

2.0

Inferred fluxes show less variability across models

1.5
1.0
0.5}
0.0r
—0.5¢
—1.0}
-1.5

xniq

54 /57

April 19, 2016

SLB Webinar

K. Sargsyan (ksargsy@sandia.gov)



n {uey THAMS
% {uend'NaQy

O

e {ryonbey TIIN

$ {aonAssew'SHIN
O

o {MBIHOLVIN

©

> o {ueyo HOLVIN
= —

S 85 HermynIq HOIVIN
© o

= g {BlRW INLAD-VIN[
© 9

> = {ereread-SSIO
7))

3 = {ereuaead-ssin
= {reyread-sSIo

(@)

% {buny'ssIo

% {193eq" NLLOD

W {Lsuanb-nsH

frmy

o) : : s {I0LIJ

o ST S TS T S o

— N AN OO O —

Q0 [

c Xn[q

54 /57

April 19, 2016

SLB Webinar

K. Sargsyan (ksargsy@sandia.gov)



Model error in LES: embed model err in Smagorinsky coefficient

Calibrate with TKE data, predict both TKE and Pressure
Pushed forward posterior

TKE

Pressure

0.00 —0.024,
* * Data from high-fid model * » Data from high-fid model
® @ Pred. mean of low-fid model ~0.02 ® o Pred. mean of low-fid model
0.005¢ @ Pred. st.dev. due to posterior . [ Pred. st.dev. due to posterior
A
—0.02
0.004]
" . £-0.03
000 2
£ -0.032
0.003 No model error 0034
0.001 -0.03¢
® 0o 000000 e 0.'..'.7..
0.0005 = =3 =2 ) —0.0385 =1 =3 =2 =T
y-position y-position
0.007,
» * Data from high-fid model —0.02
® @ Pred. mean of low-fid model * + Data from high-fid model
0.006 [ Pred. st.dev. due to model error —0.024 5 img mt?n °§“’“;’f‘d ";“‘:51
e o e o moe red. st.dev. due to model error
0.005) ¥ Pred. stdev due to posterior —0.021 ﬂ\.‘ B Pred. st.dev. due to posterior
.
-0.02
@ 0.0044 ©
= % -0.03
0.003 . . . g
A
. ~0.032 ! 1
0.003 - With-model-error .
~0.034 With-model-error
0.001
. —0.03 L L
- T
0.0005 =7 =3 =7 =T -0.0
y-position =5 -1 -3 -2 -1
y-position
K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 55/57



Summary

@ Forward UQ: Polynomial Chaos representation of RVs
Non-intrusive spectral projection
Surrogate construction, Bayesian regression
High-D challenge: sparse PC via Bayesian
compressive sensing

e Intrusive spectral projection

e Time/space-resolved processes (Karhunen-Loeve
expansions)

e Non-polynomial regression (Radial Basis Functions,
Gaussian Processes)

e Rosenblatt transform, Kernel Density Estimation

e Domain decomposition, multiwavelets

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 56 /57



Summary

@ Inverse UQ: Bayesian inference for parameter estimation
Bayesian parameter estimation
Model error quantification: embedded model error
approach

e Markov chain Monte Carlo (MCMC) details

e Model plausibility theory: evidence, model selection,
Bayes factors

e MaxEnt methods, data-free inference
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Additional Material
(Core Dump)



Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f(z), x a random variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of orthogonal
functions of standard RVs

— Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods for
forward UQ



Sensitivity indices are directly computable from PC
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Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(€1,8€2,€3) = co + c1vp1(&1) + cab1(§2) + csyr(€s) +
+ cap2(61) + esr(€)v1(€2) + covr(§1)vn(€3) + crpa(82) + e (€2)Y1(€3) + cov2(€s)

Variance contributions

Var(g) =04 F(@7) + 3@l + G@?) +

+ciWd) + AWl + Gl + Fwd) + | @@ + 5y3)

Joint sensitivities (£1,&) (€1,&3) [(€2,€3)



Other non-intrusive methods (stochastic collocation)

@ Interpolation: Fit interpolant to samples
@ Oscillation concern in multi-D

@ Regression: Estimate best-fit response surface
o Least-squares
@ Sparsity via ¢; constraints; compressive sensing
o Bayesian inference
@ Sparsity via Laplace priors; Bayesian compressive sensing
o Useful when quadrature methods are infeasible, e.g.:
— Samples given a priori
— Can'’t choose sample locations
— Can’t take enough samples
— Forward model is noisy



PCE Construction for Noisy Functions

@ Quadrature formulae presume a degree of smoothness
— No convergence for a noisy function

up, = ‘I’i>/ pe(€)dé, k=0,...,P

@ Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise
— No convergence with order
— Error grows with increased dimensionality
@ Options in the presence of noise:

o RMS fitting for PC coefficients
e Bayesian inference of PC coefficients



PC and High-Dimensionality

Dimensionality n of the PC basis: € = {{1,...,&,}
@ n =~ number of uncertain parameters

@ P+1=(n+p)!/np!

Impacts:

@ Size of intrusive PC system
@ Hi-D projection integrals =- large # non-intrusive samples

@ Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3

grows fast with n

Clenshaw-Curtis sparse grid, Level =5




PC coefficients via sparse regression

PCE:

K-1

y=f(z)= > cx¥ir(z)
50

with € R", ¥}, max order p, and K = (p + n)!/p!/n!

@ N samples (z1,41),...,(zN,yN)
@ Estimate K terms cg,...,cx_1, S.1.

min ||y — Acl[3
where y € RV, c € RE, A = Uy (), A € RVXK

With N << K = under-determined
@ Need some form of regularization



Regularization — Compressive Sensing (CS)

@ /y-norm — Tikhonov regularization; Ridge regression:
min {|ly — Ac||3 + ||c[|3}
@ /1-norm — Compressive Sensing; LASSO; basis pursuit

min {|ly — Acl3 + [le]1}
min {|ly — Ac|3} subject to |lc||; < e
min {||c|[1} subject to ||y — Ac|% < e

= discovery of sparse signals \\i{} N




Bayesian Regression

@ Bayes formula
p(c|D) o p(Dle)m(c)

@ Bayesian regression: prior as a regularizer, e.g.

e Log Likelihood < ||y — Ac|3
e Log Prior < ||c|b

e Laplace sparsity priors 7(cg|a) = 5=e~lerl/a
@ LASSO (Tibshirani 1996) ... formally:

min {[ly — Ac[l3 + Allell1}

Solution ~ the posterior mode of ¢ in the Bayesian model

1 _
y~N(Ac, Iy), Cp ~ %6 ekl /a

@ Bayesian LASSO (Park & Casella 2008)



Bayesian Compressive Sensing (BCS)

@ BCS (Ji 2008; Babacan 2010)— hierarchical priors:
e Gaussian priors N(0,0%) on the ¢
e Gamma priors on the o7
=- Laplace sparsity priors on the ¢
@ Evidence maximization establishes ML estimates of the o},

e many of which are found~0 = ¢, =0
o iteratively include terms that lead to the largest increase in the
evidence

@ iterative BCS (iBCS) (sargsyan 2012):

e adaptive iterative order growth
o BCS on order-p Legendre-Uniform PC
o repeat with order-p + 1 terms added to surviving p-th order terms



Random Fields

@ A random variable is a function on an event space {2
@ No dependence on other coordinates —e.g. space or time

@ A random field is a function on a product space 2 x D
o e.g. sea surface temperature Tss(z,w), z = (x, )

@ Itis a more complex object than a random variable
@ A combination of an infinite number of random variables

@ In many physical systems, uncertain field quantities, described by
random fields:
e are smooth, i.e.
e they have an underlying low dimensional structure

due to large correlation length-scales



Random Fields — KLE

@ Smooth random fields can be represented with a small no. of
stochastic degrees of freedom

@ Arandom field M (z,w) with

— a mean function: u(x)
— a continuous covariance function:

Clx1,x2) = ([M (21, w) — p(a1)][M (22, w) — p(x2)])
can be represented with the Karhunen-Loeve Expansion (KLE)

M(z,w) = p(x) + > v/ Nini(w) i)
i=1

where
e )\; and ¢;(x) are the eigenvalues and eigenfunctions of the
covariance function C(,-)
@ 1), are uncorrelated zero-mean unit-variance RVs

@ KLE = representation of random fields using PC



Intrusive PC UQ: A direct non-sampling method

@ Given model equations: _

@ Express uncertain parameters/variables using PCEs

P P
u = Zuklﬂk; A= Z )\k\pk
k=0 k=0

@ Substitute in model equations; apply Galerkin projection

@ New set of equations: _

— withU = [uo,...,uP]T,A: [Ao,...,)\p]T

@ Solving this deterministic system once provides the full
specification of uncertain model ouputs



Intrusive Galerkin PC ODE System

Say f(u; A\) = Au, then

duZ .
E MpugCpgi, ©=0,---, P
p=0 ¢=0

where the tensor Cpy; = (¥, ¥, ¥,)/(V?) is readily evaluated



Intrusive PC UQ Pros/Cons

Cons:
@ Reformulation of governing equations
@ New discretizations
@ New numerical solution method

— Consistency, Convergence, Stability
— Global vs. multi-element local PC constructions

@ New solvers and model codes
— Opportunities for automated code transformation
@ New preconditioners

Pros:
@ Tailored solvers can deliver superior performance



Model Evidence and Complexity

Let M = {M;, M>, ...} be a set of models of interest

@ Parameter estimation from data is conditioned on the model

p(61D, 1) = PP LR

Evidence (marginal likelihood) for Mj:

p(DIMy) = / p(D16, M) (0] M) do

Model evidence is useful for model selection
@ Choose model with maximum evidence

@ Compromise between fitting data and model complexity

o Optimal complexity — Occam’s razor principle
e Avoid overfitting



Too much model complexity leads to overfitting

Datamodel: i=1,...,N

yi = T} +3l—6+¢
€ N(O,S)

Bayesian regression with Legendre
PCE fit models, order 1-10

P
Ym = Z Clﬂ/}k(x)
k=0

Uniform priors 7(cx), k=0,..., P

Order = 1
-3.5
— Fitted model
-4.0r1 « e Noisy data : »
- True function ,"
4.5 N
o,
5.0 .
-5.5
-6.0

—10 ~05 0.0 05 10

Fitted model pushed-forward
posterior versus the data
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Too much model complexity leads to overfitting
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Too much model complexity leads to overfitting

Datamodel: i=1,...,N
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Too much model complexity leads to overfitting

Datamodel: i=1,...,N
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Too much model complexity leads to overfitting
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Evidence and Cross-Validation Error

@ Model evidence peaks at the T .1 1. ]
true polynomial order of 3 .

@ Cross validation error is L™~

.. - S <
equally minimal at order 3 s ; T~
S ! T \\
. . S .

@ Models with optimal 2 |
complexity are robust to cross ~ I T T T T T
validation /

-8 e-= Fit
e-= Complexity
e~ Evidence
-1 S 5 9 10
Order

Log evidence: sum of two
scores, balances complexity &
fit



Evidence and Cross-Validation Error
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@ Model evidence peaks at the N
true polynomial order of 3 -2 \\\
. . . -3 \ I \\‘ /
@ Cross validation error is N
equally minimal at order 3 g l.\ 7\
@ Models with optimal - [\ y
complexity are robust to cross £ [\ /
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53 o 7 16>

Cross validation error and
model evidence versus order



Challenges in PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {&1,...,&:}
— number of degrees of freedom
— P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:
— Size of intrusive system
— # non-intrusive (sparse) quadrature samples
@ Generally n =~ number of uncertain parameters
@ Reduction of n:
— Sensitivity analysis
— Dependencies/correlations among parameters
— Dominant eigenmodes of random fields
Manifold learning: Isomap, Diffusion maps
Sparsification: Compressed Sensing, LASSO



High dimensionality challenge — Forward UQ

Consider a forward model
y = f(x)

Let z € R™ be uncertain, represented as a random vector,
z ~ p(x)
Estimate moments of y
M1 = [#(e)p(e)da

Forward UQ is an integration problem.



Integration in High Dimensions

@ Monte Carlo (MC) methods
o well suited for high-D integrals — convergence rate independent of
dimensionality
@ nonetheless they require large numbers of samples for good
accuracy
@ Quadrature
e Tensor product quadrature is useless in hi-D
— Say m points in each of n dimensions: m™ points
o Adaptive sparse quadrature

— Much more feasible
— Can beat MC — dep. on smoothness of integrand

o Greedy algorithms
@ Dimensionality reduction

o Low rank and sparse representations
o Global sensitivity analysis



High dimensionality challenge — Inverse UQ

@ Bayesian inference in a computational setting relies on Markov
Chain Monte Carlo (MCMC) methods
@ MCMC: A random walk algorithm for generation of samples from
the posterior density on model inputs
e Moments are evaluated from the random samples

@ Need many random sample evaluations of forward model
— Employ model surrogates built via forward UQ
— Adaptive local surrogates
@ High dimensionality can lead to poor performance
— local maxima
— many directions uninformed by data
— choice of proposal density
— Dimension-Adaptive Likelihood-Informed MCMC



Bayesian inference — High Dimensionality Challenge

@ Judgement on local/global posterior peaks is difficult
e Multiple chains; Tempering

@ Choosing a good starting point is very important
o An initial optimization strategy is useful, albeit not trivial

@ Choosing good MCMC proposals, and attaining good mixing

o Likelihood-informed

— Markov jump in those dimensions informed by data
Sample from prior in complement of dimensions
Adaptive proposal learning from MCMC samples
Log-Posterior Hessian = local Gaussian approx.
Adaptive, Geometric, Langevin MCMC

e Dimension independent
— Proposal design: good MCMC performance in hiD

o Literature: A. Stuart, M. Girolami, K. Law, T. Cui, Y. Marzouk
(Law 2014; Cui et al., 2014,2015; Cotter et al., 2013)



Curse of Dimensionality

(Dim-adaptive) Sparse quadrature integration [Gerstner, 2003]
High Dimensional Model Representation [Rabitz & Alis, 1999]

e would not handle strong nonlinearities
e fried cut-HDMR in a chemical kinetics context: fails!

Proper Generalized Decomposition [Nuoy, 2010]

Turn it into the blessing of dimensionality [Donoho, 2000]
Compressive sensing in spectral methods [Doostan et al., 2009]
Bayesian compressive sensing [Ji et al., 2008]



Curse of Dimensionality

(Dim-adaptive) Sparse quadrature integration [Gerstner, 2003]
High Dimensional Model Representation [Rabitz & Alis, 1999]

e would not handle strong nonlinearities
e fried cut-HDMR in a chemical kinetics context: fails!

Proper Generalized Decomposition [Nuoy, 2010]

Turn it into the blessing of dimensionality [Donoho, 2000]
Compressive sensing in spectral methods [Doostan et al., 2009]
Bayesian compressive sensing [Ji et al., 2008]

short answer: no free lunch



Challenges in PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values

o Rayleigh-Bénard convection

e Transition to turbulence

e Chemical ignition
@ Discontinuous u(\(€))

o Failure of global PCEs in terms of smooth ¥, ()

o <« failure of Fourier series in representing a step function
@ Local PC methods

e Subdivide support of \(£€) into regions of smooth u o A(&)
e Employ PC with compact support basis on each region
o A spectral-element vs. spectral construction

o Domain mapping



Discontinuities/Nonlinearities/Bifurcations

e Stochastic domain decomposition

Wiener-Haar expansions,
Multiblock expansions,
Multiwavelets, [Le Maitre et al, 2004,2007]

also known as Multielement PC [wan & Karniadakis, 2009]

Data domain decomposition [Sargsyan et al, 2009,2010]
Data clustering, classification
Mixture PC expansions

Adaptive setting helps
Does not scale with dimensionality
For expensive models, can not split much

Need a ‘'smart’ domain decomposition



Challenges in PC UQ — Time Dynamics

@ Systems with limit-cycle or chaotic dynamics

@ Large amplification of phase errors over long time horizon
@ PC order needs to be increased in time to retain accuracy
@ Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent velocity field
v(x,t; A\(&)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

o Well behaved
o Argues for non-intrusive methods with DNS/LES of turbulent flow



Model Complexity challenge

@ If a single model run is a challenge then UQ is infeasible

@ Most physical model output quantities of interest depend on only a
“small” number of parameters, however:

o Global sensitivity analysis itself requires many samples
e Even after reduction of dimensionality to, say, 5 parameters, O(100)
samples may be necessary
@ Large number of independent samples
— ideally suited for HPC
@ Multifidelity UQ methods are useful — forward UQ
o Use combinations of many low-resolution/low-fidelity runs with a
few high-resolution/high-fidelity runs

@ Parallel MCMC methods — inverse UQ



Data Scarcity Challenge

@ Even in a “big-Data” context, it's common to find no information in
the data on many big-model parameters
e Situation is typical in statistical inversion for field quantities
e Bayesian inference of optimal random field constructions
o Use adaptive MCMC methods that focus on data-informed
parameters

@ Usually, raw data is not published

e Published “data” is essentially processed data products, being
statistics on

— the data, or functions of fitted model parameters
o Use Maximum-Entropy and Approximate Bayesian Computation
(ABC) methods — DFI
— Discover posterior density on model parameters
consistent with published statistics



Input correlations: Rosenblatt transformation

e Rosenblatt transformation maps any (not necessarily independent) set of

random variables &€ = (&1, ..., &) to uniform i.i.d’s {n;};=, [Rosenblatt,
1952].
m = (&)

ne = (&)
ns = Fa2,1(&162,61)

Mn = Fn\n 1,..., (fn'&n 17--~7§1)

Cellulose Labile

e Inverse Rosenblatt transformation &£ = R™!(#) ensures a well-defined
quadrature integration to build PC [Sargsyan et al., 2010]

cr = (E¥,(n /R

e Caveat: if only samples of £ are available, the conditional distributions are
hard to evaluate accurately.
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