
Probabilistic Methods for
Uncertainty Quantification in

Computational Models

Khachik Sargsyan

Livermore, CA

Schlumberger IOU Webinar
April 19, 2016

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 1 / 57

SAND2016-3646PE



Acknowledgements

H. Najm, B. Debusschere, C. Safta, X. Huan — Sandia National
Laboratories, CA

R. Ghanem — USC
O. Knio — Duke
O. Le Maı̂tre — LIMSI-CNRS, Paris
Y. Marzouk — MIT
D. Ricciuto, P. Thornton – Oak Ridge National Lab

This work was supported by:

DOE Advanced Scientific Computing Research (ASCR), Scientific Discovery through
Advanced Computing (SciDAC)

DOE, Biological and Environmental Research (BER)

DOD, DARPA Enabling Quantification of Uncertainty in Physical Systems (EQUiPS)
program

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 2 / 57



Outline

1 Introduction

2 Forward UQ – Polynomial Chaos

3 Inverse UQ – Bayesian Inference

4 Advanced Topics

High Dimensional PC Surrogate Construction

Account for Model Error in Bayesian Inference

5 Closure

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 2 / 57



Background

Ph.D. from U. of Michigan, Applied Math,, 2007
2007-present: working in UQ at Sandia National Labs

US Department of Energy, Office of Science, Advanced Scientific
Computing Research (ASCR)
QUEST Institute (Quantification of Uncertainty in Extreme Scale
CompuTations)

PI: Habib Najm
www.quest-scidac.org
Advanced UQ methods development
Reach out to application community

SNL-CA: 5-10 staff members, ∼ 5 postdocs
Main research code: UQTk (www.sandia.gov/UQToolkit)

Lightweight C++/Python codebase
UQTk v3.0 to be posted soon
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UQ Software Packages under QUEST

The SciDAC Institute on Quantification of Uncertainty in Extreme
Scale Computations (QUEST) is developing and maintaining a
number of packages

http://www.quest-scidac.org/

DAKOTA: http://dakota.sandia.gov/

UQTk: UQ Toolkit http://www.sandia.gov/UQToolkit/

GPMSA: Gaussian Process Modeling and Sensitivity Analysis

QUESO: Bayesian inference
https://github.com/libqueso/queso/releases

MUQ: MIT Uncertainty Quantification library
https://bitbucket.org/mituq/muq

Many packages are becoming available outside QUEST (UQLab,
OpenTurns, SmartUQ, ChaosPy,...)
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Uncertainty Quantification Toolkit (UQTk)

A library of C++ and Python functions for propagation of uncertainty
through computational models
Mainly relies on Polynomial Chaos (PC) expansions for representing
random variables and stochastic processes
Target usage:

Rapid prototyping
Algorithmic research
Tutorials / educational

Version 2.1 released under the GNU Lesser General Public License
C++ Tools for intrusive and non-intrusive UQ
Polynomial Chaos
Bayesian inference tools (various MCMC types)
Regression (polynomial, RBF, GP) tools
(Sparse) quadrature integration
Rosenblatt transformation
Python postprocessing and analysis tools

Version 3.0 to be released very soon
Available at http://www.sandia.gov/UQToolkit
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Uncertainty Quantification and Computational Science
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The Case for Uncertainty Quantification

UQ needed for...
Model predictions

Model validation and comparison

Confidence assessment

Reliability analysis

Dimensionality reduction

Optimal design

Decision support

(Noisy) data assimilation

Uncertainty Sources
Model parameters

Initial/boundary conditions

Model geometry/structure

Lack of knowledge

Data noise

Intrinsic stochasticity

Numerical errors, too
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Polynomial Chaos – functional representation for RVs

U '
p∑

k=0

ukψk(ξ)
First introduced by Wiener, 1938
Revitalized by Ghanem and Spanos, 1991
Convergent series if U has finite variance
Selection of order p is a modeling choice
Describes a r.v. U with a vector of PC modes (u0, u1, . . . , up)

Standard r.v. ξ, standard orthogonal polynomials ψk(ξ), i.e.∫
ψi(ξ)ψj(ξ)πξ(ξ)dξ = δij ||ψi||2

PC Type Domain Density πξ(ξ) Polynomial Free parameters

Gauss-Hermite (−∞,+∞) 1√
2π
e−

ξ2

2 Hermite none

Legendre-Uniform [−1, 1] 1
2

Legendre none

Gamma-Laguerre [0,+∞) ξαe−ξ

Γ(α+1)
Laguerre α > −1

Beta-Jacobi [−1, 1]
(1+ξ)α(1−ξ)β

2α+β+1B(α+1,β+1)
Jacobi α > −1, β > −1

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]
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Construction of 1D PC U '
∑p

k=0ukψk(ξ)

Orthogonal projection: uk = 1
||ψk||2

〈Uψk〉

Need to compute integral 〈Uψk〉 =
∫
U(?)ψk(ξ)πξ(ξ)dξ

Need a map U ↔ ξ

If lucky, there is an explicit formula, e.g. lognormal U = eξ

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

HG PC Order 1

Exact Lognormal
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Construction of 1D PC U '
∑p

k=0ukψk(ξ)

Orthogonal projection: uk = 1
||ψk||2

〈Uψk〉

Need to compute integral 〈Uψk〉 =
∫
U(?)ψk(ξ)πξ(ξ)dξ

Need a map U ↔ ξ

CDF transform helps:

U = F−1
U ( ξ+1

2 ) if ξ is Uniform, Legendre-Uniform PC

U = F−1
U (Φ(ξ)) if ξ is Normal, Gauss-Hermite PC

where FU (·) is the Cumulative Distribution Function (CDF) of U .

[and Φ(·) is CDF for standard normal]
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Multivariate Polynomial Chaos



U1 =

K1∑
k=0

u1kΨk(ξ1, . . . , ξn)

U2 =

K2∑
k=0

u2kΨk(ξ1, . . . , ξn)

...
...

Ud =

Kd∑
k=0

udkΨk(ξ1, . . . , ξn)

Multivariate polynomial
Ψk(ξ) = ψα1(ξ1) · · ·ψαn(ξn)

Usually d = n

Construction non-trivial: e.g., capture

the PDF of U
select moments of U
some QoI h(U)

Multivariate normal is a special case

Multiindex (α1, . . . , αn) selection,
Truncation; see later

Rosenblatt map
(multivariate CDF transform)
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Multivariate Polynomial Chaos
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U1 =

K1∑
k=0

u1kΨk(ξ1, . . . , ξn)

U2 =

K2∑
k=0

u2kΨk(ξ1, . . . , ξn)

...
...

Ud =

Kd∑
k=0

udkΨk(ξ1, . . . , ξn)

Multivariate polynomial
Ψk(ξ) = ψα1(ξ1) · · ·ψαn(ξn)

Usually d = n

Construction non-trivial: e.g., capture

the PDF of U
select moments of U
some QoI h(U)

Multivariate normal is a special case

Multiindex (α1, . . . , αn) selection,
Truncation; see later

Rosenblatt map
(multivariate CDF transform)

Fun example: X = ξ2
1 + ξ2

2 is exponential r.v. if ξ’s are i.i.d. gaussians.
However, no finite order 1D PC exists.
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Essential Use of PC in UQ U '
∑K

k=0 ukΨk(ξ)

Strategy:
Represent model parameters/solution as random variables
Construct PC for uncertain parameters
Evaluate PC for model outputs

Advantages:
Computational efficiency
Utility

Moments: E[u] = u0, V[u] =
∑K
k=1 u

2
k||Ψk||2, . . .

Global Sensitivities – fractional variances, Sobol’ indices
Uncertainty propagation
Surrogate for forward model

Requirements:
Finite variances (not a handicap in practice)
Smooth forward functions
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PC features: moment extraction

U '
K∑
k=0

ukΨk(ξ)

Expectation: 〈u〉 = u0

Variance σ2

σ2 =
〈
(u− 〈u〉)2

〉
=

〈
(
K∑
k=1

ukΨk(ξ))2

〉

=

〈
K∑
k=1

K∑
j=1

ujukΨj(ξ)Ψk(ξ)

〉

=
K∑
k=1

K∑
j=1

ujuk 〈Ψj(ξ)Ψk(ξ)〉 =
K∑
k=1

u2
k||Ψk||2
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PC features: Global Sensitivity Analysis U(ξ) '
K∑
k=0

ukΨk(ξ)

Main effect sensitivity indices

Si =
V ar[E(U(ξ|ξi)]
V ar[U(ξ)]

=

∑
k∈Ii u

2
k||Ψk||2∑

k>0 u
2
k||Ψk||2

Ii is the set of bases with only ξi involved
Si is the uncertainty contribution that is due to i-th parameter only
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PC features: Global Sensitivity Analysis U(ξ) '
K∑
k=0

ukΨk(ξ)

Main effect sensitivity indices

Si =
V ar[E(U(ξ|ξi)]
V ar[U(ξ)]

=

∑
k∈Ii u

2
k||Ψk||2∑

k>0 u
2
k||Ψk||2

Ii is the set of bases with only ξi involved
Si is the uncertainty contribution that is due to i-th parameter only

Total effect sensitivity indices

Ti = 1− V ar[E(U(ξ|ξ−i)]
V ar[U(ξ)]

=

∑
k∈ITi

u2
k||Ψk||2∑

k>0 u
2
k||Ψk||2

ITi is the set of bases with ξi involved, including all its interactions.
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PC features: Global Sensitivity Analysis U(ξ) '
K∑
k=0

ukΨk(ξ)

Main effect sensitivity indices

Si =
V ar[E(U(ξ|ξi)]
V ar[U(ξ)]

=

∑
k∈Ii u

2
k||Ψk||2∑

k>0 u
2
k||Ψk||2

Ii is the set of bases with only ξi involved
Si is the uncertainty contribution that is due to i-th parameter only

Joint sensitivity indices

Sij =
V ar[E(U(ξ|ξi, ξj)]

V ar[U(ξ)]
− Si − Sj =

∑
k∈Iij u

2
k||Ψk||2∑

k>0 u
2
k||Ψk||2

Iij is the set of bases with only ξi and ξj involved
Sij is the uncertainty contribution that is due to (i, j) parameter pair
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PC features: uncertainty propagation

U '
K∑
k=0

ukΨk(ξ) f(U) '
K∑
k=0

fkΨk(ξ)

Basic task: given PC for inputs, find PC for outputs.
Input-output map can also be defined implicitly, via governing
equations G(f, U) = 0.

Two approaches

Intrusive: project governing equations
Results in set of equations for the PC modes
Requires redesign of computer code
PCEs for all uncertain variables in system

Non-intrusive: project outputs of interest
Sampling to evaluate projection operator
Can use existing code as black box
Only computes PCEs for quantities of interest
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Non-intrusive Spectral Projection (NISP) PC UQ

U '
K∑
k=0

ukΨk(ξ) f(U) '
K∑
k=0

fkΨk(ξ)

For any model output of interest f(X):

fk =
〈fΨk〉
〈Ψ2

k〉
=

1

||Ψk||2

∫
f(X(ξ)) Ψk(ξ)πξ(ξ)dξ

Evaluate projection integral numerically
Relies on black-box utilization of the computational model
Integral can be evaluated using

– A variety of (Quasi) Monte Carlo methods
Slow convergence; ∼ indep. of dimensionality

– Quadrature/Sparse-Quadrature methods
Fast convergence; depends on dimensionality
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PC surrogate construction
Build/presume PC for input parameter U

U(ξ) =

K∑
k=0

ukΨk(ξ)

with respect to multivariate standard polynomials.
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PC surrogate construction
Build/presume PC for input parameter U

U(ξ) =

K∑
k=0

ukΨk(ξ)

with respect to multivariate standard polynomials.

E.g., uniform on an interval, or gaussian with known moments,

U = U0 + UT1 ξ
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PC surrogate construction
Build/presume PC for input parameter U

U(ξ) =

K∑
k=0

ukΨk(ξ)

with respect to multivariate standard polynomials.

If input parameters are uniform Ui ∼ Uniform[ai, bi], then

Ui =
ai + bi

2
+
bi − ai

2
ξi.
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PC surrogate construction
Build/presume PC for input parameter U

U(ξ) =

K∑
k=0

ukΨk(ξ)

with respect to multivariate standard polynomials.

Input parameters are represented via their cumulative distribution
function (CDF) F (·), such that, with ξi ∼ Uniform[−1, 1]

Ui = F−1
Ui

(
ξi + 1

2

)
, for i = 1, 2, . . . , d.
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PC surrogate construction
Build/presume PC for input parameter U

U(ξ) =

K∑
k=0

ukΨk(ξ)

with respect to multivariate standard polynomials.

Input parameters are represented via their cumulative distribution
function (CDF) F (·), such that, with ξi ∼ Uniform[−1, 1]

Ui = F−1
Ui

(
ξi + 1

2

)
, for i = 1, 2, . . . , d.

Forward function f(·), output Z

Z = f(U(ξ)) Z =

K∑
k=0

fkΨk(ξ) ≡ fs(ξ)

Global sensitivity information for free
- Sobol indices, variance-based decomposition.
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Inverse UQ – Estimation of Uncertain Parameters

Probabilistic setting
Require joint PDF on input space
Statistical inference – an inverse problem

Bayesian setting
Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle

– MaxEnt Methods
Given Data: PDF on uncertain inputs can be estimated using
Bayes formula

– Bayesian Inference
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Bayes formula for Parameter Inference

Collected data: {(xi, yi)}Ni=1

Data model: yi = f(xi;λ) + εi

Bayes formula:

p(λ|y)
Posterior

=

Likelihood

p(y|λ)

Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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The Prior

Prior p(λ) comes from
Physical constraints
Prior data/knowledge

Types of uninformative priors
Improper prior
Objective prior
Maxent prior
Reference prior
Jeffreys prior

It can be chosen to impose regularization
Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters
The choice of prior can be crucial if data is not informative
When there is sufficient information in the data, the data can
overrule the prior

p(λ|y)
Posterior

=

Likelihood

p(y|λ)

Prior

p(λ)

p(y)
Evidence
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Construction of the Likelihood p(y|λ)

Requires a presumed error model
Data model: yi = f(xi;λ) + εi

Model this error as a random variable, e.g.
Error is due to instrument measurement noise
Instrument has Gaussian errors, with no bias
Measurements are independent

ε ∼ N(0, σ2)

For any given λ, this implies

yi|λ, σ ∼ N(f(xi;λ), σ2)

or
p(y|λ, σ) =

N∏
i=1

1√
2π σ

exp

(
−(yi − f(xi;λ))2

2σ2

)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)

Prior

p(λ)

p(y)
Evidence
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Exploring the Posterior

Given any sample λ, the un-normalized posterior probability can
be easily computed

Posterior

p(λ|y) ∝
Likelihood

p(y|λ)

Prior

p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Forward and Inverse UQ in a nutshell

Forward UQ

Inverse UQ

f(λ)

Model

fc(λ)

Surrogate

Dim.
Red.

Likelihood D = {yi}

Data

Posterior p(λ|D)

Prior p(λ)

h(λ)

Any model

Prediction p(h(λ)|D)
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Bayesian inference: Noise↑ ⇒ Posterior uncertainty↑

True model y = tanh(3x− 0.9)

Increasing data noise level
Calibrating f(x;λ) = λ1e

λ0x − 2

Larger data noise⇒ larger posterior uncertainty

−1.0 −0.5 0.0 0.5 1.0
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−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

Data, Noise = 0.1

Predictive mean

True function

0.5 0.6 0.7 0.8 0.9 1.0
λ1

1.3

1.4

1.5

1.6

1.7

1.8

λ
2

Noise = 0.1
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True model y = tanh(3x− 0.9)

Increasing data noise level
Calibrating f(x;λ) = λ1e

λ0x − 2

Larger data noise⇒ larger posterior uncertainty
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Bayesian inference: Noise↑ ⇒ Posterior uncertainty↑

True model y = tanh(3x− 0.9)

Increasing data noise level
Calibrating f(x;λ) = λ1e

λ0x − 2

Larger data noise⇒ larger posterior uncertainty
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Bayesian inference: Data range⇒ Correlation

True model y = tanh(3x− 0.9)

Collecting data at different locations
Calibrating f(x;λ) = λ1e

λ0x − 2

Correlation structure can change drastically
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
• Large number of input parameters
• Dense spatial/temporal grid
• PC truncation is a challenge

• Low-rank (tensor) representations
• Sparse learning, (Bayesian) compressive sensing

Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
• UQ studies seriously hindered

• Need surrogates with few model simulations

Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
• Polynomial representation not good enough
• Quadrature integration fails

• Stochastic domain decomposition
• Data clustering/classification

Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
• Bayesian inference is prior-dominated
• Lack of parameter identifiability

• Bayesian methods do quantify lack-of-data uncertainty

Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
• Quadrature and sparse quadrature methods fail

• Averaged quantities
• Bayesian regression

Model Errors
Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
• Models are not perfect
• Can not be ignored during parameter estimation

• Additive model error as a Gaussian Process
• Embedded model error

Input Correlations
Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
• Hard to sample from
• Hard to interpret sensitivities

• Rosenblatt transformation

Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Low-Probability (Tail) Events
• PC inaccurate in capturing regions of low probability

• Use targeted PC germs ξ with fat tails

Time Dynamics
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Laundry List of Challenges/Issues (Incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities
Scarce Data
Intrinsic Stochasticity
Model Errors
Input Correlations
Time Dynamics
• Large amplification of phase errors over long time horizon
• Chaotic dynamics

• Increase order with time to retain accuracy
• Ad-hoc corrections
• Look at averaged quantities
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Outline

1 Introduction

2 Forward UQ – Polynomial Chaos

3 Inverse UQ – Bayesian Inference

4 Advanced Topics

High Dimensional PC Surrogate Construction

Account for Model Error in Bayesian Inference

5 Closure
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Surrogate construction: scope and challenges

Construct surrogate for a complex model f(λ) to enable

• Global sensitivity analysis
• Optimization
• Forward uncertainty propagation
• Input parameter calibration
• · · ·

• Computationally expensive model simulations, data sparsity
• Need to build accurate surrogates with as few

training runs as possible

• High-dimensional input space
• Too many samples needed to cover the space
• Too many terms in the polynomial expansion
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Alternative methods to obtain PC coefficients

Z = f(U(ξ)) '
K∑
k=0

fkΨk(ξ)

• Projection fk =
〈f(ξ)Ψk(ξ)〉
||Ψk||2

The integral 〈f(ξ)Ψk(ξ)〉 =
∫
f(ξ)Ψk(ξ)πξ(ξ)dξ is estimated by...

• Monte-Carlo

1

N

N∑
j=1

f(ξj)Ψk(ξj)
many(!) random samples

• Quadrature
Q∑
j=1

f(ξj)Ψk(ξj)wj
samples at quadrature
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N

N∑
j=1

f(ξj)Ψk(ξj)
many(!) random samples

• Quadrature
Q∑
j=1

f(ξj)Ψk(ξj)wj
samples at quadrature

• Bayesian regression

P (fk|f(ξj)) ∝ P (f(ξj)|fk)P (fk)

any (number of) samples
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Alternative methods to obtain PC coefficients

Z = f(U(ξ)) '
K∑
k=0

fkΨk(ξ)

• Projection fk =
〈f(ξ)Ψk(ξ)〉
||Ψk||2

The integral 〈f(ξ)Ψk(ξ)〉 =
∫
f(ξ)Ψk(ξ)πξ(ξ)dξ is estimated by...

• Monte-Carlo

1

N

N∑
j=1

f(ξj)Ψk(ξj)
many(!) random samples

• Quadrature
Q∑
j=1

f(ξj)Ψk(ξj)wj
samples at quadrature

• Bayesian regression

P (f |D)︸ ︷︷ ︸
Posterior

∝ P (D|f)︸ ︷︷ ︸
Likelihood

P (f)︸ ︷︷ ︸
Prior

any (number of) samples
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Bayesian inference of PC surrogate

Z = f(ξ) '
∑K

k=0 fkΨk(ξ) ≡ fs(ξ)

Posterior︷ ︸︸ ︷
P (f |D) ∝

Likelihood︷ ︸︸ ︷
P (D|f)

Prior︷ ︸︸ ︷
P (f)

• Data consists of training runs

D ≡ {(ξi, Zi)}Ni=1

• Likelihood with a gaussian noise model with σ2 fixed or inferred,

L(f) = P (D|f) =

(
1

σ
√

2π

)N N∏
i=1

exp

(
− (fi − fs(ξi))2

2σ2

)
• Prior on f is chosen to be conjugate, uniform or gaussian.

• Posterior is a multivariate normal

f ∈ MVN (µ,Σ)

• The (uncertain) surrogate is a gaussian process

fs(ξ) =

K∑
k=0

fkΨk(ξ) = Ψ(ξ)Tf ∈ GP(Ψ(ξ)Tµ,Ψ(ξ)ΣΨ(ξ′)T )
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Bayesian inference of PC surrogate: high-d, low-data regime

Z = f(ξ) ≈
∑K

k=0 fkΨk(ξ)

Ψk(ξ1, ξ2, ..., ξd) = ψk1(ξ1)ψk2(ξ2) · · ·ψkd(ξd)

• Issues:

• how to properly choose
the basis set?

0 1 2 3 4 5 6 7 8 9 10
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8

9

10

Dim 1

D
im

 2

• need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

• Discover the underlying low-d structure in the model

• get help from the machine learning community
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In a different language....

• N training data points (ξi, Zi) and K + 1 basis terms Ψk(·)
• Projection matrix PN×(K+1) with P ik = Ψk(xi)

• Find regression weights f = (f0, . . . , fK) so that

Z ≈ Pf or
Zi ≈

∑K
k=0fkΨk(ξi)

• The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K + 1 = (p+ d)!/(p!d!) terms.

• For limited data and large basis set (N ≤ K) this is a sparse signal
recovery problem⇒ need some regularization/constraints.

• Least-squares argminc {||Z − Pf ||2}

• The ‘sparsest’ argminc {||Z − Pf ||2 + α||f ||0}

• Compressive sensing argminc {||Z − Pf ||2 + α||f ||1}
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In a different language....

• N training data points (ξi, Zi) and K + 1 basis terms Ψk(·)
• Projection matrix PN×(K+1) with P ik = Ψk(xi)

• Find regression weights f = (f0, . . . , fK) so that

Z ≈ Pf or
Zi ≈

∑K
k=0fkΨk(ξi)

• The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K + 1 = (p+ d)!/(p!d!) terms.

• For limited data and large basis set (N ≤ K) this is a sparse signal
recovery problem⇒ need some regularization/constraints.

• Least-squares argminc {||Z − Pf ||2}

• The ‘sparsest’ argminc {||Z − Pf ||2 + α||f ||0}

• Compressive sensing argminc {||Z − Pf ||2 + α||f ||1}
Bayesian Likelihood Prior
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

• Dimensionality reduction by using hierarchical priors

p(fk|σ2
k) =

1√
2πσk

e
−
f2k
2σ2
k p(σ2

k|α) =
α

2
e−

ασ2k
2

• Effectively, one obtains Laplace sparsity prior

p(f |α) =

∫
K−1∏
k=0

p(fk|σ2
k)p(σ2

k|α)dσ2
k =

K−1∏
k=0

√
α

2
e−
√
α|fk|

• The parameter α can be further modeled hierarchically, or fixed.
• Evidence maximization dictates values for σ2

k, α, σ
2 and allows exact

Bayesian solution
c ∼MVN (µ,Σ)

with
µ = σ−2ΣP Tu Σ = σ2(P TP + diag(σ2/σ2

k))−1

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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Bayesian Compressive Sensing (BCS), or
Relevance Vector Machine (RVM)

• Dimensionality reduction by using hierarchical priors

p(fk|σ2
k) =

1√
2πσk

e
−
f2k
2σ2
k p(σ2

k|α) =
α

2
e−

ασ2k
2

• Effectively, one obtains Laplace sparsity prior

p(f |α) =

∫
K−1∏
k=0

p(fk|σ2
k)p(σ2

k|α)dσ2
k =

K−1∏
k=0

√
α

2
e−
√
α|fk|

• The parameter α can be further modeled hierarchically, or fixed.
• Evidence maximization dictates values for σ2

k, α, σ
2 and allows exact

Bayesian solution
c ∼MVN (µ,Σ)

with
µ = σ−2ΣP Tu Σ = σ2(P TP + diag(σ2/σ2

k))−1

• KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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BCS removes unnecessary basis terms

f(x, y) = cos(x+ 4y) f(x, y) = cos(x2 + 4y)
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The square (i, j) represents the (log) spectral coefficient
for the basis term ψi(x)ψj(y).
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BCS recovers true PC coefficients with increased
number of measurements
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BCS recovers true PC coefficients with increased
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BCS recovers true PC coefficients with increased
number of measurements
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Bayesian Compressive Sensing

• Dimensionality reduction by using hierarchical priors

p(fk|σ2
k) =

1√
2πσk

e
−
f2k
2σ2
k p(σ2

k|α) =
α

2
e−

ασ2k
2

• Effectively, one obtains Laplace sparsity prior

p(c|α) =

∫
K−1∏
k=0

p(fk|σ2
k)p(σ2

k|α)dσ2
k =

K−1∏
k=0

√
α

2
e−
√
α|fk|

• The parameter α can be further modeled hierarchically, or fixed.
• Evidence maximization dictates values for σ2

k, α, σ
2 and allows exact

Bayesian solution
f ∼MVN (µ,Σ)

with
µ = σ−2ΣP Tu Σ = σ2(P TP + diag(σ2/σ2

k))−1

• KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.
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Weighted Bayesian Compressive Sensing

• Dimensionality reduction by using hierarchical priors

p(fk|σ2
k) =

1√
2πσk

e
−
f2k
2σ2
k p(σ2

k|αk) =
αk
2
e−

αkσ
2
k

2

• Effectively, one obtains Laplace sparsity prior

p(c|α) =

∫
K−1∏
k=0

p(fk|σ2
k)p(σ2

k|αk)dσ2
k =

K−1∏
k=0

√
αk

2
e−
√
αk|fk|

• The parameter αk can be further modeled hierarchically, or fixed.
• Evidence maximization dictates values for σ2

k, αk, σ
2 and allows exact

Bayesian solution
f ∼MVN (µ,Σ)

with
µ = σ−2ΣP Tu Σ = σ2(P TP + diag(σ2/σ2

k))−1

• KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f ||0 such that Z ≈ Pf
Compressive sensing: min||f ||1 such that Z ≈ Pf

Weighted compressive sensing: min||Wf ||1 such that Z ≈ Pf
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f ||0 such that Z ≈ Pf
Compressive sensing: min||f ||1 such that Z ≈ Pf

Weighted compressive sensing: min||Wf ||1 such that Z ≈ Pf

For sparse signals, Z = Pf s, with ||f s||0 = S < K, ideal weights are

W = diag

(
1

|fsk |

)
[i.e., Wkk = +∞ if f sk = 0]

In practice, the true signal coefficients are not known, so...
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Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min||f ||0 such that Z ≈ Pf
Compressive sensing: min||f ||1 such that Z ≈ Pf

Weighted compressive sensing: min||Wf ||1 such that Z ≈ Pf

For sparse signals, Z = Pf s, with ||f s||0 = S < K, ideal weights are

W = diag

(
1

|fsk |

)
[i.e., Wkk = +∞ if f sk = 0]

In practice, the true signal coefficients are not known, so...

Iterative re-weighting

W (i+1) = diag

(
1

|f (i)
k |+ ε

)
[ε� 1 for stability]
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Weighted Iterative BCS

Iterative BCS: We implement an iterative procedure that allows
increasing the order for the relevant basis terms while maintaining the
dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

Combine basis growth and reweighting!

Initial Basis

Iterations

Weighted
BCS

Model data

Sparse Basis Final Basis

Basis
Growth

Reweighting
New Basis

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 36 / 57



Basis set growth: simple anisotropic function
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Basis set growth: ... added outlier term
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The UQ Challenge for ACME Land Model

http://www.cesm.ucar.edu/models/clm/

A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU
Involves ∼ 70 input parameters; some dependent
Non-smooth input-output relationship
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

Main effect sensitivities : rank input parameters
Joint sensitivities : most influential input couplings
About 200 polynomial basis terms in the 68-dimensional space
Sparse PC will further be used for
• sampling in a reduced space
• parameter calibration against experimental data
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Site # 51
TOTVEGC
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

Main effect sensitivities : rank input parameters
Joint sensitivities : most influential input couplings
About 200 polynomial basis terms in the 68-dimensional space
Sparse PC will further be used for
• sampling in a reduced space
• parameter calibration against experimental data
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

Main effect sensitivities : rank input parameters
Joint sensitivities : most influential input couplings
About 200 polynomial basis terms in the 68-dimensional space
Sparse PC will further be used for
• sampling in a reduced space
• parameter calibration against experimental data
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Outline

1 Introduction

2 Forward UQ – Polynomial Chaos

3 Inverse UQ – Bayesian Inference

4 Advanced Topics

High Dimensional PC Surrogate Construction

Account for Model Error in Bayesian Inference

5 Closure
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Main target: quantification of model error

Model error = deviation from ‘truth’, or from a higher-fidelity model

• Represent and estimate the error associated with
• Simplifying assumptions, parameterizations
• Mathematical formulation, theoretical framework
• Numerical discretization

• ...will be useful for
• Model validation
• Model comparison
• Scientific discovery and model improvement
• Reliable computational predictions

• Inverse modeling context
• Given experimental or higher-fidelity model data,

estimate the model error
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Motivation: can’t afford ignoring model error

−1.0 −0.5 0.0 0.5 1.0
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y

Data, N = 5

Model-data fit

Given noisy data – Gaussian noise

y = gtrue(x) + ε
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Motivation: can’t afford ignoring model error
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N = 5

Model-data fit Posterior on parameters

Employ Bayesian inference to fit an exponential model: ym = f(x;λ)

Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise: y = f(x;λ) + εd

Plotted:
Posterior density on the parameters
Preditive mean and standard deviation
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Motivation: can’t afford ignoring model error
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N = 5

Model-data fit Posterior on parameters

Employ Bayesian inference to fit an exponential model: ym = f(x;λ)

Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise: y = f(x;λ) + εd

True model g(x) – dashed-red – differs from fit model f(x, λ)

Actual discrepancy includes both data and model errors
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Motivation: can’t afford ignoring model error
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N = 20

Model-data fit Posterior on parameters

Increasing number of data points decreases posterior and predictive
uncertainty

We are increasingly sure about predictions based on the wrong model
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Motivation: can’t afford ignoring model error
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Model-data fit What we want

If the model has structural uncertainty, more data leads to biased and
overconfident results

We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

Cannot ignore model error
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Model Error – Challenges with current methods

Total error budget

yi = f(xi;λ) + δ(xi)︸ ︷︷ ︸
Truth g(xi)

+εi
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y

Data, N = 50

Predictive mean

Predictive stdev

True function

Ignoring model error δ(x) leads to incorrect predictive errors

Conventional statistical modeling (Kennedy and O’Hagan, 2001)
makes it difficult to disambiguate model/data errors
may violate physical constraints
not meaningful for prediction of other QoIs

Issue is highlighted in model-to-model calibration (εi = 0)
no a priori knowledge of the statistical structure of the discrepancy
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Model Error – Key idea: probabilistic embedding

Cast input parameters λ as a random variable Λ

yi = f(xi;λ) + δ(xi) + εi −−−−−−−−−→a yi = f(xi; Λ) + εi

Embed model error in specific submodel phenomenology
a modified transport or constitutive law
a modified formulation for a material property
turbulent model constants

Allows placement of model error term in locations where key
modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

Naturally preserves model structure and physical constraints
Disambiguates model/data errors
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Model Error – Bayesian density estimation
yi = f(xi; Λ) + εi

Parametrise embedded random variable Λ:
PDF form πΛ(·;α)

Polynomial Chaos (PC): Λ =
∑
k αkΨk(ξ)

Multivariate Normal (MVN):


Λ1 = α10 + α11ξ1

Λ2 = α20 + α21ξ1 + α22ξ2

...
Λd = αd0 + αd1ξ1 + αd2ξ2 + · · ·+ αddξd

Inverse modeling context
Parameter estimation of λ⇒ PDF estimation of Λ⇒
⇒ parameter estimation of α

Bayesian formulation
p(α|y)︸ ︷︷ ︸
Posterior

∝ Ly(α)︸ ︷︷ ︸
Likelihood

p(α)︸︷︷︸
Prior
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Model Error – Likelihood options
K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

α

Prior p(α)

Prob. model for Λ

Λ
πΛ(·;α)

f(xi; Λ)

Model

Likelihood
p(y|α)

yi = f(xi; Λ) + εi

Data

Posterior p(α|y)
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Model Error – Likelihood options
K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

α

Prior p(α)

Prob. model for Λ

Λ
πΛ(·;α)

f(xi; Λ)

Model

Likelihood
p(y|α)

yi = f(xi; Λ) + εi

Data

Posterior p(α|y)

Full Likelihood: L(α) = p(y|α) = p(y1, . . . , yN |α) = π(y)

Degenerate if no data noise
Requires multivariate KDE or high-d integration
Gaussian approximation:
L(α) ∝ exp

(
− 1

2 (y − µ(α))TΣ−1(α)(y − µ(α))
)

Non-intrusive spectral projection with Polynomial Chaos relieves
the expense and provides easy access to mean µ(α) and
covariance Σ(α)
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Model Error – Likelihood options
K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

α

Prior p(α)

Prob. model for Λ

Λ
πΛ(·;α)

f(xi; Λ)

Model

Likelihood
p(y|α)

yi = f(xi; Λ) + εi

Data

Posterior p(α|y)

Marginalized Likelihood:
L(α) = p(y|α) ≈

∏N
i=1 p(yi|α) =

∏N
i=1 π(yi)

Requires univariate KDE
Neglects built-in correlations
Gaussian approximation:
L(α) ∝ exp

(
− 1

2

∑N
i=1 Σ−1

ii (α)(yi − µi(α))2
)
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Model Error – Likelihood options
K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical Models”.

International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

α

Prior p(α)

Prob. model for Λ

Λ
πΛ(·;α)

f(xi; Λ)

Model

Likelihood
p(y|α)

yi = f(xi; Λ) + εi

Data

Posterior p(α|y)

Approximate Bayesian Computation (ABC):
L(α) = 1

εK
(
ρ(SM,SD)

ε

)
Mean of f(xi; Λ) is “centered” on the data

The width of the distribution of f(xi; Λ) is consistent with the spread of the
data around the nominal model prediction

L(α) ∝ exp

(
− 1

2ε2

N∑
i=1

[
(µi(α)− yi)2 + (

√
Σii(α)− γ|µi(α)− yi|)2

])
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Model Error – Predictions

f(x; Λ) = f (x;
∑

k αkΨk(ξ)) =
∑

k fk(x;α)Ψk(ξ)

Non-intrusive spectral projection (NISP) will be employed for
Likelihood computation

Posterior/pushed-forward predictions

Easy access to first two moments:

µ(x;α) = f0(x;α), σ2(x;α) =
∑
k>0

f2
k (x;α)||Ψk||2

Predictive mean E[y(x) = Eα[µ(x;α)]

Decomposition of predictive variance

V[y(x)] = Eα[σ2(x;α)]︸ ︷︷ ︸
Model error

+Vα[µ(x;α)] + σ2
d︸ ︷︷ ︸

Poserior/Data error

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 47 / 57



Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Linear-exponential f(x, λ) = eλ1+λ2x
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100

Data from truth

Predictive mean

Predictive stdev

Additive Gaussian error
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Linear-exponential f(x, λ) = eλ1+λ2x

0 1 2 3 4 5
x

10-1

100

Data from truth
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Predictive stdev

Quadratic-exponential f2(x, λ) = eλ1+λ2x+λ3x
2
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More data leads to ‘leftover’ model error

Calibrating a quadratic f(x) = λ0 + λ1x+ λ2x
2

w.r.t. ‘truth’ g(x) = 6 + x2 − 0.5(x+ 1)3.5 measured with noise σ = 0.1.

N = 20 N = 50 N = 1000
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Summary of features:

Well-defined model-to-model calibration
Model-driven discrepancy correlations
Respects physical constraints
Disambiguates model and data errors
Calibrated predictions of multiple QoIs
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Chemistry problem – ABC

Homogeneous ignition, methane-air mixture
Single-step global reaction model calibrated against a detailed
chemical kinetic model

Data: ignition time; range of
initial T & equivalence ratio
Single-step model:

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT )

(lnA,E) =
∑

k αkΨk(ξ)
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T 0,Φ):

MAP predictive mean
ignition-time is centered
on the data
MAP predictive stdv
is consistent with the
scatter of the data

K. Sargsyan, H.N. Najm, and R. Ghanem
”On the Statistical Calibration of Physical Models”

Int. J. Chem. Kin., 47(4): 246-276, 2015
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TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world
• Inverse problem: find fluxes s at M = 22 locations
• Linearized ‘response’ model R, such that d ≈ Rs

d = Rs + εd

• Model R is never perfect thus contaminating the inversion
• The inferred values of s compensate for model deficiencies
• εd is meant to capture data errors, but is ‘entangled’ with

model errors
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s:
d = R(µs + Csξ)
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s:
d = R(µs + Csξ)
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Model error in LES: embed model err in Smagorinsky coefficient
Calibrate with TKE data, predict both TKE and Pressure

Pushed forward posterior
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Summary

Forward UQ: Polynomial Chaos representation of RVs
• Non-intrusive spectral projection
• Surrogate construction, Bayesian regression
• High-D challenge: sparse PC via Bayesian

compressive sensing

• Intrusive spectral projection
• Time/space-resolved processes (Karhunen-Loeve

expansions)
• Non-polynomial regression (Radial Basis Functions,

Gaussian Processes)
• Rosenblatt transform, Kernel Density Estimation
• Domain decomposition, multiwavelets

K. Sargsyan (ksargsy@sandia.gov) SLB Webinar April 19, 2016 56 / 57



Summary

Inverse UQ: Bayesian inference for parameter estimation
• Bayesian parameter estimation
• Model error quantification: embedded model error

approach

• Markov chain Monte Carlo (MCMC) details
• Model plausibility theory: evidence, model selection,

Bayes factors
• MaxEnt methods, data-free inference
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Additional Material
(Core Dump)



Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

Can describe a RV in terms of its
density, moments, characteristic function, or
as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of orthogonal

functions of standard RVs
– Polynomial Chaos Expansion

Enables the use of available functional analysis methods for
forward UQ



Sensitivity indices are directly computable from PC
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P∑
k=0
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Other non-intrusive methods (stochastic collocation)

Interpolation: Fit interpolant to samples
Oscillation concern in multi-D

Regression: Estimate best-fit response surface
Least-squares

Sparsity via `1 constraints; compressive sensing
Bayesian inference

Sparsity via Laplace priors; Bayesian compressive sensing

Useful when quadrature methods are infeasible, e.g.:
– Samples given a priori
– Can’t choose sample locations
– Can’t take enough samples
– Forward model is noisy



PCE Construction for Noisy Functions

Quadrature formulae presume a degree of smoothness
– No convergence for a noisy function

uk =
1〈

Ψ2
k

〉 ∫ u(λ(ξ)) Ψk(ξ)pξ(ξ)dξ, k = 0, . . . , P

Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise

– No convergence with order
– Error grows with increased dimensionality

Options in the presence of noise:
RMS fitting for PC coefficients
Bayesian inference of PC coefficients



PC and High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}
n ≈ number of uncertain parameters
P + 1 = (n+ p)!/n!p! grows fast with n

Impacts:
Size of intrusive PC system
Hi-D projection integrals⇒ large # non-intrusive samples

Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level = 5



PC coefficients via sparse regression

PCE:

y = f(x) '
K−1∑
k=0

ckΨk(x)

with x ∈ Rn, Ψk max order p, and K = (p+ n)!/p!/n!

N samples (x1, y1), . . . , (xN , yN )

Estimate K terms c0, . . . , cK−1, s.t.

min ||y −Ac||22

where y ∈ RN , c ∈ RK , Aik = Ψk(xi), A ∈ RN×K

With N << K ⇒ under-determined
Need some form of regularization



Regularization – Compressive Sensing (CS)

`2-norm — Tikhonov regularization; Ridge regression:

min {‖y −Ac‖22 + ‖c‖22}

`1-norm — Compressive Sensing; LASSO; basis pursuit

min {‖y −Ac‖22 + ‖c‖1}
min {‖y −Ac‖22} subject to ‖c‖1 ≤ ε

min {‖c‖1} subject to ‖y −Ac‖22 ≤ ε

⇒ discovery of sparse signals



Bayesian Regression

Bayes formula
p(c|D) ∝ p(D|c)π(c)

Bayesian regression: prior as a regularizer, e.g.
Log Likelihood⇔ ‖y −Ac‖22
Log Prior⇔ ‖c‖pp

Laplace sparsity priors π(ck|α) = 1
2αe
−|ck|/α

LASSO (Tibshirani 1996) ... formally:

min {‖y −Ac‖22 + λ‖c‖1}

Solution ∼ the posterior mode of c in the Bayesian model

y ∼ N (Ac, IN ), ck ∼
1

2α
e−|ck|/α

Bayesian LASSO (Park & Casella 2008)



Bayesian Compressive Sensing (BCS)

BCS (Ji 2008; Babacan 2010)— hierarchical priors:
Gaussian priors N (0, σ2

k) on the ck
Gamma priors on the σ2

k

⇒ Laplace sparsity priors on the ck
Evidence maximization establishes ML estimates of the σk

many of which are found ≈ 0 ⇒ ck ≈ 0
iteratively include terms that lead to the largest increase in the
evidence

iterative BCS (iBCS) (Sargsyan 2012):
adaptive iterative order growth
BCS on order-p Legendre-Uniform PC
repeat with order-p+ 1 terms added to surviving p-th order terms



Random Fields

A random variable is a function on an event space Ω

No dependence on other coordinates –e.g. space or time

A random field is a function on a product space Ω×D
e.g. sea surface temperature TSS(z, ω), z ≡ (x, t)

It is a more complex object than a random variable
A combination of an infinite number of random variables

In many physical systems, uncertain field quantities, described by
random fields:

are smooth, i.e.
they have an underlying low dimensional structure

due to large correlation length-scales



Random Fields – KLE

Smooth random fields can be represented with a small no. of
stochastic degrees of freedom

A random field M(x, ω) with
– a mean function: µ(x)
– a continuous covariance function:
C(x1, x2) = 〈[M(x1, ω)− µ(x1)][M(x2, ω)− µ(x2)]〉

can be represented with the Karhunen-Loeve Expansion (KLE)

M(x, ω) = µ(x) +

∞∑
i=1

√
λiηi(ω)φi(x)

where
λi and φi(x) are the eigenvalues and eigenfunctions of the
covariance function C(·, ·)
ηi are uncorrelated zero-mean unit-variance RVs

KLE⇒ representation of random fields using PC



Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P∑
k=0

ukΨk; λ =

P∑
k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP ]T , Λ = [λ0, . . . , λP ]T

Solving this deterministic system once provides the full
specification of uncertain model ouputs



Intrusive Galerkin PC ODE System

du

dt
= f(u;λ)

λ =

P∑
i=0

λiΨi u(t) =

P∑
i=0

ui(t)Ψi

dui
dt

=
〈f(u;λ)Ψi〉〈

Ψ2
i

〉 i = 0, . . . , P

Say f(u;λ) = λu, then

dui
dt

=

P∑
p=0

P∑
q=0

λpuqCpqi, i = 0, · · · , P

where the tensor Cpqi = 〈ΨpΨqΨi〉/〈Ψ2
i 〉 is readily evaluated



Intrusive PC UQ Pros/Cons

Cons:
Reformulation of governing equations
New discretizations
New numerical solution method

– Consistency, Convergence, Stability
– Global vs. multi-element local PC constructions

New solvers and model codes
– Opportunities for automated code transformation

New preconditioners

Pros:
Tailored solvers can deliver superior performance



Model Evidence and Complexity

LetM = {M1,M2, . . .} be a set of models of interest
Parameter estimation from data is conditioned on the model

p(θ|D,Mk) =
p(D|θ,Mk)π(θ|Mk)

p(D|Mk)

Evidence (marginal likelihood) for Mk:

p(D|Mk) =

∫
p(D|θ,Mk)π(θ|Mk)dθ

Model evidence is useful for model selection
Choose model with maximum evidence
Compromise between fitting data and model complexity

Optimal complexity – Occam’s razor principle
Avoid overfitting



Too much model complexity leads to overfitting

Data model: i = 1, . . . , N

yi = x3
i + x2

i − 6 + εi

εi ∼ N(0, s)

Bayesian regression with Legendre
PCE fit models, order 1-10

ym =

P∑
k=0

ckψk(x)

Uniform priors π(ck), k = 0, . . . , P

Order = 1
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Evidence and Cross-Validation Error

Model evidence peaks at the
true polynomial order of 3

Cross validation error is
equally minimal at order 3

Models with optimal
complexity are robust to cross
validation
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Challenges in PC UQ – High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}
– number of degrees of freedom
– P + 1 = (n+ p)!/n!p! grows fast with n

Impacts:
– Size of intrusive system
– # non-intrusive (sparse) quadrature samples

Generally n ≈ number of uncertain parameters
Reduction of n:

– Sensitivity analysis
– Dependencies/correlations among parameters
– Dominant eigenmodes of random fields
– Manifold learning: Isomap, Diffusion maps
– Sparsification: Compressed Sensing, LASSO



High dimensionality challenge – Forward UQ

Consider a forward model
y = f(x)

Let x ∈ Rn be uncertain, represented as a random vector,

x ∼ p(x)

Estimate moments of y

Mq =

∫
[f(x)]qp(x)dx

Forward UQ is an integration problem.



Integration in High Dimensions

Monte Carlo (MC) methods
well suited for high-D integrals – convergence rate independent of
dimensionality
nonetheless they require large numbers of samples for good
accuracy

Quadrature
Tensor product quadrature is useless in hi-D

– Say m points in each of n dimensions: mn points
Adaptive sparse quadrature

– Much more feasible
– Can beat MC – dep. on smoothness of integrand

Greedy algorithms
Dimensionality reduction

Low rank and sparse representations
Global sensitivity analysis



High dimensionality challenge – Inverse UQ

Bayesian inference in a computational setting relies on Markov
Chain Monte Carlo (MCMC) methods
MCMC: A random walk algorithm for generation of samples from
the posterior density on model inputs

Moments are evaluated from the random samples

Need many random sample evaluations of forward model
– Employ model surrogates built via forward UQ
– Adaptive local surrogates

High dimensionality can lead to poor performance
– local maxima
– many directions uninformed by data
– choice of proposal density
– Dimension-Adaptive Likelihood-Informed MCMC



Bayesian inference – High Dimensionality Challenge

Judgement on local/global posterior peaks is difficult
Multiple chains; Tempering

Choosing a good starting point is very important
An initial optimization strategy is useful, albeit not trivial

Choosing good MCMC proposals, and attaining good mixing
Likelihood-informed

– Markov jump in those dimensions informed by data
– Sample from prior in complement of dimensions
– Adaptive proposal learning from MCMC samples
– Log-Posterior Hessian⇒ local Gaussian approx.
– Adaptive, Geometric, Langevin MCMC

Dimension independent
– Proposal design: good MCMC performance in hiD

Literature: A. Stuart, M. Girolami, K. Law, T. Cui, Y. Marzouk
(Law 2014; Cui et al., 2014,2015; Cotter et al., 2013)



Curse of Dimensionality

• (Dim-adaptive) Sparse quadrature integration [Gerstner, 2003]

• High Dimensional Model Representation [Rabitz & Alis, 1999]

• would not handle strong nonlinearities
• tried cut-HDMR in a chemical kinetics context: fails!

• Proper Generalized Decomposition [Nuoy, 2010]

• Turn it into the blessing of dimensionality [Donoho, 2000]

• Compressive sensing in spectral methods [Doostan et al., 2009]

• Bayesian compressive sensing [Ji et al., 2008]

short answer: no free lunch
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Challenges in PC UQ – Non-Linearity

Bifurcative response at critical parameter values
Rayleigh-Bénard convection
Transition to turbulence
Chemical ignition

Discontinuous u(λ(ξ))

Failure of global PCEs in terms of smooth Ψk()
⇔ failure of Fourier series in representing a step function

Local PC methods
Subdivide support of λ(ξ) into regions of smooth u ◦ λ(ξ)
Employ PC with compact support basis on each region
A spectral-element vs. spectral construction

Domain mapping



Discontinuities/Nonlinearities/Bifurcations

• Stochastic domain decomposition
• Wiener-Haar expansions,

Multiblock expansions,
Multiwavelets, [Le Maı̂tre et al, 2004,2007]

• also known as Multielement PC [Wan & Karniadakis, 2009]

• Data domain decomposition [Sargsyan et al, 2009,2010]

• Data clustering, classification
• Mixture PC expansions

• Adaptive setting helps
• Does not scale with dimensionality
• For expensive models, can not split much

• Need a ‘smart’ domain decomposition



Challenges in PC UQ – Time Dynamics

Systems with limit-cycle or chaotic dynamics
Large amplification of phase errors over long time horizon
PC order needs to be increased in time to retain accuracy
Time shifting/scaling remedies

Futile to attempt representation of detailed turbulent velocity field
v(x, t;λ(ξ)) as a PCE

– Fast loss of correlation due to energy cascade
– Problem studied in 60’s and 70’s

Focus on flow statistics, e.g. Mean/RMS quantities
Well behaved
Argues for non-intrusive methods with DNS/LES of turbulent flow



Model Complexity challenge

If a single model run is a challenge then UQ is infeasible
Most physical model output quantities of interest depend on only a
“small” number of parameters, however:

Global sensitivity analysis itself requires many samples
Even after reduction of dimensionality to, say, 5 parameters, O(100)
samples may be necessary

Large number of independent samples
– ideally suited for HPC

Multifidelity UQ methods are useful – forward UQ
Use combinations of many low-resolution/low-fidelity runs with a
few high-resolution/high-fidelity runs

Parallel MCMC methods – inverse UQ



Data Scarcity Challenge

Even in a “big-Data” context, it’s common to find no information in
the data on many big-model parameters

Situation is typical in statistical inversion for field quantities
Bayesian inference of optimal random field constructions
Use adaptive MCMC methods that focus on data-informed
parameters

Usually, raw data is not published
Published “data” is essentially processed data products, being
statistics on

– the data, or functions of fitted model parameters
Use Maximum-Entropy and Approximate Bayesian Computation
(ABC) methods – DFI

– Discover posterior density on model parameters
consistent with published statistics



Input correlations: Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarily independent) set of
random variables ξ = (ξ1, . . . , ξn) to uniform i.i.d.’s {ηi}ni=1 [Rosenblatt,
1952].

η1 = F1(ξ1)

η2 = F2|1(ξ2|ξ1)

η3 = F3|2,1(ξ3|ξ2, ξ1)

...

ηn = Fn|n−1,...,1(ξn|ξn−1, . . . , ξ1)
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• Inverse Rosenblatt transformation ξ = R−1(η) ensures a well-defined
quadrature integration to build PC [Sargsyan et al., 2010]

ck = 〈ξΨk(η)〉 =

∫
R−1(η)Ψk(η)dη

• Caveat: if only samples of ξ are available, the conditional distributions are
hard to evaluate accurately.
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