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Abstract—Trinity is NNSA’s first ASC Advanced Technology
System (ATS) targeted to support the largest, most demanding
nuclear weapon simulations. Trinity Phase-1 (the focus of this
paper) has 9436 dual-socket Haswell nodes while Phase-2 will have
close to 9500 KNL nodes. This paper documents the performance of
applications and benchmarks used for Trinity acceptance. It
discusses the early experiences of the Tri-Lab (LANL, SNL and
LLNL) and Cray teams to meet the challenges for optimal
performance on this new architecture by taking advantage of the
large number of cores on the node, wider SIMD/vector units and
the Cray Aries network. Application performance comparisons to
our previous generation large Cray capability systems show
excellent scalability. The overall architecture is facilitating easy
migration of our production simulations to this 11 PFLOPS system,
while improved work flow through the use of Burst-Buffer nodes is
still under investigation.
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l. INTRODUCTION

Trinity is architected to meet the capability simulation needs
of NNSA’s ASC program. It is anticipated that due to its
improvements in compute, memory and storage capabilities, it
will enable larger model geometries and support higher fidelity
physics, while meeting programmatic time-to-solution needs.
Acceptance of the Phase-1 of the Trinity procurement was
concluded in December of 2015. Phase-2 of the Trinity
procurement is currently in progress, as volume shipments of
Intel’s KNL processors facilitate installation and acceptance in
July 2016. Trinity architecture introduces new challenges to the
code developers and analysts. These include the transition from
multi-core to many-core, deeper memory hierarchies and wider
SIMD/vector units. Additionally, we will have for the first time
on a large production capability system, high-speed solid-state
storage Burst-Buffer nodes, which promise to improve check
point/restart reading and writing efficiencies and enable improved
work flow through optimal movement of data in an analysis
cycle.  An overview of the Trinity and NERSC-8 procurement
considerations can be found at Reference [1].

Il.  TRINITY ARCHITECTURE

The Trinity architecture is shown in Figure 1. The Phase-1
Haswell partition has 9,436 nodes with dual-socket Intel Xeon
ES-2698 v3 running at 2.3GHz. Each processor has 16 cores and
4 memory channels connected to four 16GB DDR4 DIMMS
clocked at 2.133GHz. The processors are set up to support
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Intel® Hyper-Threads and Intel® Turbo Boost and the operating
clock frequency varies with the thermal load.
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Figure 1. Trinity Architecture Diagram

Assuming a nominal 2.3GHz operation, the peak node double
precision performance is: 32cores*16FLOPs/cycle*2.3GHz =
1,177.6 GFLOPS/node. Each core is capable of 16 DP FLOPs
per cycle from the two 256 bit AV X2 units with FMA. Trinity is
listed at 8,101 TFLOPS on top500.org and 182.6 TFLOPS on
hpcg-benchmark.org.

IIl.  ACCEPTANCE TESTS PERFORMANCE RESULTS

A. ASC Capability Improvement (Cl) Application Performance

ACES management recognized the importance of good
application performance at scale and made it a key Trinity
acceptance requirement by specifying a set of metrics to quantify
and measure the performance. A key figure used to gauge
performance at near full scale is the Capability Improvement
(CI) metric, which is computed as an average improvement in
performance over Cielo (Cray XE6) [2], of three ASC
applications: PARTISN (from LANL), Nalu (from SNL) and
Qbox (from LLNL). The baseline performance data was
collected on our previous generation ASC ACES platform Cielo,
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using more than 2/3 of its compute partition. The CI metric is
defined as:

Cl Metric = problem-size-increase * run-time-speedup

The target performance for the CI metric is 8X over the baseline
Cielo performance, but split into 4X for the Phase-1 Haswell
partition (the focus of this paper) and 4X for the Phase-2 KNL
partition. Such a metric was also used in the acceptance
benchmarks of our previous generation ASC ACES capability
platform, Cielo [2][3]. Table 1 provides side-by-side
comparison of a few performance related architectural
parameters of Cielo and Trinity.

Table 1. Cielo, Trinity Architectural Parameters

System Cielo Trinity
Total Nodes 8,894 9,436
Total Cores 142,304 301,952

Processor AMD MagnyCours Intel Haswell

Processor ISA SSE4a AV X2
Clock Speed(GHz) 2.40 2.30
Cores/node 16 32
Memory-per- 2 4
core(GB)

Memory DDR3 1,333 MHz DDR4 2,133 MHz
Peak node 153.6 1,177.6
GFLOPS

Channels/socket 4 4
Cache L1(KB) 8 x 64 16 x 32

L2(KB) 8 x 512 16 x 256

L3(MB) 10 40
Interconnect Gemini Aries

Topology 3D Torus Dragonfly
18x12x24

The following sections describe the three applications picked
for the CI benchmark, their performance characteristics and
specific efforts that were undertaken to meet the target
performance set for Phase-1. These applications are
representative of the production simulations planned for Trinity
and should suggest possible approaches for tuning other
production applications.

1) SIERRA/Nalu:

The SIERRA/Nalu is a low Mach CFD code that solves a wide
variety of variable density acoustically incompressible flows
spanning from laminar to turbulent flow regimes. SIERRA
Mechanics [4] simulation code suite is the principal mechanics
code used by SNL in support of the U.S. Stockpile Stewardship
program. Open source versions of Nalu (version 1.0.0) along
with the Trilinos solver (version 12.0.0) were used for this
benchmark. Nalu is fairly representative of implicit codes that
have been developed as part of Sandia mechanics simulation
code, SIERRA. Open source Nalu can be downloaded from
Github [5]. This generalized unstructured code base supports
both elemental (control volume finite element) and edge (edge-
based, vertex-centered) discretizations in the context of an

approximate pressure projection algorithm (equal order
interpolation using residual based pressure stabilization). The
generalized unstructured algorithm is second order accurate in
space and time. A variety of turbulence models are supported,
however, all are classified under the class of modeling known as
Large Eddy Simulation (LES). The chosen coupling approach
(pressure projection, operator split) results in a set of fully
implicit sparse matrix systems. Linear solves are supported by
the Trilinos Tpetra interface.

Nalu’s code base has been demonstrated to be 64-bit
compliant and represents the path towards advanced
architectures and can support mesh and degree-of-freedom
counts well above the 2.14 billion count. The calculations are
computationally intensive and require good cache usage. In
typical applications, hundreds of thousands of time steps must be
used. Communication patterns include both point-to-point
exchanges typical of sparse graphs, consistent with assembly of
partial sums, and collective reduction operations including
global minimums, maximums, and summations. This code base
is fairly representative of a wide range of implicit codes that
have been developed in support of the Advanced Simulation and
Computing (ASC) Integrated Codes (IC) project.

a) Problem Description:

The test problem of interest is a turbulent open jet
(Reynolds number of ~6,000) with passive mixture fraction
transport using the one equation Ksgs LES model. The problem
is discretized on an unstructured mesh with hexahedral elements.
The baseline problem R6 mesh consists of nine billion elements,
with the total degree-of-freedom count approaching 60 billion.
Given the pressure projection scheme in the context of a
monolithic momentum solve, the maximum matrix size is ~27
billion rows (momentum) followed by a series of smaller 9
billion row systems, i.e., for the continuity system (elliptic
Pressure Poisson), mixture fraction and turbulent kinetic energy.

b) Figure of Merit (FOM)Description:

Two FOMs were used; both involve the solution of the
momentum equations. The speedups of the two metrics are
weighted to produce a single speedup factor for Nalu. The first
FOM is the average solve time per linear iteration. The second is
the average matrix assemble time per nonlinear step. Speedup is
defined as:

Speedup = Speedup-solve*0.67 + Speedup-assemble*0.33.

¢) Capability Improvement Metric Run:

During a short window in December 2015, the focus was on
running Nalu at near full scale of Trinity using as many nodes as
available for the purposes of acceptance. The best performance
was measured in a run using 9420 nodes (301,440 cores or MPI
tasks) using the 9 Billion element R6 mesh. Therefore the
complexity increase used in the CI computation was 1, i.e., the
same mesh was used as for the Cielo baseline run. The
capability improvement as defined previously was measured at
4.009. All of that improvement accrues from the faster run time



measured for momentum equation average assemble time
(measured value was 31.8274 secs) and the moementum
equation average solve time (measured value was 83.0502 secs).
The improvement in this run time attests to the superior strong
scaling characteristics of Trinity. It is useful to compare weak
scaling of Nalu between Cielo and Trinity to supplement the
single data point used for the Cl metric. ~Figure 2 provides a
weak scaling plot for the Assemble and Solve times.

The excellent scaling of the Nalu assembly computations
resulted in a run time performance gain at 9,300 nodes of Trinity
close to 4.26X over the Cielo run at 8,192 nodes. This,
combined with a performance gain of 3.89X for the matrix
solve, resulted in the CI metric value of 4.009.
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Figure 2. Trinity, Cielo Nalu weak scaling performance
2) PARTISN

LANL’s PARTISN particle transport code [6] provides
neutron transport solutions on orthogonal meshes in one, two,
and three dimensions. A multi-group energy treatment is used in
conjunction with the Sn angular approximation. Much effort has
been devoted to making PARTISN efficient on massively
parallel computers. The package can be used for time-dependent
calculations where even one simulation can run for weeks on
thousands of processors. The primary components of the
computation involve KBA sweeps and associated zero-
dimensional physics. The KBA sweep is a wave-front algorithm
that provides 2-D parallelism for 3-D geometries, and is tightly
coupled by dependent communications.

PARTISN relies heavily on MPI_Isend/MPI1_Recv, while the
most frequent collective is MPI_Allreduce. For a 1,024 rank run
the code executed around 6M sends, 6M recvs, and
approximately 4k Allreduces.

a) Problem Description:

The test problem used is MIC_SN (MIC with group-
dependent Sn quadrature). This problem is weak-scaled in the Y
and Z dimensions so as to maintain a constant block shape per
processor. A small set of parameters in the input file (jt, kt, yints,
zints) are scaled to set up inputs for the weak scaling study
determining the number of zones/core. These parameters are

doubled when the core count/MPI task count is quadrupled. The
number of OpenMP threads for each MPI task is also specified
in the input file. The Cielo baseline runs with 2,880 zones/core
were collected with four OpenMP threads per MPI rank. For
runs on Trinity input parameters that led to 2,880, 5,760 and
11,520 zones/core were used to generate control files for runs up
to 9,418 nodes (301,376 cores). PARTISN builds with both the
Intel and the Cray CCE compilers, with and without OpenMP
threading, were investigated for performance. Since the CCE
compiler had slightly lower (1-2%) performance than the Intel
compiler, the latter was used for the CI benchmark. A study of
the hot-spots and MPI communications was conducted. The
dominant routine, opt_sweep3d(), which actually performs the
KBA sweep that comprises the wave-front algorithm, took 85%
of the run time. As the code team had already ensured excellent
vectorization of this function, no improvements were found or
needed for the CI benchmark effort.

MPI  profiling showed that MPI Isend/MPI_Recv
communications were frequent on the 2D processor mesh.
About 60% of the messages were 64 KB or smaller. In
applications with significant time spent in point-to-point
communications, optimal MPI rank mapping can lead to good
gains in performance. On Cray systems like Trinity, one may
experiment with a simple environment variable setting

MPICH_RANK_ORDER_METHOD=n

to study the impact of round-robin rank placement (n=0), SMP
rank placement (n=1; default) or folded rank placement (n=2).
For PARTISN a custom rank order placement obtained with the
use of the Cray utility grid_order was very beneficial. An
example of a remap with grid_order for a run on Trinity with
301,376 MPI ranks is provided below.

grid_order -R -Z -m 301376 -n 32 -g 554x544 \
-Cc 4x8 >MPICH_RANK_ORDER
The parameters specify:
-R is row-major ordering of ranks
-Z option (default) lists successive rows of cells in the
same order
-m max rank count
-C is the desired node MPI grid
-g is the global MPI grid

At run time setting the environment variable:
MPICH_RANK_REORDER_METHOD=3

uses the MPICH_RANK_ORDER file to map MPI ranks to
cores and nodes to ensure most of the communication exchanges
are within a node, thereby lowering the overall MPI
communication time. The utility grid_order does not take
system topology into account: it simply “repacks” MPI ranks so
that Cartesian mesh communication neighbors are more often on
a node. An experiment with PARTISN using rank_order on a
run using 16,384 PEs showed a 42% improvement in the MPI
time and an 18% improvement in overall run time. Figure 3



shows the speedup resulting from the use of grid_order at

various scales for PARTISN on Trinity.
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Figure 3. Performance gain with grid_order for PARTISN

b) Figure of Merit (FOM) Description:

For PARTISN the FOM used is the Solver Iteration Time.
Ideally this should stay constant for weak scaling. When the
baseline performance data was measured on Cielo, optimal
scaling and performance were observed with 4 MPI tasks per
node and 4 OpenMP threads per MPI task. The results of an
investigation to find the optimal MPI Task/OpenMP thread
mapping on Trinity, with 2,880/zones/core ( labeled “1X”) is
shown in Figure 4. One thread/MPI rank gave the best
performance on Trinity.
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Figure 4. PARTISN MPI task and threading performance

A number of runs on Trinity were attempted to obtain the best
possible performance for calculation of the CI metric. Figure 5
compares the scaling plots against the baseline Cielo
measurements. For the all the runs on Trinity in this figure one
OpenMP thread per MPI task was used. 2,880 zones/core and
11,520 zones/core are the two input cases shown. The label
‘asis’ refers to default MPI grid mapping and the label ‘grid’
refers to a run with grid_order mapping as previously described.
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¢) Capability Improvement Metric Run:

For the CI computation, a run on Trinity using 9,418 nodes
(301,376 cores) and an input of 11,520 zones/core, produces a
FOM solver iteration time of 397.71 secs. The baseline Cielo
run was on 8,192 nodes (131,072 cores) with an input of 2,880
zones/core, and produced a solver iteration time of 209.4 secs.
This results in a complexity scale factor of 9.19 and a run time
ratio of 0.526, which yields a ClI value for PARTISN of 4.83.

3) Qbox

Qbox is a first-principles molecular dynamics code used to
compute the properties of materials at the atomistic scale [7].
The main algorithm uses a Born-Oppenheimer description of
atomic cores and electrons, with valence electrons treated
quantum mechanically using Density Functional Theory and a
plane wave basis. Nonlocal pseudopotentials are used to describe
the core electrons and nuclei, and derived to match all-electron
single atom calculations outside of a given cutoff radius. The
computational profile consists primarily of parallel dense linear
algebra and parallel 3D complex-to-complex Fast Fourier
Transforms. Efficient single-node kernels have been found to be
necessary to achieve good peak performance. The
communication  patterns are complex, with nonlocal
communication occurring both within the parallel linear algebra
library (ScaLAPACK) and in sub-communicator collectives
within Qbox, which are primarily MPI_Allreduce and
MPI_Alltoallv operations. Threading is currently implemented
as a mix of OpenMP and threaded single-node linear algebra
kernels supplied by the hardware/compiler vendor. All results
presented here were carried out using the gb@Il branch of the
Qbox code.

a) Problem Description:

The Qbox benchmark problem is the initial self-consistent
wavefunction convergence of a large crystalline gold system
(FCC, a0 = 7.71 a.u). This problem is computationally identical
to typical capability simulations of high-Z materials, but easier



to describe and generalize to arbitrary numbers of atoms. A Perl
script is used to generate input files for weak scaling study. On
Cielo, N=1,600 gold atoms were simulated with a norm-
conserving pseudopotential and 17 valence electrons per atom,
resulting in 13,600 occupied electronic orbitals. A planewave
cutoff of 130 Rydbergs was used, and 2,784 additional
unoccupied orbitals was included (approximately 20% of the
number of occupied states) to allow finite temperature smearing
of the occupation at the Fermi level. The computational
complexity of the calculation scales as O(N®) where N is the
number of electronic orbitals. The number of atoms was
increased accordingly to generate scaled problems for Trinity
Capability Improvement Metric simulations. For example, 2,880
gold atoms would require approximately six times more
computations than the Cielo benchmark system of 1,600 atoms.

b) Figure of Merit (FOM) Description:

The run time metric for this benchmark is the maximum
total wall time to run a single self-consistent iteration with three
non-self-consistent inner iterations (corresponding to an input
command of ‘run 0 1 3°). Qbox prints formatted XML tags for
the timing of each part of the code at the end of the run, with the
self-consistent iteration time marked as follows:

<timing where="run" name=" iteration" min="1234.5 " max="1234.5"/>
The FOM is the timing in the max field.

Qbox CI performance was investigated extensively so
as to improve the performance metric on Trinity. The primary
factors impacting the CI metric at various scales were: input
parameter nrowmax, hybrid coarse/fine-grain parallelism; i.e.
number of OpenMP threads per MPI task, optimal MPI task
mapping, and the number of atoms on input. Early
investigations also showed that the Cray CCE compiler was
slightly faster (by a few percent) than the Intel compiler. Use of
craype-hugePages at 8MB also led to 5% performance gain
(tested on small problem size) over the default 4KB page size.
Cray Libsci OpenMP parallel linear algebra functions found
heavy use in Qbox. The importance of the Cray Libsci usage
strongly depends on the size of the problem and the number of
nodes available for that run; typically, a problem with 2,400 gold
atoms running on 2,048 nodes would spend about half the total
time inside the ScaLAPACK BI_Srecv/Bl_Ssend routines, with
an extra 10% in the BLAS routine ZGEMM, and a few percent
in MPI_Alltoallv and FFTW3. Larger problems will see an
increase in the time spent in the ScaLAPACK routines. However
more time will be spent inside ZGEMM and MPI_Alltoallv as
the problem size gets smaller and smaller.

The nrowmax variable is used to determine the shape of
the rectangular process grid used by Qbox. This process grid is
the one used by the ScaLAPACK library. When Qbox starts, the
ntasks, MPI tasks are assigned to processes arranged in a
rectangular array of dimensions nprow * npcol. The default
value of nrowmax is 32. The plane-wave basis is divided among
nprow blocks, and the electronic states are divided among npcol
blocks. At the program start up a simple algorithm coded in
Qbox determines the values of nprow and npcol. Note that Cray

Perftools includes an MPI Grid Detection algorithm that
determines the shape of the numerical grid and offers optimum
grid orderings, as further discussed below. Values 512, 1,024,
2,048 and 4,096 for nrowmax were investigated for their
performance impact. At lower scales (< 512 nodes) nowmax of
512 was optimal. However as the problem size (number of
atoms) and the number of nodes were increased it was found that
up to 2,000 nodes the optimal nrowmax was 1,024 and at very
large scales it was 2,048. This is the result of balancing the
communication traffic across different ScaLAPACK functions
and parallel FFTs, and is consistent with previous studies.

Performance investigation varying the number of
OpenMP threads per MPI task showed variation based on scale.
For less than 880 atoms, 2 OpenMP threads/task was optimal.
For 2,400 atoms and above and at larger number of nodes 8
OpenMP threads/task gave the best performance.  Runs on
Trinity with a 5,600 atom Qbox simulation showed 2X
performance gain for 8 OpenMP threads/task when compared to
2. The need for ASC applications to improve fine-grained node
parallelism is illustrated by this application. The benefit in
performance comes from the high parallel efficiency linear
algebra OpenMP kernels and from reduced MPI inter-node
communication overhead.

Figure 6 compares the weak scaling performance of
Qbox measured on Cielo and Trinity. The 1600 gold atoms
baseline data collected on Cielo and repeated on Trinity using
the same number of 98,304 processing elements showed a nice
performance gain of 5.3X on Trinity. The near linear weak
scaling on Trinity seen in Figure 6 was enabled by the tuning
steps outlined previously.
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¢) Capability Improvement Metric Run:

The number of nodes and memory per node on Trinity
(4X that of Cielo) permitted runs of Qbox with up to 8,800
atoms. Figure 7 shows the capability scaling characteristics
of Qbox on 9,418 nodes of Trinity using 8 OpenMP threads
per rank for the various models (except for the 4,000 gold
atoms model that used 2 OpenMP threads).
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Figure 7. Qbox capability scaling performance, without
MPI grid ordering, and hyperthreading.

The FOM, self-consistent iteration time, increases from 426 secs
to 9,776 secs as the input complexity is varied from 2,880 atoms
to 8,800 atoms. As mentioned previously the computation
complexity grows as the cube of the number of atoms. The run
used for the final Cl computation for Qbox is the same 8,800
atoms case as shown in Figure 7 with additional improvement in
performance obtained through MPICH_RANK_REORDER
using the Cray grid_order utility:

grid_order -R -P -c 4,2 -g 68,1108 > MPICH_RANK_ORDER

The parameters specify:
-R is row-major ordering of ranks
-P is a Peano space filling curve (optimal for FFT-style
communication)
- is the desired node MPI grid
-g is the global MPI grid

This reduced the FOM lIteration Time from 9,776 secs to 7,974
SEcs. The problem size/complexity factor for the CI
computation with the 8,800 atoms run on Trinity and 1,600
atoms run on Cielo is 166.375 and the run time ratio (with the
Cielo baseline Iteration Time of 1,663 secs) is 0.208 giving a
final CI value of 34.7. The grid_order definition shown above
includes hyperthreading: there are 8 MPI ranks (i.e., defining the
grid_order flags: “-c 4,2””) and 8 OpenMP threads per rank, for a
total of 64 cores per node. The grid order flags “-g 68,1108 are
thus matched to the optimized Qbox parameter nrowmax. The
positive effect of MPI grid ordering is shown in Table 2.
Hyperthreading also benefitted performance.

Table 2. Qbox FOM using MPI Grid ordering
“grid_order -R -P -c 2,2 -g 34,1108 (without hyperthreading)
“grid_order -R -P -c 4,2 -g 68,1108 (with hyperthreading)

2400 gold atoms 8800 gold atoms

Without grid order 456 9383
With grid order 315 8834
With grid order and 7974

hyperthreading

4) Phase-1 CI performance summary:

Figure 8 summarizes the measured CI performance for each of
the Tri-Lab applications and the average of the three
applications. The achieved average ClI performance of 14.517
exceeds the target of 4.0 set for Phase-1.
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Figure 8. Trinity Capability Improvement performance

B. SSP Results

The System Sustained Performance (SSP) benchmark
developed by NERSC [8] is useful as a way of measuring,
reporting, and projecting the performance of a given system using
a set of benchmark programs that represent a workload. SSP is
computed as a geometric mean of the performance of eight Tri-
Lab and NERSC benchmarks [8]: miniFE, miniGhost, AMG,
UMT, SNAP, miniDFT, GTC and MILC. A second performance
goal for Trinity Phase-1 was a target SSP of 400. This is roughly
8X throughput improvement in performance over the reference
baseline measured on NERSC’s Hopper (a Cray XE6). Table 3
shows the baseline SSP performance and calculations on Hopper.

Table 3. SSP baseline performance on Hopper

Hopper Nodes 6384
Hopper S3P
ApplicationName | MPi Tasks | Threads [NodesUsed| Reference Tflops | Time(seconds) | Pi

miniFE 49152 1 2048 1065.151 92.4299 0.0056
miniGhost 49152 1 2048 3350.20032 95.97 0.0170
AMG 49152 1 2048 1364.51 151.187 0.0044
UMT 49152 1 2048 18409.4 1514.28 0.0059
SNAP 49152 1 2048 4729.66 1013.1 0.0023
miniDFT 10000 1 417 9180.11 906.24 0.0243
GTC 19200 1 800 19911.348 2286.822 0.0109
MILC 24576 1 1024 15036.5 1124.802 0.0131
CGeom. Mean= | 0.0082
SP= 52.1212

The Reference Tflops in Table 3, measured on Hopper is to be
used for the calculation of SSP on Trinity. The other specified
factor in the SSP runs on Trinity is the input problem size for
each of the benchmarks, provided with the benchmark tar file and
labelled “large” [8]. However the benchmark dos not specify the
number of MPI tasks, the threads per task, nor the number of



nodes used, which is a potential shortcoming. The SSP
performance measured on Trinity is shown in Table 4. The last
column (pi), a measure of throughput per node
(Teraflops/second-per-node) is measured by dividing the
reference TFLOPS by the product of the run time and number of
nodes used. The geometric mean of the eight benchmarks is
calculated as shown and the SSP metric is obtained as a product
of this number and the number of nodes on Trinity, 9436.
NERSC and ACES are improving the usefulness of this metric to
better capture the true intent to gauge architectural improvement
of proposed future systems by eliminating few shortcomings such
as lower incentive to achieve good strong scaling and difficulty in
measuring accurate FLOP counts. The achieved performance on
Trinity was 500 and it exceeded the target of 400 set for phase-1.

Table 4. SSP performance on Trinity

Trinity Nodes | 9436
pi: Rate(TH's
Trinity SSP per Node)
MPI Nodes Reference Time
Application Name | Tasks |Threads| Used Trlops (seconds) P

miniFE 49152 | 1 1536 | 1065.151 | 495116 0.0140
miniGhost | 49152 | 1 1536 | 3350.20032 | 1.77E+01 | 0.1229
AMG 49152 | 1 1536 136451 | 66.233779 | 0.0134
UMmMT 49184 | 1 1537 18409.4 454,057 0.0264
SNAP 12288 | 2 768 4729.66 | 1.77EH02 0.0348
miniDFT 2016 1 63 9180.11 377.77 0.3857
GTC 19200 | 1 300 | 19911.348 | 868.439 0.0764
MILC 12288 | 1 384 15036.5 393.597 0.0995
Geom.Meany  0.0530

SP= 500.0177

C. Extra-Large mini app performance

An additional requirement for Trinity in the SOW, was to
measure and document the scaling and performance of five of the
eight mini-apps used in the SSP benchmark (miniFE, miniGhost,
AMG, UMT and SNAP ) using approriate scaled inputs, at near
full scale of 9436 nodes.  These were added to the acceptance
tests to help identify any potential hurdles to applications scaling
to the full size of Trinity. All the benchmarks completed
successfully.

D. Micro-benhcmark results

As part of this effort to gather performance characteristics of
Trinity, a number of micro-benchmarks [9] were run. Benchmark
performance data from Pynamic, Ziatest, OMB, SMB, mdtest,
IOR, PSNAP and mpimemu have been very useful in providing a
deeper understanding of the system and factors affecting
performance of applications. This section provides a short
summary of a few of the benchmarks run during Trinity
acceptance.

1) HPCG
The HPCG benchmark was run on Trinity in the fall of 2015.
The Intel version 2.4 of the benchmark was used, and no changes
were made to the code. The runs were scaled up to 9,419 nodes,

using 2 MPI ranks per node and 16 OpenMP threads per rank.
Local domain dimensions of 80x160x160 were set using the
HPCG command line options --nx, --ny, --nz, and the execution
time was set to 4,000 seconds using the HPCG command line
option --t. To ensure optimal placement of ranks and threads on
the cores, the environment variable KMP_AFFINITY was set to
‘compact’ and the aprun option ‘-cc depth’ was used. The best
GFLOP/s rating reported was 182,562.

2) Ziatest

This test executes a new proposed standard benchmark
method for MPI startup that is intended to provide a realistic
assessment of both launch and wireup requirements.
Accordingly, it exercises both the launch system of the
environment and the interconnect subsystem in a specified
pattern. Details on how the test is designed and tar file with the
benchmark can be obtained from [9]. Ziatest was run on Trinity
on 9,334 nodes and it measured a launch time of 12 seconds with
32 MPI tasks per node.

3) Mpimemu

Benchmark mpimemu helps measure approximate MPI library
memory usage as a function of scale. Ittakes samples of
/proc/meminfo (node level) and /proc/self/status (process level)
and outputs the min, max and avg values for a specified period
of time. More information is provided by NERSC [9].

mpimemu was run on Trinity and Table 5 shows the MPI
library memory used with 64 MPI tasks-per-node (using the -j 2
option of aprun) as a function of scale. For smaller scales the
memory used was found to be less than 2% of the available 128
GB per node.

Table 5. mpimemu benchmark results

Trinity number of nodes 1024 | 2048 | 4096 | 9344

Avg. node memory used (GB) | 2.6 3.5 5.2 8.9

4) PSNAP

PSNAP is a System Noise Activity Program from
the Performance and Architecture Laboratory at Los Alamos
National Laboratory. It consists of a spin loop that is calibrated
to take a given amount of time (typically 1 ms). This loop is
repeated for a number of iterations. The actual time each
iteration takes is recorded. Analysis of those times allows one
to quantify operating system interference or noise. Details on
how the test is designed and tar file with the benchmark can be
obtained from NERSC [9].

PSNAP was intended to run on the entire system and was
executed on all the available Trinity nodes on a run using 9,436
nodes, with 32 MPI tasks per node. It was run after the module
‘atp> was unloaded and the environment Vvariable
ATP_ENABLED was unset. The output was processed using the
script psnap_reduce provided with the benchmark to obtain a
histogram of the actual time taken to run the timing loop for
each MPI task. The resulting histogram showed acceptable
results of OS jitter. A summary of the noise characteristics
obtained from the run output with the provided “psnap_reduce”
script showed:




NR: 9436

Average Slowdown: 0.148236
Min Slowdown: 0.131174
Max Slowdown: 0.178586

To summarize, the maximum percentage slowdown at a core
was measured to be 0.178586%.

5) STREAM

STREAM is a simple, synthetic benchmark designed to
measure sustainable memory bandwidth (in MB/s) and a
corresponding computation rate for four simple vector kernels.
The version used for the Trinity benchmark is the OpenMP
enabled version of STREAM and can be downloaded from [9].
It was built with the Intel compiler options:

-0O2 —xAVX -static -openmp -opt-streaming-stores always

The Array size was set to 3,435,973 which correspond to 78 GB

of total memory required. It was run on a Trinity node with:
aprun -j 1 -n1 -cc none -d 32 ../stream_c.exe

The measured STREAM performance is shown in Table 6.

Table 6. STREAM benchmark results

Function Scale Add Triad

Copy

Rate (MB/s) 108,014 108,653 | 118,850 | 119,077

6) OSU MPI Message Benchmarks

The OSU MicroBenchmark suite is a collection of
independent MPI message passing performance
microbenchmarks developed and written atthe Ohio State
University. It includes traditional benchmarks and performance
measures such as latency, bandwidth and message rate.
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Figure 9. OMB node-to-node MPI bandwidth

Pont-to-point bandwidth, latency and message rate benchmarks
were run. Figure 9 shows the uni-directional and bi-directional
bandwidth between a pair of tasks on two nodes (node numbers:
2,336 and 2,464) and Figure 10 shows the MPI collective
Allreduce latency as function of message size on a run using
300,480 MPI tasks on 9,390 nodes. This shows that on the full

system frequently used 8 byte MPI_Allreduce completes in 28

microseconds.
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Figure 10. MPI1_Allreduce Latency on 9,390 nodes

The OSU multi-latency benchmark showed that inter-node
latency for small messages was less than 2 microseconds.

The omb_mbw_mr, message rate benchmark performance
between two nodes has been of interest to us because, small
message Size  messaging-rate  impacts  scalability and
performance of our implicit codes with multi-level solvers.
Figure 11 helps explain the better scaling seen on many of our
applications on Trinity when compared to our commodity
InfiniBand clusters.
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Figure 11. omb_mbw_mr message rate performance

IV. CONCLUSIONS

A wealth of data on the performance of a large Cray XC40
has been collected as part of the Trinity procurement and
acceptance tests. This paper documents the many man-months of
effort to run and optimize the benchmarks. Many of these runs
are the first time that these benchmarks have been run at scales
using in excess of 300,000 cores. We also compared Trinity
performance to our current capability system Cielo. Our
investigation confirms that Cray XC40 has good scalability and
as expected should give us the needed performance and
throughput gain for the Tri-Lab’s growing simulation needs.
Based on benchmark results we anticipate production Trinity
applications would see a performance gain of 2x to 6x over Cielo



depending upon potential gains from AVX2, use of threads and
optimal MPI task mapping. The use of Cray’s grid_order utility
and hugepages should be explored as codes are ported to Trinity.
We are hopeful that the lessons learned from this exercise are
helpful to our users as Trinity begins to fully support production
applications in early 2016.
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