
Asynchronous Parallel
Cartesian Genetic Programming

Adam Harter1, Alex R. Bertels1, Daniel R. Tauritz1, and William M. Siever2

1 Missouri University of Science and Technology, Rolla, MO, U.S.A.
2 Western Illinois University, Macomb, IL, U.S.A

Abstract. The run-time of evolutionary algorithms (EAs) is typically
dominated by fitness evaluation. This is particularly the case when the
genotypes are complex, such as in genetic programming (GP). Evaluat-
ing multiple offspring in parallel is appropriate in most types of EAs and
under the right circumstances can reduce the time incurred by fitness
evaluation proportional to the number of parallel processing units. The
most näıve approach maintains the synchrony of evolution as employed
by the vast majority of EAs, but this requires an entire generation to be
evaluated before progressing to the next generation; heterogeneity in the
evaluation times will degrade the performance gain as parallel processing
units will have to idle until the longest evaluation has completed. Asyn-
chronous parallel evolution mitigates this bottleneck and techniques such
as Cartesian GP (CGP) which experience high heterogeneity in evalua-
tion times are therefore a prime candidate for asynchrony. This paper:
1) provides a quick introduction to CGP and asynchronous parallel evo-
lution, 2) introduces asynchronous parallel CGP, and 3) shows empirical
results demonstrating the potential for asynchronous parallel CGP to
outperform synchronous parallel CGP.

Keywords: Genetic Programming, Asynchronous Parallel Evolution,
Cartesian Genetic Programming, Evolutionary Computing

1 Introduction

Cartesian Genetic Programming (CGP) arranges problem-specific operations as
function nodes on a two-dimensional grid [6]. Dissimilar to the genotypes in most
forms of GP, these grids remain a static size which may need to be quite large to
encapsulate complex solutions. Evaluating the fitness of this structure requires
that input be passed to a set of initial nodes that then produces output for
other nodes. Inputs are propagated from one function node to the next through
the grid; however, not all nodes will necessarily be evaluated. The number of
evaluated nodes in the genotype heavily influences the fitness evaluation time,
therefore the variation in these times can become significant with large grid sizes.
CGP evaluations can be performed in parallel like most traditional Evolutionary
Algorithms (EAs) as the evaluations are independent of each other. Classic CGP
employs the synchronous model common to the vast majority of EAs, in which

SAND2016-3549C



all offspring in a generation are evaluated before survival selection is executed.
Upon parallelization, the variation of evaluation times can cause classic CGP to
excessively idle while waiting for individuals to be evaluated [7, 5]. To combat this
problem, we are proposing an asynchronous model, in which survival selection is
performed for each offspring individually immediately after evaluation is finished.

The contributions of this paper are as follows:

– Demonstrate statistical evidence that our proposed asynchronous parallel
CGP (APCGP) may converge faster in regards to wall-time than synchronous
parallel CGP (SPCGP)

– Provide analysis of scalability of APCGP with regards to problem complexity
with comparison to SPCGP

2 Related Work

Durillo et al. have shown empirical evidence supporting the significant improve-
ment in terms of various quality metrics when employing asynchronous parallel
EA’s (APEAs) rather than synchronous parallel EAs for NSGA-II [2]. The APEA
master process creates and sends individuals to be evaluated as the slave proces-
sors become idle. In the generational version, the population is replaced when
enough offspring have been generated. With the steady-state alternative, the off-
spring are considered as each is received. The researchers employed homogeneous
populations as the test cases during experimentation.

Those that have specifically addressed heterogeneous populations, note that
APEAs are biased toward individuals with shorter evaluation times [1, 8, 9, 5].
This is a result of the master process receiving those individuals sooner and
more often, flooding the population. This potentially reduces the search space
that can be reached within a given runtime. Yagoubi and Schoenauer attempt
to circumvent this with a duration-based selection on the received offspring [8].
This supposed defect can also be taken advantage of in various situations, one
of which is evolving genetic programs, which must use a mechanism such as
parsimony pressure or must minimize a size-related objective value to prevent
any individual from becoming too large. The bias provided by heterogeneous
evaluation times can be used to produce an implicit time pressure; however, in
cases with flat fitness landscapes, individuals tend to converge to both long and
short evaluation times [7].



0Generation 0

Generation 1 1

Generation 2

Fig. 1: Exploration of search space in Synchronous CGP. The best individual of
the parent and its four children is used for producing the next generation.

0

(a) The initial state –
Node 0 produces four
children.

0 1

(b) Node 1 returns and
is better than or equal
to Node 0, Node 1 re-
places Node 0 and pro-
duces a child.

0 1

2

(c) Node 2 returns and
is better than or equal
to Node 1, Node 2 re-
places Node 1 and pro-
duces a child.

0 1

2

(d) One of the children
from Node 0 finishes
evaluating. It is worse
than Node 2, so it is
discarded and Node 2
produces a child.

0 1

2 3

(e) Node 3 returns and is better
than or equal to Node 2. Node 3
replaces Node 2 and Node 3 pro-
duces a child. Note that one of
the children from Node 0 is still
being evaluated.

Fig. 2: Exploration of search space in Asynchronous Parallel CGP



3 Asynchronous Parallel CGP

Synchronous CGP, both serial and parallel, were implemented using the Stan-
dard CGP model, as defined by Miller [6], the only difference is that SPCGP
evaluates all individuals of a generation simultaneously, while synchronous serial
CGP evaluates only one individual at a time. SPCGP and APCGP both have
a master node that generates new individuals that are later evaluated by slave
nodes. SPCGP waits for all individuals in a generation to be returned, while
APCGP acts on each individual as it is returned. In the case of APCGP, using
the (1 + 4) survival strategy advocated by Miller [6], the returned individual
is compared to the existing best. If the new individual is better than or equal
to the current best, it becomes the current best. Following this, a new individ-
ual is generated from the current best via mutation and the process continues
until termination criteria are met. In this particular implementation, the evolu-
tionary cycle terminates when the best individual has a fitness that exceeds a
user-defined threshold. Although APCGP intuitively seems faster than SPCGP,
the method by which APCGP explores the search space may lead to more eval-
uations until convergence. As seen in Figure 1, four individuals from the local
search space of the current best individual are evaluated at each generation in
SPCGP. In contrast to this, APCGP performs survival selection from only two
individuals, and if a high-fitness solution has a long evaluation time, sub-optimal
individuals will produce offspring to be evaluated while the high-fitness solution
is being evaluated. An example of such an exploration in illustrated by Figure 2.

4 Experimentation

4.1 Problem

The problem chosen was n-bit parity, a classical digital circuit problem that
CGP has been used to solve in the past [3]. This was chosen as it has a known
solution, providing easy termination criteria. Although more computationally
complex problems would benefit more from parallelization, CGP suffers from
high variation [3, 4], which becomes more pronounced as the problem complexity
increases. Thus, to simulate more computationally complex problems and to
reduce the effects of overhead due to parallelization, the fitness evaluation is
configured to repeat any number of times.

4.2 Experiment Design

The experiment was run with the parameters shown in Table 1, as recommended
by Miller [6]. ni, the number of inputs, was equivalent to n for the n-bit parity
problem trying to be solved (2 or 3). The function set was {nand, and, nor, or}
and thus the maximum parity, a, was two. The overhead, or the number of times
the fitness evaluation was repeated, was varied between 1 and 400 to investigate
performance based on problem complexity. 2-bit and 3-bit parity problems were



Parameter Description Value

nc Number of columns 4000
nr Number of rows 1
n0 Number of outputs 1
l Look back level 4000
µ Population size 1
λ Offspring size 4
µr Mutation rate 0.01

Table 1: Parameters used for experimentation

run using a serial synchronous model, a parallel synchronous model, and an
asynchronous parallel model. Each of these experiments was run thirty times.
The parallel synchronous and parallel asynchronous models used a master/slave
model, with one master thread and four slave threads. The implementation was
done in Python, while parallel code was achieved using the multiprocess module.

5 Results

As can be seen in Figure 3, for an overhead of 200, the asynchronous parallel
and synchronous parallel models have very similar run-time performance, but
significantly better run time averages than the synchronous serial equivalent.
The figure also indicates that asynchronous parallel takes more evaluations than
synchronous parallel and synchronous serial, which are nearly identical in the
regard. The statistical analysis of the results is shown in Table 2, indicating
with an α of 0.05 that there is statistical evidence that asynchronous parallel
runs faster than synchronous parallel, while there does not seem to be strong
statistical evidence that the number of evaluations differ.

Async ParallelSync Parallel Sync Serial0

2000

4000

6000

8000

10000

12000

14000

Ti
m

e 
(s

ec
on

ds
)

3-parity (Overhead = 200) Run Time

Async ParallelSync Parallel Sync Serial0

1000

2000

3000

4000

5000

6000

Ev
al

ua
tio

ns

3-parity (Overhead = 200) Evaluations

Fig. 3: Results for 3-parity with an overhead of 200 (lower is better)

As shown in Figure 4 and confirmed in Table 3, there is not strong statistical
evidence that the runtime or the number of evaluations differ between APCGP



Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1386.8667 2271.8667 1598.0667 1197.1333
Variance 1300173.1540 2405185.9126 1943444.8230 547167.4299

Equal Variance Assumed? No No

t Stat -2.5182 1.3915
Two-tailed p-value 0.0148 0.1711

Table 2: Statistical analysis of 3-parity results with an overhead of 200

Async ParallelSync Parallel Sync Serial0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e 
(s

ec
on

ds
)

3-parity (Overhead = 150) Run Time

Async ParallelSync Parallel Sync Serial0

2000

4000

6000

8000

10000

12000

14000

Ev
al

ua
tio

ns

3-parity (Overhead = 150) Evaluations

Fig. 4: Results for 3-parity with an overhead of 150 (lower is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1291.3333 1843.3333 1566.6333 1107.0000
Variance 1686790.6437 1970160.6437 2708884.1713 797132.9655

Equal Variance Assumed? No No

t Stat -1.5810 1.3445
Two-tailed p-value 0.1193 0.1856

Table 3: Statistical analysis of 3-parity results with an overhead of 150

and SPCGP when employing an overhead of 150. As may be expected, further
lowering the overhead to 100, results in the same result that neither the runtime
nor the number of evaluations differ between APCGP and SPCGP; this is shown
in Figure 5 with statistical analysis shown in Table 4.

As demonstrated in Figure 6, the synchronous serial model begins with a
high evaluations/second rating, which quickly drops as the overhead increases.
These results can be compared to those in Figure 7, asynchronous parallel and
synchronous parallel both begin with lower evaluations/second, but the rate of
decrease is substantially smaller in asynchronous parallel and synchronous par-



Async ParallelSync Parallel Sync Serial0

2000

4000

6000

8000

10000

12000
Ti

m
e 

(s
ec

on
ds

)

3-parity (Overhead = 100) Run Time

Async ParallelSync Parallel Sync Serial0

5000

10000

15000

20000

25000

Ev
al

ua
tio

ns

3-parity (Overhead = 100) Evaluations

Fig. 5: Results for 3-parity with an overhead of 100 (lower is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1180.1333 1216.6667 2492.8000 1224.0667
Variance 1124180.9471 808805.7471 16920736.5793 919078.2713

Equal Variance Assumed? No No

t Stat -0.1439 1.6453
Two-tailed p-value 0.8861 0.1097

Table 4: Statistical analysis of 3-parity results with an overhead of 100

1 5 20 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Overhead

0

20

40

60

80

100

120

Ev
al

ua
tio

ns
/S

ec
on

d

Synchronous Serial Evaluations per Second

(a) Overhead ranging from 1 to 400

75 100 125 150 175 200 225 250 275 300 325 350 375 400
Overhead

0

2

4

6

8

10

12

14

Ev
al

ua
tio

ns
/S

ec
on

d

Synchronous Serial Evaluations per Second

(b) Overhead ranging from 75 to 400

Fig. 6: Evaluations per second of synchronous serial with a variety of overheads
for 2-bit parity (higher is better)

allel than in synchronous serial. Furthermore, as demonstrated by the statistical
analysis with an overhead of 175, shown in Table 6, there is statistical evidence
with an α of 0.05 that APCGP is faster than SPCGP. This evidence is only



1 5 10 20 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Overhead

0

2

4

6

8

10

12

14

Ev
al

ua
tio

ns
/S

ec
on

d

Comparison of Asynchronous Parallel and
Synchronous Parallel Evaluations per Second

Async
Sync

Fig. 7: Evaluations per second of asynchronous parallel and synchronous parallel
with a variety of overheads for 2-bit parity (higher is better)

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 79.2667 228.2667 186.7333 261.1333
Variance 3837.9954 29632.0644 27792.7540 56633.9126

Equal Variance Assumed? No No

t Stat -4.4609 -1.4025
Two-tailed p-value 0.0001 0.1667

Table 5: Statistical analysis of 2-parity results with an overhead of 400

strengthened as the overhead increases, demonstrated by the statistical analysis
with an overhead of 400, showing almost statistic certainty that ASCGP is faster
than SPCGP.



Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 57.4667 156.2333 240.9333 392.8667
Variance 2101.2230 31019.1506 37326.8920 193517.7747

Equal Variance Assumed? No No

t Stat -2.9725 -1.7320
Two-tailed p-value 0.0055 0.0910

Table 6: Statistical analysis of 2-parity results with an overhead of 175

6 Conclusion

Statistical evidence has been presented showing that APCGP outperforms SPCGP
for computationally expensive tasks, while both outperform synchronous serial
CGP. If the task is computationally inexpensive, then APCGP and SPCGP per-
form similarly, but both are inferior to serial CGP. This provides evidence that
parallelization should only be performed if the task is computationally heavy,
and when performed, an asynchronous model should be preferred.

7 Future Work

More advanced versions of CGP exist, which often have superior performance
to standard CGP; applying the asynchronous model to them may further in-
crease their performance. Although CGP showed improved performance, there
are many forms of GP; these forms may not show the same increase in per-
formance when using the asynchronous model. Additionally, the asynchronous
model could be applied to different types of EA’s, such as co-evolutionary EAs
or multi-objective EAs. Although this study used the traditional (1 + 4) pop-
ulation model for parallel synchronous, changing the number of offspring could
potentially result in further improvements over synchronous serial.

References

1. Churchill, A.W., Husbands, P., Philippides, A.: Tool Sequence Optimization using
Synchronous and Asynchronous Parallel Multi-Objective Evolutionary Algorithms
with Heterogeneous Evaluations. In: 2013 IEEE Congress on Evolutionary Compu-
tation (CEC). pp. 2924–2931. IEEE (2013)

2. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A Study of Master-Slave Approaches to
Parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed
Processing. pp. 1–8. IEEE (2008)

3. Goldman, B.W., Punch, W.F.: Analysis of Cartesian Genetic Programming’s Evolu-
tionary Mechanisms. IEEE Transactions on Evolutionary Computation 19(3), 359–
373 (Jun 2015)



4. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying Cartesian Genetic Program-
ming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation. pp. 1021–1028. GECCO ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1276958.1277161

5. Martin, M.A., Bertels, A.R., Tauritz, D.R.: Asynchronous Parallel Evolutionary
Algorithms: Leveraging Heterogeneous Fitness Evaluation Times for Scalability
and Elitist Parsimony Pressure. In: Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp.
1429–1430. GECCO Companion ’15, ACM, New York, NY, USA (Jul 2015),
http://doi.acm.org/10.1145/2739482.2764718

6. Miller, J.: Cartesian Genetic Programming. Natural Computing Series, Springer-
Verlag, Heidelberg, Berlin (2000)

7. Scott, E.O., De Jong, K.A.: Evaluation-Time Bias in Asynchronous Evolutionary
Algorithms. In: Proceedings of the Companion Publication of the 2015 on Genetic
and Evolutionary Computation Conference. pp. 1209–1212. ACM, New York, NY,
USA (Jul 2015)

8. Yagoubi, M., Schoenauer, M.: Asynchronous Master/Slave MOEAs and Heteroge-
neous Evaluation Costs. In: Proceedings of the Fourteenth International Conference
on Genetic and Evolutionary Computation Conference. pp. 1007–1014. ACM (2012)

9. Yagoubi, M., Thobois, L., Schoenauer, M.: Asynchronous Evolutionary Multi-
Objective Algorithms with Heterogeneous Evaluation Costs. In: 2011 IEEE Congress
on Evolutionary Computation (CEC). pp. 21–28. IEEE (2011)


