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Abstract: Thermal management is critical to the design of
molten salt batteries, and the use of computational models to
aid in this process has become widespread. An understanding
of the relationship between uncertain inputs and probabilistic
outputs allows for more realistic simulation results and model
validation when compared to traditional deterministic simu-
lation. This understanding also allows design engineers to
make informed decisions when specifying material property
and manufacturing tolerances. Thermal simulations of molten
salt batteries using Sandia’s Thermally Activated Battery Sim-
ulator (TABS v3) are employed to propagate uncertainty in in-
put variables such as material properties, material response,
initial conditions, and geometry through the model. The prob-
ability ranges of output responses such as rise time, maximum
temperature, and lifetime are calculated, and the uncertain in-
puts that most significantly affect the output metrics are deter-
mined. Model validation results are presented by comparing
the uncertainty quantification simulation results to tempera-
ture data from an instrumented model battery, and solution
verification is discussed with a focus on computational grid
spacing.
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Introduction

Typical molten salt batteries are composed of a stack of elec-
trochemical cells enclosed in a case, with each cell in the
stack consisting chiefly of individual pellets of anode, sepa-
rator, cathode, and pyrotechnic material. Additional materials
such as insulation and current collectors are often included as
well. The ignition of the pyrotechnic material introduces a
large amount of heat energy into the system, causing the solid
electrolyte within the porous separator to melt. The melted
electrolyte flows into the porous electrodes and completes the
electrochemical circuit, allowing the battery to deliver electric
power.

Computational models of molten salt battery performance
have traditionally focused on thermal transport, neglecting
electrochemical or mechanical phenomena. By predicting the
spatial temperature profile in each material, maximum temper-
atures reached in each material can be evaluated, and an ap-
proximation of battery rise time and lifetime can be made. We
define several interpretations of these important performance
metrics in more detail in the Quantities of Interest section be-
low.
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Specific heat and thermal conductivity are input parameters for
each material in the domain. In addition, heat pellet pyrotech-
nic parameters like heat release and burn speed are provided as
simulation inputs. The combination of material properties and
number of materials in the domain results in a large number of
input parameters that, combined with initial and boundary con-
ditions, determine the overall behavior of a thermal simulation.
Many of these properties are temperature dependent, making
accurate characterization of each property for each material a
significant challenge. Each value also has an associated uncer-
tainty range, typically based on experimental or manufacturing
variability. An understanding of the relationship between un-
certain inputs and output quantities of interest allows design
engineers to focus on input properties that most significantly
affect battery performance. Incorporating uncertainty also al-
lows for more realistic simulation results and model validation.
In this paper, we investigate many thermal simulation input pa-
rameters and present their effects on battery performance. In
addition, simulation results considering uncertainty propaga-
tion are compared to results from an instrumented validation
battery.

Methodology

Throughout this paper, all results are obtained from thermal
transport simulations of molten salt batteries using input con-
figurations generated by Sandia’s Thermally Activated Battery
Simulator (TABS v3). The thermal model utilized by TABS
has been developed within the Sierra mechanics framework
[1], specifically in Sierra/Aria [2], and is based on the finite
element method. All simulations are performed on a two-
dimensional axisymmetric representation of a cylindrical bat-
tery.

Thermal Model: For thermal transport throughout the battery
domain, the governing equation is the standard heat equation,
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where p is the density, ¢, is the specific heat, T' is temperature,
t is time, « is the thermal conductivity, and Sg is a volumetric
energy source. The major energy source is from the burning
of the pyrotechnic heat pellets, the location of which is tracked
using a level-set method [3]. As materials change phase, latent
heat also contributes to the Sg term.

Sensitivity Calculation: FEach simulation input parameter has
a nominal value obtained from Sandia battery designers or lit-
erature and an accompanying uncertainty range based on ex-
perimental or manufacturing variability [4, 5]. In many cases,



an uncertainty range has not been studied for a given material
or property, so a wide range is used here to represent a worst
case scenario. Table 1 summarizes a typical list of battery in-
put parameters and their uncertainty ranges used throughout
this paper. For temperature dependent properties, the entire
temperature range is scaled similarly.

Table 1. Input parameter relative uncertainty ranges used throughout
this paper. HP=Heat Pellet.

Parameter Lower Bound | Upper Bound
HP ¢, 60% 140%
Separator c,, 60% 140%
Cathode ¢, 60% 140%
Anode c, 60% 140%
HP & 10% 190%
Separator k 10% 190%
Cathode & 10% 190%
Anode & 10% 190%
Insulation x 10% 500%
HP Density (p) 97% 103%
HP Mass 99.5% 100.5%
HP Burn Speed 80% 100%
HP Heat Output 99% 101%
Ambient Temp 99.6% 100.4%
Emissivity (€) 0 1

Using these input uncertainty ranges and assuming a uniform
distribution on each parameter, a Latin Hypercube sampling of
the parameters is used to perform 500 unique thermal simula-
tions. This process was automated by using the open source
DAKOTA toolkit [6], which provides an extensible interface
between analysis codes and systems analysis methods. For
each simulation, several quantities of interest (QOIs) are com-
puted, which are detailed in the next section. This combina-
tion of various input parameters and their corresponding out-
put QOIs is used to construct a surrogate model for a subse-
quent polynomial chaos response sampling, again using the
DAKOTA toolkit. The result is a collection of uncertainty
ranges and global sensitivity metrics of each output QOI with
respect to each input parameter.

Quantities of Interest

As previously mentioned, the most important performance
metrics of a molten salt battery are rise time and lifetime. Rise
time represents the amount of time between initiating the heat
pellet burn and achieving useful electric power. Similarly, life-
time represents the amount of time between heat pellet initia-
tion and the point at which the battery ceases providing useful
power. Since the simulations employed here model thermal
transport only, a translation between useful electric power and
temperature must be made for these metrics. The battery pro-
vides no power while the electrolyte within the separator re-
gion is solidified, thus the foundation for this translation will
be that an activated battery corresponds to a separator region
above the electrolyte melt temperature. While this assumption
neglects some physical processes and/or non-uniform material
composition, it serves as an acceptable approximation for our
application. The amount of separator that needs to be above

melt temperature in order for a battery to function remains un-
clear, so we use three definitions for an activated battery as our
rise time and lifetime QOIs.

The two extremes for rise time are represented by Rise Time
Min and Rise Time Max. The minimum time corresponds to
an interpretation where the battery is activated if any point in
a separator has melted, or max(T') > Trneiting. Alternatively,
the maximum time corresponds to the entire separator region
being melted, or min(T) > Tieiting. A third metric, Rise
Time Mid, falls between the extremes by considering the bat-
tery active if the separator has reached melt temperature at at
least one radial location, indicating that each cell in the stack
now has a transport pathway between anode and cathode.

Three lifetime variations are similarly but inversely defined,
where Lifetime Min and Lifetime Max represent the minimum
and maximum extremes min(T) < Tperring and max(T) <
Tmelting, respectively. Lifetime Mid corresponds to the point
where the separator contains at least one frozen point at each
radial location, meaning at least one cell in the stack has no
transport pathway.

The last two QOIs are maximum temperature reached in the
anode and cathode. While rise time and lifetime are mainly
performance metrics, maximum temperatures are of interest
due to safety. High temperatures in battery materials can lead
to unacceptable consequences such as material degradation
and thermal runaway [7].

These eight QOIs are all calculated by evaluating the spa-
tial/temporal temperature results provided by the thermal sim-
ulations. For each QOI, the value is linearly interpolated be-
tween numerical time steps to offset inaccuracy due to the dis-
crete nature of the simulation.

Results and Discussion

In this section, we provide results obtained from analysis of
thermal simulations, beginning with uncertainty results for the
QOIs, presented in Table 2. The standard deviations (o) are
quite large for some parameters, with the highest value being
130% of the mean for the long life battery Rise Time Max. The
maximum temperatures reached show a significantly lower o
value than the other metrics, indicating that they are less sen-
sitive to the specified variability in input parameters.

Table 2. Normalized QOI standard deviation (+o) for both a short and
long life battery design.

QOI1 Short Life | Long Life
Lifetime Max 44% 32%
Lifetime Mid 62% 30%
Lifetime Min 76% 54%
Cathode max(T) 12% 10%
Anode max(T) 12% 9%
Rise Time Max 35% 130%
Rise Time Mid 47% 53%
Rise Time Min 59% 64%




Sensitivity Index: Here we present sensitivity index sum-
maries for two battery designs, one designed to exhibit a short
lifetime and the other a long lifetime. As described above,
these sensitivity index values are calculated through variance-
based decomposition using a polynomial chaos sampling of
simulated QOI results and are useful when assessing which
input variables are most influential in the resulting QOI un-
certainty. Specifically, for each QOI, each sensitivity index
corresponds to the fraction of the uncertainty that results due
to each input variable alone and is often referred to as the main
effect sensitivity index. Any effects that result from an inter-
action with another input variable are not included in the main
index [6].
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Figure 1. Sensitivity Index maps for both a short lifetime battery (top)
and a long lifetime battery (bottom). The legend ranges from 0.0-1.0,
representing the fraction of the uncertainty in each response that can
be attributed to the uncertainty in each input parameter. Material
property parameters plotted are specific heat (c,) and thermal
conductivity () for each major battery material.

The sensitivity index results are summarized in Figure 1 where
a few observations are immediately apparent. For both battery
designs, all three lifetime calculations show high index val-
ues for the thermal conductivity of the insulation layer, which
represents a heavy dependence. Between 80-90% of the vari-
ability in the lifetime predictions in the long life battery are
due to the insulation conductivity alone. This is not surpris-
ing as the insulation dictates how quickly heat can leave the
battery and the uncertainty range on the insulation conduc-
tivity is quite large. Interestingly, for both batteries Lifetime
Mid shows a lower sensitivity than the minimum and maxi-
mum lifetime calculations, which indicates that the more com-

plicated calculation is more significantly affected by a com-
bination of parameters rather than solely conductive heat loss
through the insulation material.

Maximum temperatures reached in the electrodes are predom-
inantly sensitive to the heat pellet specific heat, where it alone
accounts for 54% of the short life and 70% of the long life
maximum temperature variability. For a given total heat re-
lease, a higher heat pellet ¢, limits the maximum temperature
reached by the heat pellet, and therefore limits the tempera-
ture reached by the electrodes as heat spreads. We see that
the maximum temperature reached is also sensitive to a given
electrode material’s thermal conductivity, again dictating how
quickly a buildup of heat can dissipate.

In contrast with the other responses, rise time calculations do
not show a strong dependence on a single input parameter but
instead depend on a collection of thermal conductivity param-
eters. The different rise time interpretations show significantly
different sensitivities, which is highlighted by the long life bat-
tery cathode  indices.

It should be noted that all responses showed negligible sensi-
tivity to ambient temperature as well as heat pellet burn speed,
heat output, and density, so they are not included in Figure
1. This is likely due to the relatively small uncertainty ranges
associated with these parameters when compared to the large
ranges used for the other material properties. As uncertainties
of high-index parameters are narrowed, the sensitivity indices
will change and other parameters may show themselves to be
important. In a scenario with comparable relative uncertainty
ranges in parameters, we would expect heat pellet pyrotechnic
properties (burn speed, heat output, etc.) to be the dominant
parameter for the rise time responses.

Despite the large uncertainty range on emissivity, it was also
omitted from the plot due to a negligible sensitivity index, indi-
cating that the effect of radiation variability is overshadowed
by the other mechanisms in these simulations. Observations
like these highlight the power and usefulness of this type of
sensitivity study. Although there may be very limited infor-
mation on a material property like emissivity, we can now be
confident that resources would be better utilized characterizing
other materials and/or properties that will have a more signifi-
cant impact on simulation results.

Verification and Validation: Three replications of a molten
salt battery design were manufactured and instrumented with
15 internal thermocouples to provide model validation data.
We used this design when studying the long lifetime battery
sensitivities presented in Figure 1. Comparisons between the
temperature readings at the thermocouple locations and our
thermal simulation results at similar locations in the compu-
tational domain were made, with one such comparison being
presented here in Figure 2. The nominal simulation results do
deviate from the validation data, but when accounting for the
uncertainties in input parameters presented previously, the val-
idation data falls within the 95% confidence interval provided



by the previously described uncertainty quantification study.
Improving nominal accuracy and narrowing the temperature
variability bands are top candidates for continuing work and
are currently being pursued.
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Figure 2. Comparison of experimental (3 replicates) and simulated
separator temperature in an instrumented molten salt battery with
both nominal and uncertainty propagation simulation results shown.

In an effort to assess solution verification, we focus here on
physical space discretization (mesh refinement) error as the
heat equation implementation in Sierra/Aria has been thor-
oughly verified [8]. Error results for the maximum tempera-
ture QOIs are presented in Figure 3, where error is relative to a
Richardson extrapolation value for each QOI. We observe that
the two temperature metrics show second order convergence
as expected in a uniform mesh refinement study and note that
even on the coarsest mesh, relative errors are less than 0.2%.
Using this plot, it is possible to determine the mesh resolution
required to provide an acceptable relative spatial discretization
error (0.1%, 0.01%, etc.), avoiding waste of computational re-
sources while maintaining desired accuracy. The rise time and
lifetime QOIs are not plotted as they were not clearly conver-
gent, making it difficult to confidently assess spatial discretiza-
tion error. We are in the process of determining the cause of
the unexpected convergence behavior with a focus on further
mesh refinement as well as other error sources, such as tempo-
ral discretization or nonlinear solution tolerance.
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Figure 3. Plot of error relative to second order Richardson
extrapolation values versus the uniform mesh refinement, where
relative edge size is defined as the ratio of radial computational
element edge length to the battery radius.

Conclusions

Accounting for uncertainty in input parameters and assessing
how that uncertainty affects output quantities of interest can
provide useful information for battery design engineers and
motivate experiments to reduce uncertainty. We presented re-
sults of studies that use the DAKOTA toolkit for exploring the
uncertainty space and discussed the importance of sensitivity
index values. Finally, we demonstrated that efforts have been
made to both verify and validate the models and techniques
used.
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