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INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation
= development and analysis of many UQ methods

e random sampling,
e stochastic collocation

e stochastic Galerkin
° ...
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INTRODUCTION

UQ in computational modeling and simulation

quantifying uncertainties is a foundational component of predictive simulation
= development and analysis of many UQ methods

e random sampling,
e stochastic collocation

e stochastic Galerkin
° ...

in large-scale scientific computing

e high-dimensional uncertain input spaces
e localized and/or non-smooth behavior

= research on reducing the number of samples

e adaptive sampling methods

e multilevel methods exploiting a hierarchy of physical and

temporal discretizations

e methods that construct minimal or optimal uncertainty representation
(compressed sensing, tensor methods)
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INTRODUCTION

Unfortunately this is not enough

the bottleneck is in the sample evaluation: applying these methodologies to
large-scale scientific computing problems is often prohibitively expensive
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INTRODUCTION

Unfortunately this is not enough

the bottleneck is in the sample evaluation: applying these methodologies to
large-scale scientific computing problems is often prohibitively expensive

our goal: reduce the cost of the evaluation of each sample

= propagate together multiple samples through a computational
simulation: embedded ensemble propagation

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam, Embed-
ded Ensemble Propagation for Improving Performance, Portability and Scala-

bility of Uncertainty Quantification on Emerging Computational Architectures,
submitted, 2015

idea: sample-dependent scalars in the code are replaced with small arrays

= the cost of assembling and solving the ensemble linear system is
substantially smaller compared to the sequential case
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INTRODUCTION

What can go wrong?

the total number of linear solver iterations for ensemble systems may be
strongly influenced by which samples comprise the ensemble

= critical to the success is the grouping of samples into ensembles

Sandi
: . . ﬂatialr?al
M. D'Elia — mdelia@sandia.gov Laboratories




INTRODUCTION

What can go wrong?

the total number of linear solver iterations for ensemble systems may be
strongly influenced by which samples comprise the ensemble

= critical to the success is the grouping of samples into ensembles

contribution

e analyze a case study where the linear solver iterations significantly
vary from sample to sample

e design grouping strategies that maximize the computational gain
brought by the ensemble propagation

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble Grouping
Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic
Diffusion Problems, submitted, 2016

M. D'Elia — mdelia@sandia.gov



Outline

Introduction to Stochastic Collocation methods

Summary of Embedded Ensemble Propagation
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Case study: a highly anisotropic diffusion problem

Numerical tests
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Introduction to Stochastic Collocation methods

Based on M. Gunzburger, C. Webster, G. Zhang. Stochastic finite
element methods for partial differential equations with random
input data. Acta Numerica (2014), pp. 521-650, 2014




PROBLEM SETTING

A stochastic elliptic PDE

e D CRY(d=1,2,3): bounded domain with boundary 8D
o (2, F,P): complete probability space

Find u : D x Q such that almost surely

{E(a)u = f xeD
Bu = g x€0D,

where

e L — elliptic operator defined on D and parametrized by a(x,w)
o f(x,w) — forcing term with & € D and w € (2

e B — boundary operator

e g(x,w) — boundary data with € 0D and w € ()
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PROBLEM SETTING

Assumptions on the parameters

A. f(x,w) and g(@x,w) are not affected by uncertainty
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PROBLEM SETTING

Assumptions on the parameters

A. f(x,w) and g(x,w) are not affected by uncertainty

B. a(x,w) is bounded from above and below with probability 1

C. a(x,w) can be written as
a(x,w) =a(x,y(w)) inD xQ  where

yw) = (w)...yn(w)) € RN random vector, uncorr. components
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PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loeve (KL) expansion of the random field

Mercers’s theorem: the second—order correlated random field a(x,w)
with continuous covariance function cov(x,«’) can be written as

(@) = Ela(. )] + 3 VA b @)y ().

An: eigenvalues, in decreasing order, of cov
b,: corresponding eigenfunctions
yn(w) € R: uncorrelated random variables
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PROBLEM SETTING

Random parameter satisfying B and C:

truncated Karhunen-Loeve (KL) expansion of the random field

Mercers’s theorem: the second—order correlated random field a(x,w)
with continuous covariance function cov(x,«’) can be written as

(@) = Ela(. )] + 3 VA b @)y ().

An: eigenvalues, in decreasing order, of cov
b,: corresponding eigenfunctions
yn(w) € R: uncorrelated random variables

Truncated KL expansion: truncation of the summation to the N-th term:

ofa0) % Bz, )+ 2 3 () ()
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PROBLEM SETTING

Goal of Uncertainty Quantification

determine statistical information about an output of interest
that depends on the solution, i.e. a functional G (y)

1
Examples: o G, (y) = ﬁ/ u(x,y) dx
D

o Guly) = max u(x,y)

Quantity of interest: moments of G, (y)

e.5. QOI = E[G,(y)] = /F G(y)ply) dy
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

e let up(+,y) be the semi-discrete approximation of u(x,y) for y € T'

e main idea: e collocate uy(-,y) on a suitable set of samples {y, }M_, C T, i.e.
determine M semi-discrete solutions

e use those solution to construct a global polynomial to represent
the fully discrete approximation up, as(x,y)

e polynomial: interpolatory or based on a projection onto an orthonormal basis
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STOCHASTIC COLLOCATION METHODS

Stochastic collocation (SC) methods:
nonintrusive stochastic sampling methods based on decoupled deterministic solves

SC methods in a nutshell:

e let up(+,y) be the semi-discrete approximation of u(x,y) for y € T'

e main idea: e collocate uy(+,y) on a suitable set of samples {y,, }M_, C T, i.e.
determine M semi-discrete solutions

e use those solution to construct a global polynomial to represent
the fully discrete approximation up, as(x,y)

e polynomial: interpolatory

set of points {y,,}m_, + basis functions {¢n, (y)}¥_; € P,)(T)

M
— fully discrete approximation wup pr(x,y) = Z Cm () (y).

m=1

M. D'Elia — mdelia@sandia.gov




STOCHASTIC COLLOCATION METHODS

Fully discrete approximation

un (@) = 3 en(@)om(y)

m=1

the coefficients are determined by solving
M
() (Y,,) = un(x,y,,,) Vm' =1,...M

m=1

for Lagrange interpolation ¢,,(x) = up(x,y,,) =

Uh,M(wa y) = %: uh(w7 ym)¢m(y)

m=1
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GENERALIZED SPARSE GRIDS

One-dimensional approximation

Forn=1,...N

e [, € N,: one-dimensional level of approximation
o {yfz”k};n:(a”) C I',,: sequence of one-dimensional interpolation points

e m(l): number of collocation points at level [

1D interpolation operator: for v € C%(T',,)

m(ln) ) i
In [’U](y) — kz_:l /U(yn,k)wn,k;(y)? ln — 17 27 s

wf{’“k € Pm(i,)—1('n): Lagrange fundamental polynomials of degree p;, = m(l,)—1
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GENERALIZED SPARSE GRIDS

Multi-dimensional approximation

e 1=(l ...1n) € N¥: a multi-index

e L € N, : total level of the sparse grid approximation
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GENERALIZED SPARSE GRIDS

Multi-dimensional approximation

e 1=(l ...1n) € N¥: a multi-index

e L € N, : total level of the sparse grid approximation

1D difference operator: A;n(l”) = Z:Ln(l”) — Iﬁn(l”)_l with Z:Ln(o) =0

N
N-dimensional difference operator: A™ = ) AZL(Z”)
n=1

(tensor product of the 1D operators)

L-th level generalized sparse grid operator: #;79 = > A™
I|<L
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GENERALIZED SPARSE GRIDS

Multi-dimensional approximation

o 1=(l; ... Iy) € NY: a multi-index

e L € N, : total level of the sparse grid approximation

1D difference operator: A?(l”) = Z,T(l”) — Iﬁn(l”)_l with LT(O) =0

N
N-dimensional difference operator: A™ = ) A?(l”)
n=1

(tensor product of the 1D operators)

L-th level generalized sparse grid operator: #Z;"9 = > A™
I|<L

Generalized sparse-grid approximation: up = _Z7 7 [up]
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GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations

e very easy to implement (requiring only codes for deterministic PDEs
to be used as black boxes)

e embarassingly parallelizable
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GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations

e very easy to implement (requiring only codes for deterministic PDEs
to be used as black boxes)

e embarassingly parallelizable

CONS:

o perform well only when u(x,y) is extremely smooth wrt {y,}V_,

e fail to approximate solutions that have an irregular dependence
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GENERALIZED SPARSE GRIDS

PROS:

e complete decoupling of spatial and probabilistic discretizations

e very easy to implement (requiring only codes for deterministic PDEs
to be used as black boxes)

e embarassingly parallelizable

CONS:

N

o perform well only when u(zx,y) is extremely smooth wrt {y, },"_;

e fail to approximate solutions that have an irregular dependence

LOCAL SC methods:

the basis functions are locally supported piecewise polynomials

{4, }M_ | is a piecewise hierarchical polynomial basis

M. D'Elia — mdelia@sandia.gov




Numerical solution via ENSAMBLES

E. Phipps, MD, H.C. Edwards, M. Hoemmen, J. Hu, S. Rajamanickam,
Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational
Architectures, submitted, 2015
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A NEW STRATEGY

a few considerations:

e advantage of stochastic collocation methods: fully nonintrusive, i.e., they
can be applied to a simulation code that numerically solves the SPDE with
little or no modification.

e problem: in large-scale, high-performance scientific computing, the domi-
nant cost (by far!) in collocation methods is solving the PDE system at each
interpolation point

the cost of each sample evaluation can be so large that applying the stochastic
collocation method to more than a handful of random variables y, is intractable!
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A NEW STRATEGY

a few considerations:

e advantage of stochastic collocation methods: fully nonintrusive, i.e., they
can be applied to a simulation code that numerically solves the SPDE with
little or no modification.

e problem: in large-scale, high-performance scientific computing, the domi-
nant cost (by far!) in collocation methods is solving the PDE system at each
interpolation point

the cost of each sample evaluation can be so large that applying the stochastic
collocation method to more than a handful of random variables y, is intractable!

e idea: improve the performance of the method “opening up the box” and
exploiting further structure within each PDE evaluation.

EMBEDDED ENSEMBLE PROPAGATION

M. D'Elia — mdelia@sandia.gov



A NEW STRATEGY

embedded ensemble propagation

note: in scientific simulations there is a huge amount of data and computation that
is the same for each realization of the uncertain input data (e.g. the mesh)

idea: reuse this information by propagating multiple samples (ensembles) at a
time exploiting features of modern and emerging computer architectures
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ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

e continuous problem L(a)u = f, where L is a linear elliptic operator

o discretization: for y,,, m =1,... My,

(%) L,U,=F, L,eR>* U,eR’/ FecR’,

J: number of spatial degrees of freedom

e given an ensemble size S, solve (x) for S samples y,, ,...,¥Y,,.:

L, Uy, =F, ... L, Uy, =F

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

Finite element discretization

e continuous problem L(a)u = f, where L is a linear elliptic operator

o discretization: for y,,, m =1,... My,

(%) L,U,=F, L,eR>* U,eR’/ FecR’,

J: number of spatial degrees of freedom

e given an ensemble size S, solve (x) for S samples y,, ,...,¥Y,,.:

L, Uy, =F, ... L, Uy, =F

or equivalently

S S S
(zeie;mmi) (zwumi) Y e eF

ei: it" column of the S x S identity matrix
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ENSEMBLE PROPAGATION in finite element simulations

A mathematically equivalent formulation

S S S
(Z eie"f & Lmi> (Z e; ® Umz) = Zei ® F

=1 =1 1=1

M. D'Elia — mdelia@sandia.gov

all spatial DOF for a given sample y,,,.
are ordered consecutively

DOF for all samples are ordered
consecutively for a given spatial DOF




ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by replacing each sample-
dependent quantity with a length-S array
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ENSEMBLE PROPAGATION in finite element simulations

Advantage: the new formulation can be solved efficiently by replacing each sample-
dependent quantity with a length-S array

Consequences: e Sample independent quantities automatically reused
(e.g. mesh, matrix graph, etc) =
— reduction of the computation by only computing once per ensemble

— reduction of memory usage by only storing them once per ensemble
— reduction of memory traffic by only loading them once per ensemble

e Random memory accesses of sample-dependent quantities are replaced
by contiguous accesses of ensemble arrays.

Example: this effect, combined with reuse of the sparse matrix graph
can result in 50% reduction in cost of matrix-vector products

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION in finite element simulations

Consequences: e Arithmetic on ensemble arrays can be naturally mapped to fine-grained
vector parallelism present in most computer architectures today

e The number of distributed memory communication steps of sample-
dependent information is reduced by a factor of S, with the size of each
communication message increased by a factor of S

M. D'Elia — mdelia@sandia.gov



ENSEMBLE PROPAGATION: performance results

Results: SPEED-UP for the diffusion problem on GPU and CPU architectures
for different ensemble size S

Ensemble Multigrid Preconditioned Ensemble Multigrid Preconditioned

CG Solve Speedup (NVIDIA K20X GPU) CG Solve Speedup (Cray XK7 CPU)
13.0 4.5
11.0 =¢=Ensemble Size = 4
Ensemble Size = 16 s —
% 9.0 Ensemble Size =
' Ensemble Size = 16
T _ “*~Ensemble Size = 32
8 7.0 =<Ensemble Size = 32
9 4
“ 5.0
3.0
1.0 T 1.0
1 2 4 8 1 8 64 512 4096

Compute Nodes Compute Nodes

— Algebraic multigrid preconditioned CG solve
— Fixed finite element mesh: 64 x 64 x 64 cells/compute node
- 8 compute nodes on the GPU cluster
- 4096 compute nodes with 16 processors per node on the Cray
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: the way samples are
grouped into ensembles has a strong effect on the performance
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ENSEMBLE PROPAGATION in finite element simulations

Note: in the previous tests the number of CG iterations is
independent of the sample value

= the number of CG iterations for each ensemble is
independent of the choice of samples grouped together

This is unlikely for more realistic problems: the way samples are
grouped into ensembles has a strong effect on the performance

= it is necessary to develop grouping strategies to maximize the
performace improvement brought by the ensemble propagation
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Grouping strategies

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as
— condition number
— spatial variations of the parameters (total variation, magnitude

of the gradient, strength of the anisotropy, etc.)
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as
— condition number
— spatial variations of the parameters (total variation, magnitude

of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as

— condition number

— spatial variations of the parameters (total variation, magnitude
of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG

e regardless of the rearrangement of rows and columns, the spectra of
the ensemble matrices are the union of the spectra of the matrices
within each ensemble
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SOME CONSIDERATIONS

Facts: e the convergence of the linear solver is almost always affected by the
spectral properties of the matrices L,,

e spectra of FE matrices are strongly related to quantities such as

— condition number

— spatial variations of the parameters (total variation, magnitude
of the gradient, strength of the anisotropy, etc.)

e different quantities affect different solvers:
— CG is strongly affected by the condition number
— stretched and irregular grids affect the behavior of AMG

e regardless of the rearrangement of rows and columns, the spectra of
the ensemble matrices are the union of the spectra of the matrices
within each ensemble

e the convergence of the ensemble solver is always poorer
than that of the solver applied to each sample individually

. A . National
M. D'Elia — mdelia@sandia.gov / Laboratories




SOME CONSIDERATIONS

Question: how to minimize the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral
properties, i.e. that require a similar number of iterations
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SOME CONSIDERATIONS

Question: how to minimize the deterioration of the convergence?

Strategy: group together samples whose FE matrices have similar spectral
properties, i.e. that require a similar number of iterations

Challenge: find indicators for predicting which samples feature a similar
convergence behavior
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Highly anisotropic diffusion problems

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016
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SOME CONSIDERATIONS

Diffusion equation:

{ Lia(y)u=-V - -(A(,y)Vu)=f xecDyel
Bu=u=0 x € 0D

forcing term: f € L?(D):
diffusivity tensor: A(x,-) = diag(a(x,y), @) (in 2D)

a(x,y): truncated KL approximation of a random field, i.e.

N
CL(LE, y) = Qmin T anP { Z V )\nbn(w)yn}
n=1

M. D'Elia — mdelia@sandia.gov



SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG
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SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG

e the convergence of CG depends on the condition number
(very slow when L,, has a widespread spectrum)

= use preconditioned CG (PCGQG)
AMG are often the preconditioner of choice for diffusion problems
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SOME CONSIDERATIONS

Facts: e the FE matrix corresponding to A(x,y,,) is always spd

= the discretized problem has a unique solution
= it is suitable for an iterative solver based on CG

e the convergence of CG depends on the condition number
(very slow when L,, has a widespread spectrum)

= use preconditioned CG (PCGQG)

AMG are often the preconditioner of choice for diffusion problems

e even for SPD matrices a variety of issues can hamper the
effectiveness of AMG algorithm, e.g.

— mesh stretching and irregular meshes
— highly anisotropic problem coeflicients
— choice of discretization, etc.

M. D'Elia — mdelia@sandia.gov



GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the
diffusion tensor in correspondence of a single sample
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GROUPING STRATEGIES

A. PARAMETER-BASED: the grouping depends on the values, in space, of the
diffusion tensor in correspondence of a single sample

Indicator: I(y)=|r(x,y)||cc where r(x,y)=

r: ratio between max and min eigenvalues of the diffusion tensor
= intensity of the anisotropy at each point in the spatial domain

max of r over D: measure of the anisotropy associated with y

(o) = A4 D) _ale.D)

M. D'Elia — mdelia@sandia.gov




GROUPING STRATEGIES

Grouping: — order the samples according to increasing values of

— divide the samples into groups of size S

order

divide
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GROUPING STRATEGIES

B. KL-BASED: the grouping depends on the effect that each random variable
has on the uncertain parameter

Indicator: e when I' C R3, f@) =+ 1 + |y2| + |ys]

N
recall that a(x,y) = amin + @ exp { > \/)\nbn(w)gn}
n=1
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GROUPING STRATEGIES

B. KL-BASED: the grouping depends on the effect that each random variable
has on the uncertain parameter

Indicator: e when I' C R3, f@) =+ 1 + |y2| + |ys]

N
recall that a(x,y) = amin + @exp< D VAnbn(T)yn
n=1

0.015
0.02
0.015 0.02
/ \ 0.01 5 0.015
7 A\‘\“Q\ 4 S ‘:‘ 0‘:‘::"
! N Y RSSSSSSSEEEK 0.01
AR o-E i 0.005
DRI Ly oy —
st Y - s N
00#’%‘:‘0‘0‘:"“‘ 0 -0.005 %%W&&&%?ﬁt&:&* e ORI
TSN LRI 7 SN S
QU X
BXSIOBIN ~0.015 s
-0.02 -0.015
-0.02
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GROUPING STRATEGIES

B. KL-BASED: the grouping depends on the effect that each random variable
has on the uncertain parameter

Indicator: e when I' C R3, f@) =+ 1 + |y2| + |ys]

N
recall that a(x,y) = amin + @ exp { > \/)\nbn(w)gn}
n=1

R N
ewhen T CRN N>3 I(g) =291+ > |Un]

n=2
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GROUPING STRATEGIES

B. KL-BASED: the grouping depends on the effect that each random variable
has on the uncertain parameter

Indicator: e when I' C R3, f@) =+ 1 + |y2| + |ys]

N
recall that a(x,y) = amin + @ exp { > \/)\nbn(w)gn}
n=1

R N
ewhen T CRN N>3 I(g) =291+ > |Un]

n=2

Advantage: I requires less computational effort and does not assume
any knowledge of the parameters or of the SPDE itself
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GROUPING STRATEGIES

note: the most natural approach without using any notion of the SPDE
= clustering in the sample space based on the geometric location

even with sparse grids?
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GROUPING STRATEGIES

note: the most natural approach without using any notion of the SPDE
= clustering in the sample space based on the geometric location

even with sparse grids?

C. HSFC-BASED: grouping based on the partition of the sample space given
by the Hilbert space-filling curve (HSFC)

idea: the HSFC establishes a mapping between one-dimensional and two- /three-
dimensional spaces: partition in 1D ™ partition in the space

boxes in the partition are ordered ™ samples are ordered on the basis of
the box they belong to
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GROUPING STRATEGIES

note: the most natural approach without using any notion of the SPDE
= clustering in the sample space based on the geometric location

even with sparse grids?

C. HSFC-BASED: grouping based on the partition of the sample space given
by the Hilbert space-filling curve (HSFC)

idea: the HSFC establishes a mapping between one-dimensional and two- /three-
dimensional spaces: partition in 1D ™ partition in the space

boxes in the partition are ordered ™ samples are ordered on the basis of
the box they belong to

disadvantage: points that are close on the curve are close in the sample space

but points that are close in the space are not necessarily close in the
curve (and in the ordering!)
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Numerical tests

MD, H.C. Edwards, J. Hu, E. Phipps, S. Rajamanickam, Ensemble
Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted, 2016
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PROBLEM SETTING

Domains: D =10,1]? and T = [-17, 17]° or T = [-17, 17]°

Covariance functions:

2
A. Squared Exponential (Gaussian): cov(x,x’) = g exp {— = 25:: | } ;

_ /
B. Exponential: cov(x,x’) = o exp {_M} ;

. , | — a"||”
C. y-Exponential: cov(x,x’) = ogexp — = , v € (0,2];

: : : le —/[]>\ "
D. Rational quadratic: cov(x,x’) = [ 1+ 5s? , a > 0;
o)

d: characteristic distance of the spatial domain
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PROBLEM SETTING

Quantity of Interest: ||ul|2

Sparse Grid generation:
— technique: adaptive refinement, local piecewise linear basis

— software: TASMANIAN http://tasmanian.ornl.gov
robust libraries for high dimensional integration and interpolation
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PROBLEM SETTING

Quantity of Interest: ||ul|2

Sparse Grid generation:
— technique: adaptive refinement, local piecewise linear basis

— software: TASMANIAN http://tasmanian.ornl.gov
robust libraries for high dimensional integration and interpolation

Solver:
— FE assembling: Intrelab, Matlab interface of the Trilinos package Intrepid

— FE linear solver: ML (Matlab interface), AMG preconditioned CG

Sandia
. n . National
M. D'Elia — mdelia@sandia.gov / Laboratories



PROBLEM SETTING

Indicators of computational savings

S
S SITS;,
R — =1 total increase in work induced by the
[ — . .
m(1) ensemble propagation with a level
Z itSl k
k=1

total increase in work over all levels

I'TS; ;: the number of iterations required by the i-th ensamble at level [

its; : the number of iterations required by the k-th sample at level [
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. n . National
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PROBLEM SETTING

Indicators of computational savings

S
S S°ITS,
R — =1 total increase in work induced by the
[ — . .
m(l) ensemble propagation with a level
k;z::1 Stk achieved speed-up:

Speed-up(ensemble prop)

R

total increase in work over all levels

I'TS; ;: the number of iterations required by the i-th ensamble at level [

its; : the number of iterations required by the k-th sample at level [
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SQUARED EXPONENTIAL COVARIANCE
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SQUARED EXPONENTIAL COVARIANCE
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SQUARED EXPONENTIAL COVARIANCE
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SQUARED EXPONENTIAL COVARIANCE
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SQUARED EXPONENTIAL COVARIANCE
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SQUARED EXPONENTIAL COVARIANCE

HSFC “grouping” — levels 4 and 5
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SQUARED EXPONENTIAL COVARIANCE

N |'§  parameter KL No ordering
3 |8 [1.374 1.508 1.793
3 |16 | 1.469 1.739 2.197
3 |32 | 1.652 1.989 2.852
N |'§  parameter KL No ordering
6 '8 |1.868 2.488 2.620
6 |16 |1.944 2.836 3.064
6 |32 | 2.040 3.105 3.572
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EXPONENTIAL COVARIANCE
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EXPONENTIAL COVARIANCE
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EXPONENTIAL COVARIANCE

N parameter KL No ordering
3 8 1.274 1.325 1.448
3 16 | 1.337 1.430 1.673
3 32 | 1.427 1.567 1.847
N | S parameter KL No ordering
6 8 1.630 2.021 2.116
6 16 | 1.702 2.241 2.449
6 32 | 1.794 2.412 2.837
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v-EXPONENTIAL COVARIANCE
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v-EXPONENTIAL COVARIANCE
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v-EXPONENTIAL COVARIANCE

N |'§  parameter KL No ordering
3 8 1.217 1.324 1.503
3 16 | 1.272 1.467 1.794
3 32 | 1.384 1.627 2.223
N parameter KL No ordering
6 8 1.770 2.254 2.380
6 16 | 1.863 2.571 2.815
6 32 | 1.999 2.837 3.375
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RATIONAL QUADRATIC COVARIANCE
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RATIONAL QUADRATIC COVARIANCE
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RATIONAL QUADRATIC COVARIANCE

N '§  parameter KL No ordering
3 8 1.348 1.499 1.785
3 16 |1.436 1.709 2.198
3 32 |1.601 1.925 2.633
N '§  parameter KL No ordering
6 |8 1.773 2.219 2.354
6 16 | 1.848 2.415 2.713
6 32 |1.923 2.611 3.079
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LOTS OF THINGS TO DO!

note 1: we introduced indicators that induce an ordering as close as possible to
the one associated with the number of iterations

idea: within the adaptive algorithm use quantities computed at the
previous level to predict the number of iterations for the new samples

= design of surrogates for the number of iterations
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LOTS OF THINGS TO DO!

note 1: we introduced indicators that induce an ordering as close as possible to
the one associated with the number of iterations

idea: within the adaptive algorithm use quantities computed at the
previous level to predict the number of iterations for the new samples

= design of surrogates for the number of iterations

note 2: points in the sparse grid can be represented in a tree structure

idea: we expect children of the same parent to generate similar uncertain
parameters

= keep track of the family history and group together samples with the
same ancestors
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Hierarchical basis

From M. Gunzburger, C. Webster, G. Zhang.
Stochastic finite element methods for partial

differential equations with random input data.
Acta Numerica (2014), pp. 521650, 2014

05F 1
) ) i ) ) i 0 ! ® |
Piecewise linear hierarchical basis 1 g1 05 0 05 1
. ) T 1 I ’ T 1
W5 4 W53
1 L —
05 4
0 ® PY
-1 -05 0 05 1
15 T T 1 T
W3 1 W33 W35 W37
1 L —
0.5F .

Piecewise linear nodal basis
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