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ABSTRACT
This contribution is the second part of three papers on Adap-

tive Multigrid Methods for the eXtended Fluid-Structure Inter-
action (eXFSI) Problem, where we introduce a monolithic vari-
ational formulation and solution techniques. To the best of our
knowledge, such a model is new in the literature. This model
is used to design an on-line structural health monitoring (SHM)
system in order to determine the coupled acoustic and elastic
wave propagation in moving domains and optimum locations for
SHM sensors. In a monolithic nonlinear fluid-structure interac-
tion (FSI), the fluid and structure models are formulated in dif-
ferent coordinate systems. This makes the FSI setup of a com-
mon variational description difficult and challenging. This article
presents the state-of-the-art in the finite element approximation
of FSI problem based on monolithic variational formulation in
the well-established arbitrary Lagrangian Eulerian (ALE) frame-
work. This research focuses on the newly developed mathemat-
ical model of a new FSI problem, which is referred to as ex-
tended Fluid-Structure Interaction (eXFSI) problem in the ALE
framework. The eXFSI is a strongly coupled problem of typical
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FSI with a coupled wave propagation problem on the fluid-solid
interface (WpFSI). The WpFSI is a strongly coupled problem
of acoustic and elastic wave equations, where wave propagation
problems automatically adopts the boundary conditions from the
FSI problem at each time step. The ALE approach provides
a simple but powerful procedure to couple solid deformations
with fluid flows by a monolithic solution algorithm. In such a
setting, the fluid problems are transformed to a fixed reference
configuration by the ALE mapping. The goal of this work is
the development of concepts for the efficient numerical solution
of eXFSI problem, the analysis of various fluid-solid mesh mo-
tion techniques and comparison of different second-order time-
stepping schemes. This work consists of the investigation of dif-
ferent time stepping scheme formulations for a nonlinear FSI
problem coupling the acoustic/elastic wave propagation on the
fluid-structure interface. Temporal discretization is based on fi-
nite differences and is formulated as a one step-θ scheme, from
which we can consider the following particular cases: the im-
plicit Euler, Crank-Nicolson, shifted Crank-Nicolson and the
Fractional-Step-θ schemes. The nonlinear problem is solved
with a Newton-like method where the discretization is done with
a Galerkin finite element scheme. The implementation is accom-
plished via the software library package DOPELIB based on the
deal.II finite element library for the computation of different
eXFSI configurations.

Keywords: Fluid-structure interaction (FSI), wave propaga-
tion in fluid-structure interface (WpFSI), Galerkin finite element
method, arbitrary Lagrangian Eulerian framework
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INTRODUCTION
Fluid-structure interactions (FSI) problems have a his-

torical and practical importance and have to be taken into
account in the design of many engineering systems such as
aircraft wings, wind turbine, internal combustion engine, tower,
bridge, etc. Subsequently, for the last several decades they
have been the subject of intensive research, yet the numerical
approximation and simulation of fluid-structure interactions
remains an indisputably challenging topic with an immense
number of unresolved problems and issues. While the numerical
analysis of the coupled system in terms of well-posedness and
convergence is typically restricted to simple model problems,
a plethora of insight has been gained over the years from
numerical simulations. Established methods like the Immersed
Boundary method or the Arbitrary Lagrangian-Eulerian (ALE)
method [1–6] have been successfully applied to a wide range of
applications, including for example: biomechanics, mechanical
engineering, aero-elasticity, and aero-acoustics. Nevertheless,
there are yet a good number of engineering problems, where
most of the established methods fail or come to a constraint.
Problems are caused, for example, by structural deformations or
contact problems, stiff couplings, extreme parameters or extreme
computational complexity. In the last few years, a number of
novel methods and approaches have been developed to tackle
such problems, many of which are still the subject of ongoing
research.

An area of research on its own is the development of effi-
cient solvers for the underlying linear systems of equations.
The high intricacy of authentic real world applications calls
for algorithms that include adaptivity in time and space, model
reduction, as well as parallelization. In the case of strong
couplings, the coupled system of equations can be badly condi-
tioned, such that the design of efficient solvers is a challenge.

In recent times, solving FSI problems with the monolithic
approach by FEM has become an attractive numerical method-
ology to perform complex fluid flow simulations with elastic
structural deformation. The FSI simulation allows one to
study the convective flow, pressure fields, and deformation
by solving the nonlinear multi-physics problem. A number
of previous studies can be found in the literature, in which
the reliability and accuracy of the FSI models for simulating
different benchmark problems has been extensively studied. R.
Rannacher et al. [1–3] performed FSI problems in ALE, fully
Eulerian and fully Lagrangian coordinates for the FSI-1, 2 and
3 benchmark test cases. T. Richter et al. [1–4] developing the
numerical technique and goal oriented error estimation for FSI
simulation in fully Eulerian coordinates. T. Wick et al. [3, 6]
performed studies on FSI where they introduce goal-oriented
mesh adaptivity and mesh movement techniques. T. Wick has
considered the FSI problems with the monolithic approach to do

FIGURE 1: A typical on-line structural health monitoring (SHM)
system.

a heart valve simulation. B.S.M. Ebna Hai et al. [8–10, 17] has
developed a new FSI model, which is referred to as eXtended
Fluid-Structure Interaction (eXFSI). The eXFSI is used to
design on-line structural health monitoring system (SHM) (see
Figure-1). The eXFSI is a strongly coupled version of a typical
FSI problem with a wave propagation problem coupled on the
fluid-structure interface, in which the wave propagation problem
is posed on the moving mesh which is automatically adopted
from the FSI problem at each time step.

This research focuses on the recently developed mathemat-
ical model of a new FSI problem, which is referred to as
eXtended Fluid-Structure Interaction (eXFSI) problem in the
ALE framework. This model is utilized to design an on-line
structural health monitoring (SHM) system in order to determine
the coupled acoustic and elastic wave propagation in moving
domains and optimum locations for SHM sensors. The eXFSI is
a one-direction coupling of typical FSI with a wave propagation
problem on the fluid-structure interface, where wave propagation
problems are solved on the moving mesh which is automatically
adopted from the typical FSI problem at each time step. The
ALE approach provides a simple procedure to couple solid de-
formations with fluid flows by a monolithic solution algorithm.
In such a setting, the fluid problems are transformed to a refer-
ence configuration by the ALE mapping. The main goal of this
research is to apply high order finite element methods (FEM) for
the elastic wave propagation in a composite material under FSI
effect. We present the state-of-the-art in computational methods
and techniques for the elastic wave propagation with FSI. The
traditional FSI physics are solved as a monolithic system which
is then used by the elastic wave propagation. By solving the
FSI in a monolithic way, we avoid the difficulties with the
added-mass effect [18] that can arise in iterative partitioned
solution approaches such as Dirichlet-Neumann coupling [19].
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While we choose to solve the monolithic FSI problem and then
pass the solution to the WpFSI system, the eXFSI approach does
not prohibit us from using partitioned methods to solve the FSI
system.

FIGURE 2: The eXtended Fluid-Structure Interaction (eXFSI)
problem.

The first part of this project consists of the mathematical mod-
elling of ultrasonic wave propagation in the deformable elastic
structure (see Figure-2) at each time step with fluid flow, as well
as error estimation and adaptive meshing. Here, the choice of
appropriate fluid mesh movement is very important and chal-
lenging in FSI problem in the “arbitrary Lagrangian-Eulerian"
(ALE) framework. We emphasize that the ALE framework is
a standard framework for solving fluid-structure interaction.
The crucial issue in this framework is the construction of
the fluid mesh motion. In this study, we use the biharmonic
operator (in a mixed formulation) for the mesh motion. It has
the advantage of enabling large deformations of the structure,
but has increased computational cost. These ingredients lead
to a solvable semi-linear form of the coupled setting on the
continuous level. We will also consider the investigation of
different time stepping scheme formulations for an elastic wave
equation with a nonlinear fluid-structure interaction problem
coupling the incompressible Navier-Stokes equations with a
hyperelastic solid based on the Arbitrary Lagrangian-Eulerian
(ALE) framework.

In this part of this project paper, we restrict ourselves to a
numerical study of the mathematical modelling for different test
cases. The main target of this research is to study numerical anal-
ysis of finite element approximation (FEM) to the monolithic

wave propagation problems coupled on the fluid-structure inter-
face (WpFSI) and eXtended Fluid-Structure Interaction (eXFSI)
problems. Numerical simulation of the solution to eXFSI
problems, where the dynamics of fluid flows dominates, poses
a formidable challenge to even the most advanced numerical
techniques. Currently, eXFSI simulations are at the forefront of
ongoing work in computational fluid dynamics (CFD). Typically,
the fluid and the structure equations are modelled in different
coordinate systems, making a common solution approach
challenging. Fluid flows are modelled in an Eulerian framework,
whereas the structure is treated in Lagrangian coordinates. This
work focuses on a monolithic approach in which all equations
are solved simultaneously. Employing the strongly coupled
approach, the interface conditions, the continuity of velocity, the
normal stresses and the boundary conditions are automatically
satisfied at each time step. Here, variational formulation of a
coupled monolithic problem is an inevitable prerequisite for
gradient based optimization methods with rigorous goal oriented
error estimation and mesh adaptation. However, this coupling
leads to the additional nonlinear behavior of the overall system.

Afterwards, for the temporal discretization of the mathe-
matical model we use finite difference method and apply
the one step-θ scheme, the particular cases of which are
Crank-Nicolson, shifted Crank-Nicolson, implicit Euler, and
the fractional-step-θ schemes [2–7]. Spatial discretization is
realized by a standard Galerkin finite element approach by
using the Qc

2 element for structural discretization, Qc
2/Pdc

1 for
fluid flows, elastic and acoustic wave propagation on the fluid-
structure interface [1–6, 11–13]. The solution of the nonlinear
discretized system can be achieved with a Newton-like method,
which provides robust and rapid convergence. We will analyze
variational space-time methods for the wave equation [8–10].
The ALE approach provides a simple, but powerful, procedure
to couple fluid flows with solid deformations by a monolithic
solution algorithm. In such a setting, the fluid equations are
transformed to a fixed reference configuration via the ALE map-
ping. We use a direct solver to solve the linear systems, although
a preconditioner could be used to make Krylov subspace solvers
practical. Nevertheless, we extract the block-structure to expose
the inner sub-structure of the linear system matrix.

For numerical simulation, we consider three examples that
are taken from [1–6]. Our main target is to study the impact
of FSI on modelling and simulation of wave propagation in
composite materials in the ALE framework by using a mono-
lithic approach. The FSI and the wave propagation problems are
solved by using the in-house C++ code based on the differential
equations and optimization libraries DOPELIB [14], which is
a flexible modularized high-level algorithms toolbox based on
the finite element library deal.II [15]. The state of the art
software can be used to solve stationary and non-stationary
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PDE problems, optimal control problems constrained by PDEs,
and also can do the Dual-Weighted-Residual approach for
goal-oriented error estimation. This method is used for the mesh
adaption during the computation.

MATHEMATICAL MODELS
Notations and Functional spaces

In this project, we aim to solve second order hyperbolic
equations coupled with a nonstationary fluid-structure inter-
action problem in arbitrary Lagrangian-Eulerian coordinates,
where the mesh motion model is based on the solution of a bi-
harmonic equation. To formulate the system of elasticity, let us
assume that Ω ⊂ Rd ,d = 2,3, is a bounded and convex domain
at time t = 0 with Lipschitz boundary ∂Ω = ∂ΩD∪∂ΩN , where
∂ΩD, ∂ΩN denote Dirichlet and Neumann boundaries, respec-
tively. The computational domain Ω := Ω(t) is split into two
time-dependent subdomains Ω f (t) (for a homogeneous, Newto-
nian and incompressible fluid) and Ωs(t) (for a compressible hy-
perelastic structure), and the sensors of SHM systems would be
optimally located in Ωs(t). Both domains depend on time and
their common boundary ∂Ωi(t) = ∂Ω f (t)∩∂Ωs(t), where

∂Ω f (t) = ∂Ω f D(t)∪∂Ω f N(t)∪∂Ωi(t)

∂Ωs(t) = ∂ΩsD(t)∪∂ΩsN(t)∪∂Ωi(t).

We begin this paper with some basic notation. For d a posi-
tive integer representing dimension, let X ⊂ Rd denote an arbi-
trary bounded Lipschitz domain with boundary ∂X . As usual,
let L2(X) denote the space of square integrable functions on X
and define L2(X) = (L2(X))d . We will also utilize the stan-
dard Lebesgue space Lp(X) where 1 6 p 6 ∞ that consists of
measurable functions u, which are Lebesgue-integrable to the p-
th power and their vectorial counterpart Lp(X). The set Lp(X)
forms a Banach space with the norm |u|Lp(X). The Sobolev space
W m,p(X), m ∈ N, 1 6 p 6 ∞ is the space of functions in Lp(X)
that have distributional derivatives of order up to m, which be-
long to Lp(X). For p = 2,Hm(X) :=W m,2(X) is a Hilbert space
equipped with the norm ‖.‖Hm(X) [1–3]. Finally, the subspace
W m,p(X) of functions indicate with zero trace on ∂X are denoted
by W m,p

0 (X). Specifically, Hilbert space with zero trace on ∂X is
defined as H1

0 (X) = {u ∈ H1(X) : u|ΓD = 0, where ΓD = ∂XD},
where ∂XD is that part of the boundary ∂X at which Dirichlet
boundary conditions are imposed. So for given set X , let us con-
sider the Lebesque space LX := L2(X), and L0

X := L2(X)/R. The
functions in LX with first-order distributional derivatives in LX
make up the Sobolev space H1(X). Furthermore, we can use
the function spaces VX := H1(X)d , V 0

X := H1
0 (X)d , and for time-

dependent functions

LX := L2[0,T ;LX ], VX := L2[0,T ;VX ]∩H1[0,T ;V ∗X ],

L 0
X := L2[0,T ;L0

X ], V 0
X := L2[0,T ;V 0

X ]∩H1[0,T ;V ∗X ],

where, V ∗X is the dual of VX .

Governing Equations
eXtended Fluid-structure interactions (eXFSI) are defined

as the ultrasonic wave propagation on the interaction of a de-
formable or movable structure with surrounding or an internal
fluid flow, which describe the coupled dynamics of fluid mechan-
ics and structural mechanics.

FIGURE 3: Typical eXFSI computational domain.

To formulate the typical eXFSI problem (see Figure-3) we con-
sider a linear elastic rheology for the heterogeneous solid, while
the fluid is assumed to be of homogeneous density. We restrict
ourselves to isotropic materials, although the method can also
handle anisotropic materials accurately. Let us consider the fol-
lowing definitions: the reference domains are denoted by Ω̂ f and
Ω̂s, respectively, with their common interface ∂ Ω̂i at time, t = 0.
The fluid external boundaries ∂Ω fin and ∂Ω fout are supposed to
be fixed. The corresponding outward normal vectors to the fluid
and solid boundaries are denoted by n f and ns, respectively. The
variational ALE formulation of the fluid part is transformed from
its Eulerian description into an arbitrary Lagrangian-Eulerian
framework and stated on the (arbitrary) reference domain Ω̂ f ,
while the structure part is formulated in Lagrangian coordinates
on the domain Ω̂s, where Ω̂ = Ω̂ f ∪ ∂ Ω̂i ∪ Ω̂s. Moreover, here
we solve the Laplace equation for the definition of the ALE
mapping. Here, the continuity of velocity requires v̂ f = v̂s and
û f = ûs across the common fluid-structure interface on ∂ Ω̂i(t) =
∂ Ω̂ f (t)∩∂ Ω̂s(t). The ALE mapping is denoted by T̂ and trans-
forms the reference configuration Ω̂ f of the fluid to the physical
domain Ω f (t). Furthermore, any function q̂ ∈ Ω̂ can be defined
by:

q(x) = q̂(x̂) with x = T̂ (x̂, t). (1)

In this FSI problem, the principal unknowns are the fluid do-
main displacement (mesh motion) û f : Ω̂ f ×R+ 7→ R3, the fluid
velocity v̂ f : Ω̂ f ×R+ 7→R3, the fluid pressure p̂ : Ω̂ f ×R+ 7→R
and the structure displacement ûs : Ω̂s×R+ 7→ R3. Thus û f =
Ext(ûs|∂Ωi(t)), the ALE mapping is defined through the exten-
sion of the structural displacement (for large mesh deformations
without remeshing) into the fluid domain and are determined by
solving the following biharmonic equation

∆
2û f = 0 in Ω̂ f

û f = ∂nû f = 0 on (∂ Ω̂ fin ∪∂ Ω̂ fout )

û f = ûs on ∂ Ω̂i

∂nû f = ∂nûs on ∂ Ω̂i.

(2)
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The ALE map is constructed by solving a mixed formulation of
the biharmonic equation, where we introduce an auxiliary vari-
able ŵ =−∆̂û and obtain

ŵ =−∆̂û in Ω̂

−∆̂ŵ = 0 in Ω̂ f

û f = ∂nû f = 0 on (∂ Ω̂ fin ∪∂ Ω̂ fout )

û f = ûs on ∂ Ω̂i

∂nû f = ∂nûs on ∂ Ω̂i.

(3)

The ALE approach belongs to interface-tracking methods in
which the mesh is moved such that it fits in all time steps with the
FSI-interface. However, this leads to a degeneration of the ALE
map. Methods to circumvent such as degeneration as long as
possible are re-meshing techniques or to use (as suggested here)
a biharmonic mesh motion technique.

F̂ := I + ∇̂û, Ĵ = det(F̂).

In the structure domain, T̂ takes the place of the Lagrangian-
Eulerian coordinate transformation, while in the fluid domain,
T̂ has no physical meaning but serves as ALE mapping. Let us
define the density ρ̂ and the Cauchy stress tensor σ̂ for the whole
domain by

ρ̂(x̂) =


ρ̂ f (x̂), x̂ ∈ Ω̂ f

ρ̂s(x̂), x̂ ∈ Ω̂s∪∂ Ω̂i

σ̂(x̂) =


σ̂ f (x̂), x̂ ∈ Ω̂ f

σ̂s(x̂), x̂ ∈ Ω̂s∪∂ Ω̂i

Problem 1 - The FSI problem in ALE framework:
This model concentrates on the coupling between the

Navier-Stokes and elastodynamics equation for incompressible
fluid and compressible elastic materials.

Find {v̂, û, ŵ, p̂} ∈ {v̂D + V̂ 0
Ω̂
} × {ûD + V̂ 0

Ω̂
} × V̂ × L̂

Ω̂
,

such that v̂(0) = v̂0 and û(0) = û0, for almost all time steps t:

(ρ̂ Ĵ(F̂−1(v̂−∂t û) · ∇̂)v̂), φ̂ v)
Ω̂ f

+(Ĵρ̂∂t v̂, φ̂ v)
Ω̂ f
−〈ĝ, φ̂ v〉

∂ Ω̂N
+(ρ̂∂t v̂, φ̂ v)

Ω̂s

+(Ĵσ̂ F̂−T , ∇̂φ̂
v)

Ω̂ f
+(Ĵσ̂ F̂−T , ∇̂φ̂

v)
Ω̂s

= 0 ∀φ̂ v ∈ V̂ 0
Ω̂
,

(α̂uŵ, φ̂ w)
Ω̂ f

+(α̂u∇̂û, ∇̂φ̂
w)

Ω̂ f
+(α̂u∇̂ŵ, ∇̂φ̂

w)
Ω̂s

= 0 ∀φ̂ w ∈ V̂
Ω̂
,

(ρ̂(∂t û− v̂), φ̂ u)
Ω̂s

+(α̂u∇̂ŵ, ∇̂φ̂
u)

Ω̂ f
= 0 ∀φ̂ u ∈ V̂ 0

Ω̂
,

( ˆdiv(ĴF̂−1v̂), φ̂ p)
Ω̂ f

+(p̂, φ̂ p)
Ω̂s

= 0 ∀φ̂ p ∈ L̂
Ω̂
,

(4)

with the densities ρ̂ f and ρ̂s, the viscosity ν f , the Lamé param-
eters µs, λs and the deformation gradient F̂, and its determinant
Ĵ. The stress tensors for the fluid and structure are implemented
by

σ̂ f =−p̂I + ρ̂ f ν f (∇̂v̂F̂−1 + F̂−T
∇̂v̂T ),

σ̂s = F̂(2µsÊ +λstrÊI)
(5)

with Ê = 1
2 (F̂

T F̂− I),

where we notice that this problem is driven by a Dirichlet
inflow condition. In this formulation, for momentum equations,
integration by parts in both subdomains yields the boundary
term on Γ̂i as:

(n̂ f .(Ĵσ̂sF̂−T ), φ̂ v)
Γ̂i
+(n̂s.(Ĵσ̂ f F̂−T ), φ̂ v)

Γ̂i
= 0. (6)

By omitting this boundary integral jump over ∂ Ω̂i the weak con-
tinuity of the normal stresses becomes an implicit condition of
the fluid-structure interaction problem.

Problem 2 - The wave propagation problem (WpFSI) in
ALE framework:

In this model we concentrate on the coupled problems of the
acoustic wave equation and elastic wave equations for incom-
pressible fluid and compressible elastic materials, respectively.
The fluid is governed by the conservation of mass and momen-
tum. We consider a linear elastic rheology for the heterogeneous
solid, while the fluid is assumed to be of homogeneous density.
We restrict ourselves to isotropic materials, although the method
can also handle anisotropic materials accurately.

Find {v̂w, ûw} ∈ {v̂D
w + V̂ 0

Ω̂
}×{ûD

w + V̂ 0
Ω̂
}, such that v̂w(0) = v̂0

w

and ûw(0) = û0
w, for almost all t ∈ I it holds that:

(Ĵρ̂∂t v̂w, φ̂
vw)

Ω̂ f
− (Ĵρ̂(F̂−1

∂t û · ∇̂)v̂w, φ̂
vw)

Ω̂ f

+(c2Ĵρ̂(F̂−1
∇̂ · ûw)F̂−T , ∇̂φ̂

vw)
Ω̂ f
−〈ĝw, φ̂

vw〉
Γ̂N

+(Ĵρ̂∂t v̂w, φ̂
vw)

Ω̂s
− (Ĵρ̂(F̂−1

∂t û · ∇̂)v̂w, φ̂
vw)

Ω̂s

+(Ĵρ̂σ F̂−T , ∇̂φ̂
vw)

Ω̂s
− (Ĵ f̂s, φ̂ vw)

Ω̂s
= 0 ∀φ̂ vw ∈ V̂ 0

Ω̂
,

(Ĵρ̂(∂t ûw− (F̂−1
∂t û · ∇̂)ûw− v̂w), φ̂

uw)
Ω̂s

+(Ĵρ̂(∂t ûw− (F̂−1
∂t û · ∇̂)ûw− v̂w), φ̂

uw)
Ω̂ f

= 0 ∀φ̂ uw ∈ V̂ 0
Ω̂
,

(7)

with a disc-shaped force, f̂s(x, t) with the radius r fs =7.5 mm

f̂s(x, t) =
[

r(t)cos(ϕ(x))
r(t)sin(ϕ(x))

]
, x ∈ Ω̂ fs ,

with

Ω̂ fs = {x ∈Ω | x2
1 + x2

2 ≤ r2
fs
}

and the time-depended radius,

r(t) := (sin(t)− sin(t− ns

fc
)) · (1− cos(2π

fc
ns

t)) · 1
4

cos(2π fct)
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where fc = 100 kHz, ns = 5 and

ϕ(x) =



arctan
(

x2

x1

)
, x1 > 0 and x2 ≥ 0,

π

2
, x1 = 0 and x2 > 0,

π + arctan
(

x2

x1

)
, x1 < 0,

3π

2
, x1 = 0 and x2 < 0,

2π + arctan
(

x2

x1

)
, x1 > 0 and x2 < 0.

However, we want to impose Dirichlet-boundary values to guar-
antee continuity ûw f = ûws on ∂ Ω̂i. This way, the equations sat-
isfy the condition of continuity of displacements, and are cou-
pled over the two domains. In the discretization and solution
schemes we have to carefully treat the additional boundary terms
which are needed to satisfy the continuity of normal stresses. In
the coupled formulation, for momentum equations, integration
by parts in both subdomains yields the boundary term on ∂ Ω̂i as:

(n̂s.(Ĵσ̂sF̂−T ), φ̂ vw)
∂ Ω̂i

+(n̂ f .(c2Ĵρ̂ f (∇̂v̂w f F̂
−1)F̂−T ), φ̂ vw)

∂ Ω̂i
= 0

(8)

By omitting this boundary integral jump over ∂ Ω̂i the weak con-
tinuity of the normal stresses becomes an implicit condition of
the eXtended fluid-structure interaction (eXFSI) problem.

Problem 3 - eXtended Fluid-Structure Interaction
(eXFSI):

Find {v̂, û, ŵ, p̂, v̂w, ûw} ∈ {v̂D + V̂ 0
Ω̂
} × {ûD + V̂ 0

Ω̂
} × V̂ ×

L̂
Ω̂
×{v̂D

w + V̂ 0
Ω̂
}×{ûD

w f
+ V̂ 0

Ω̂
}, such that v̂(0) = v̂0, û(0) = û0,

v̂w(0) = v̂0
w and ûw(0) = û0

w, for almost all t ∈ I it holds that:

(Ĵρ̂∂t v̂, φ̂ v)
Ω̂ f

+(ρ̂ f Ĵ(F̂−1(v̂−∂t û) · ∇̂)v̂, φ̂ v)
Ω̂ f

+(Ĵσ̂ F̂−T , ∇̂φ̂
v)

Ω̂ f
+(ρ̂∂t v̂, φ̂ v)

Ω̂s

+(Ĵσ̂ F̂−T , ∇̂φ̂
v)

Ω̂s
−〈ĝ, φ̂ v〉

Γ̂N
= 0 ∀φ̂ v ∈ V̂ 0

Ω̂
,

(Ĵρ̂∂t v̂w, φ̂
vw)

Ω̂ f
− (Ĵρ̂(F̂−1

∂t û · ∇̂)vw, φ̂
vw)

Ω̂ f

+(c2Ĵρ̂(F̂−1
∇̂ · v̂w)F̂−T , ∇̂φ̂

vw)
Ω̂ f

+(Ĵρ̂s∂t v̂w, φ̂
vw)

Ω̂s
−〈ĝw, φ̂

vw〉
Γ̂N

+(Ĵρ̂σsF̂−T , ∇̂φ̂
vw)

Ω̂s
− (Ĵ f̂s, φ̂ vw)

Ω̂s

−(Ĵρ̂(F̂−1
∂t û · ∇̂)vw, φ̂

vw)
Ω̂s

= 0 ∀φ̂ vw ∈ V̂ 0
Ω̂
,

(α̂uŵ, φ̂ w)
Ω̂ f

+(α̂u∇̂û, ∇̂φ̂
w)

Ω̂ f
+(α̂u∇̂ŵ, ∇̂φ̂

w)
Ω̂s

= 0 ∀φ̂ w ∈ V̂
Ω̂
,

ρ̂(∂t û− v̂, φ̂ u)
Ω̂s

+(α̂u∇̂ŵ, ∇̂φ̂
u)

Ω̂ f
= 0 ∀φ̂ u ∈ V̂ 0

Ω̂
,

( ˆdiv(ĴF̂−1v̂), φ̂ p)
Ω̂ f

+(p̂, φ̂ p)
Ω̂s

= 0 ∀φ̂ p ∈ L̂
Ω̂
,

(Ĵρ̂(∂t ûw− (F̂−1
∂t û · ∇̂)ûw− v̂w), φ̂

uw)
Ω̂s

+(Ĵρ̂(∂t ûw− (F̂−1
∂t û · ∇̂)ûw− v̂w), φ̂

uw)
Ω̂ f

= 0 ∀φ̂ uw ∈ V̂ 0
Ω̂
,

(9)

FIGURE 4: Arbitrary transformation approach: Typical eXFSI
problem in the ALE framework. [9]

In this case, we will use a monolithic approach in which all
equations are solved simultaneously (see Figure-4). Employ-
ing a strongly coupled approach, the interface conditions, the
continuity of velocity and the normal stresses, are automatically
achieved at each time step. Here, a coupled monolithic varia-
tional formulation is an inevitable prerequisite for gradient based
optimization methods, for rigorous goal oriented error estimation
and mesh adaptation. However, this coupling leads to additional
nonlinear behaviour of the overall system.

GALERKIN FORMULATION
In this section, we briefly comment on temporal and spatial

discretization and explain the solution process of the nonlinear
problem. Finally, we give a short account on the form of the lin-
ear equation system, which must be solved in each Newton step.
In fact, because that the fluid equations have been transformed
on a fixed reference configuration, the whole problem is solved
therein (instead of moving the fluid mesh explicitly).

Temporal and spatial discretization
For arguments Û = {v̂, û, ŵ, p̂, v̂w, ûw} and φ̂ =

{φ̂ v, φ̂ u, φ̂ w, φ̂ p, φ̂ vw , φ̂ uw} ∈ X̂ 0, where

X̂ 0 := {φ̂ ∈ {v̂D + V̂ 0
Ω̂
}×{ûD + V̂ 0

Ω̂
}× V̂ × L̂

Ω̂

×{v̂D
w + V̂ 0

Ω̂
}×{ûD

w + V̂ 0
Ω̂
},

φ̂ v(0) = φ̂ u(0) = φ̂ vw(0) = φ̂ uw(0) = 0}

we introduce the space-time semilinear form as:
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Find Û ∈ ÛD +X̂ 0, such that

T∫
0

Â(Û)(φ̂)dt = 0 ∀φ̂ ∈ X̂ 0, (10)

where ÛD is an appropriate extension of the Dirichlet boundary
and initial data.

The time integral is defined in an abstract sense such that
the equation holds for almost all time steps. The semi-linear
form Â(Û)(φ̂) is defined by

Â(Û)(φ̂) = (Ĵρ̂ f ∂t v̂, φ̂ v)
Ω̂ f

+(ρ̂ f Ĵ(F̂−1(v̂−∂t û) · ∇̂)v̂, φ̂ v)
Ω̂ f

+(Ĵσ̂ f F̂−T , ∇̂φ̂
v)

Ω̂ f
+(ρ̂s∂t v̂, φ̂ v)

Ω̂s

+(Ĵσ̂sF̂−T , ∇̂φ̂
v)

Ω̂s
−〈ĝ, φ̂ v〉

Γ̂N

+(Ĵρ̂ f ∂t v̂w, φ̂
vw)

Ω̂ f
− (Ĵρ̂ f (F̂−1

∂t û · ∇̂)vw, φ̂
vw)

Ω̂ f

+(c2Ĵρ̂ f (F̂−1
∇̂ · v̂w)F̂−T , ∇̂φ̂

vw)
Ω̂ f

+(Ĵρ̂s∂t v̂w, φ̂
vw)

Ω̂s
−〈ĝw, φ̂

vw〉
Γ̂N

+(Ĵρ̂sσsF̂−T , ∇̂φ̂
vw)

Ω̂s
− (Ĵ f̂s, φ̂ vw)

Ω̂s

− (Ĵρ̂s(F̂−1
∂t û · ∇̂)vw, φ̂

vw)
Ω̂s

+(α̂uŵ, φ̂ w)
Ω̂ f

+(α̂u∇̂û, ∇̂φ̂
w)

Ω̂ f
+(α̂u∇̂ŵ, ∇̂φ̂

w)
Ω̂s

+ ρ̂s(∂t û− v̂, φ̂ u)
Ω̂s

+(α̂u∇̂ŵ, ∇̂φ̂
u)

Ω̂ f

+(Ĵρ̂s(∂t ûw− (F̂−1
∂t û · ∇̂)ûw−ˆ̂vw), φ̂

uw)
Ω̂s

+( ˆdiv(ĴF̂−1v̂), φ̂ p)
Ω̂ f

+(p̂, φ̂ p)
Ω̂s

+(Ĵρ̂ f (∂t ûw− (F̂−1
∂t û · ∇̂)ûw− v̂w), φ̂

pw)
Ω̂ f

(11)

Temporal discretization is based on finite differences and the
one step-θ schemes. The derivation for our set of equations
was made in [14]. Spatial discretization in the reference con-
figuration Ω̂ is treated by a conforming Galerkin finite element
scheme, leading to a finite dimensional subspace X̂h ⊂ X̂ . The
discrete spaces are based on the Qc

2/Pdc
1 element for the fluid

problem and wave propagation problem. The structure problem
is discretized by the Qc

2 element.

Time and spatial discretization end at each single time step
in a nonlinear quasi-stationary problem:

Â(Ûn
h )(φ̂) = F̂(φ̂) ∀φ̂ ∈ X̂h, (12)

which is solved with a Newton-like method. Given an initial
Newton guess Ûn,0

h , find for j = 0,1,2, ... the update δÛn
h of the

linear defect-correction problem

Â′(Ûn, j
h )(δÛn, j

h , φ̂) =−Â(Ûn
h )(φ̂)+ F̂(φ̂),

Ûn, j+1
h = Ûn, j

h +λδÛn
h .

(13)

In this algorithm, λ ∈ (0,1] is used as damping parameter for line
search iterations. A crucial role for (highly) nonlinear problems

includes the appropriate determination of λ . A simple strategy is
to modify the update step in (9) as follows: For given λ ∈ (0,1)
determine the minimal l∗ ∈ N via l = 0,1, ...,Nl , such that

R(Ûn, j+1
h,l )< R(Ûn

h,l),

Ûn, j+1
h,l = Ûn, j

h +λ
l
δÛn

h .
(14)

For the minimal l, we set

Ûn, j+1
h := Ûn, j+1

h,l∗ (15)

In this context, the nonlinear residual R(·) is defined as

R(Ûn
h ) := max

i
{Â(Ûn

h )(φ̂i)− F̂(φ̂i)} ∀Ûn
h ∈ X̂h, (16)

where φ̂i denotes the nodal basis of X̂h. The directional
derivative Â′(Û)(δÛ , φ̂) that is utilized previously, is defined as
Gateaux derivative. The application to a semi-linear form reads:

Â′(Û)(δÛ , φ̂) := lim
ε 7→0

1
ε
{Â(Û + εδÛ)(φ̂)− Â(Û)(φ̂)}

=
d

dε
Âh(Û + εδÛ)(φ̂) |ε=0

(17)

Now we discuss an example of one specific directional derivative
that includes all of the necessary steps. We also refer the reader to
other discussions on the exact derivation of the Jacobian. Let us
consider a part of the fluid convection term in ALE coordinates.
As part of a semi-linear form, it holds

Âconv(Û)(φ̂) = (ρ̂ f Ĵ(F̂−1v̂ · ∇̂)v̂, φ̂ v)
Ω̂ f

= (ρ̂ f ∇̂v̂ĴF̂−1v̂, φ̂ v)
Ω̂ f

(18)

In this case only for FSI problem, the directional derivative
Â
′
conv(Û)(φ̂) in the direction δ̂Û = {δ v̂,δ û,δ p̂} is given by

Âconv(Û)(φ̂) = (∇̂δ v̂ĴF̂−1v̂, φ̂ v)+(∇̂v̂(ĴF̂−1)
′
(δ û)v̂, φ̂ v)

+(∇̂v̂ĴF̂−1
δ v̂, φ̂ v)

(19)

and for WpFSI problem, the directional derivative Â
′
conv(Ûw)(φ̂)

in the direction δ̂Ûw = {δ v̂w,δ ûw} is given by

Âconv(Ûw)(φ̂) = (∇̂δ v̂wĴF̂−1v̂w, φ̂
vw)

+(∇̂v̂w(ĴF̂−1)
′
(δ ûw)v̂w, φ̂

vw)
(20)

In the paper, we restrict our considerations to a two-dimensional
example because the inverse of the deformation matrix can eas-
ily be stated in explicit form. Explicitly, the deformation matrix
reads:

F̂ = I + ∇̂û =

(
I + ∂̂1û1 ∂2û1

∂1û2 I + ∂̂2û2

)
, (21)

which brings us to

ĴF̂−1 =

(
I + ∂̂2û2 −∂2û1
−∂1û2 I + ∂̂2û2

)
, (22)
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and its directional derivative in direction δ û = (δ û1,δ û2):

(ĴF̂−1)
′
(δ û) =

(
∂̂2δ û2 −∂2δ û1
−∂1δ û2 ∂̂2δ û2

)
, (23)

This expression is part of the second term shown in Equation-19
and 20. The remaining expressions for directional derivatives can
be derived in an analogous way. With these ingredients the Jaco-
bian is built explicitly to identity optimal Newton convergence.
For more details on computation of the directional derivatives on
the interface, we refer to [7].

SOLUTION TECHNIQUES OF THE LINEAR SYSTEM
After discretization and linearization, we solve in each New-

ton step a linearized problem, to achieve the solution of the
(originally) nonlinear problem. In this work, we upgrade these
ideas to the unsteady case and the biharmonic fluid mesh-motion
model. Specifically, we are interested in the block-structure of
the semi-linear form. To simplify the notation in this section, we
omit the “hats" because it is clear that we are still working in
the reference configuration Ω̂. The global linear equation system
(eXFSI), which has the following form in each Newton step:

AδU = B (24)

where A denotes a block matrix and for the coupled system can
be described as-

A =

[
AFSI 0

0 AW pFSI

]
. (25)

Here,

AFSI =


Mvv

k +Nvv +Lvv +
Mvv

k Evu +Svu 0 Bvp
Muv

Muu
k σwLuw 0

0 σuLwu σuMww 0
BT

vp Spu 0 Mpp

 ,
AW pFSI =

[
Mvv

k +Lvv +
Mvv

k Evwuw +Svwuw

Mvwuw
Muwuw

k

]
,

(26)

and

δU =


δv
δu
δw
δ p
δvw
δuw

 , B =


bv(tn+1, tn)
bu(tn+1, tn)
bw(tn+1, tn)
bp(tn+1, tn)
bvw(tn+1, tn)
buw(tn+1, tn)

 . (27)

Here A is a block-diagonal matrix, where the second part
(AW pFSI) of this block matrix depends on the time-dependent
behavior of the first part (AFSI) of the block matrix. In the
first block, we have in the fluid domain the mass term Mvv, the
convection term Nvv, the Laplacian Lvv and a mass matrix Mvv
in the structural part. In the next block in the upper row, we
find the elasticity of the structure and coupling terms in the fluid
domain. In the last block, we have the gradient matrix Bvp. In

the second row, in the first two blocks, we find again two mass
terms Muv and Muu in the structural domain. Next, we detect
a Laplacian Luw due to the biharmonic fluid mesh motion. In
the third row, we start in the second block with a Laplacian Lwu
because of the mesh motion model. The same reason holds for
the appearance of the next mass term Mww. In the last row, we
find the (negative) transposed divergence matrix BT

vp. Then,
we have again a coupling term Spu and in the last entry of the
system matrix, we have the pressure mass matrix in the structure
domain. Except for the diffusion parameters of the mesh motion
model and the time step k, we have omitted all other parameters.
Specifically, the θ parameter of the time-stepping scheme is
not shown. We recall, that all terms of the former time step are
hidden in the right hand side vector B. However, we observe
immediately that two terms are zero on the diagonal in the
system matrix. This lack must be resolved if one were to solve
this problem using an iterative solver in conjunction with a
Block-Schur preconditioner.

The philosophy of the linear solver is to treat the coupled
system in a monolithic manner as long as possible. Usually
two different time discretization scheme and time step size are
required to solve eXFSI problem as far as wave propagation is
faster than material deformation. It’s possible to solve eXFSI by
using one type time discretization scheme and time step size, but
the solution cost will be extremely high. The representation (26)
shadows one important fact. Namely, that all terms are defined
on two different domains Ω f and Ωs, which has consequences
for an appropriate construction of a preconditioner. Conse-
quently, we split the system into fluid variables and structure
variables, which is not shown here to the convencience for the
reader. To solve system 24, one could try to find a preconditioner
such that

P−1AδU = P−1B (28)

If we find appropriate entries for P−1 such that the condition
number of P−1A is moderate, then the whole systems would
converge in a few iterations. Specifically, one could consider us-
ing geometric multigrid method to solve the Laplace-dominated
blocks in the preconditioner. In this linear system (eXFSI) we
have two types of FSI problems (FSI and WpFSI), where FSI
gives us material deformation (boundary condition for each time
step) and based on the new boundary condition we solve wave
propagation problem (WpFSI) in the system (see Figure-4). In
this case, for each time step, first we solve the time dependent
FSI problem and move forward the new mesh line that moves
with the solid-fluid interface as the new boundary conditions for
WpFSI problem and solve it in the reference domain. The result-
ing linear subproblems could then be solved by the “Generalized
Minimal Residual (GMRES)” method with preconditioning by a
geometric multigrid method with block-ILU smoothing.

As we have two types of FSI problems in this system, we
are suggesting one apply the partitioning in the multigrid
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smoother. Brummelen et al. [16] showed that a partitioned
smoother with exact solution of the two subproblems is a perfect
smoother for a certain class of fluid-structure interactions.
Perfect here implies, that the convergence rate will go to zero
for increasing number of mesh-levels. Also from observation
its easy to understand that the role of the multigrid smoother
is not that of finding a global solution, but it’s only intent is to
locally smooth high frequency error contributions. Here, global
coupling conditions must not be resolved. The application of
various preconditioners to an iterative solver such as GMRES
will be the subject of future research, and we used a direct solver
with UMFPACK for our numerical studies in this work.

NUMERICAL EXAMPLE
The aim of this research is to explore and understand the

behavior of engineering artifacts in extreme environments. To
achieve the main ambition of this work, we split this research
into two parts. The first part we consider is to determine the
effect of fluid flow around a elastic beam and study the displace-
ment of a control point A(t) under incompressible fluid flow to
understand the structural deformation with time. The second
part of this research focuses on the FSI effect on an engineer-
ing model (aircraft wing, pipeline, or wind turbine) to identify
the list of critical design points to implementing a Damage Iden-
tification Strategy (DIS). The main target is to study the elastic
structural deformation under fluid flow in order to understand the
variational boundary conditions which may avail to solve eXFSI
problems for designing an on-line structural health monitoring
system (SHM).

Configuration test model
The computational domain is designed based on the 2D

WpFSI and eXFSI problem and it is determined by the following
characteristics:

Test model for WpFSI problem
• The computational domain has the length L = 1.0 and height

H = 0.71.
• The ‘L’ shape liquid domain is located in the central area of

the solid domain.
• Three disc-shaped forces fs1(x, t) at (0.5,0.6), fs2(x, t) at

(0.2,0.2) and f̂s3(x, t) at (0.8,0.2) with the radius r fs =0.0075
when t=0.

Test model for eXFSI problem
• The computational domain has the length L = 2.5 and height

H = 0.41.
• The elastic beam has width w = 0.2 and height h = 0.2 and

the bottom end is attached to the wall.

.
FIGURE 5: Configuration for 2D WpFSI test model with three
disc-shaped forces ( fs1 , fs2 and fs3 )

FIGURE 6: Configuration for 2D eXFSI test model with a disc-
shaped force fs

• The disc-shaped force ( fs(x, t)) at (0.35,0.05) with the radius
r fs =0.0075 when t=0.
• The control points are fixed at the trailing edge of the struc-

ture with A(t)|t=0 = (0.45,0.2), measuring deflections due
to FSI effect.

Material properties
This work is concerned with numerical approximation of

the FSI effect on a St. Venant-Kirchhoff (STVK) compressible
elastic material model. This model is suitable for large displace-
ments with moderate strains.

The elasticity of material structures is characterized by the
Poisson ratio νs and the Young modulus EYs . The relationship of
two material parameters µs and λs is given by:

νs =
λs

2(λs +µs)
, EYs = µs

3λs +2µs

λs +µs
,

µs =
EYs

2(1+νs)
, λs =

νsEYs

(1+νs)(1−2νs)
,

(29)

where for compressible material νs <
1
2 and incompressible ma-

terial νs =
1
2 . And the fluid is assumed to be incompressible and

Newtonian.
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Boundary Conditions
The boundary conditions are as follows (for 2D eXFSI):

• A constant parabolic inflow profile is prescribed at the left
inlet as

v f (0,y) = 1.5Um
4y(H− y)

H2 , (30)

where Um is the mean inflow velocity and the maximum
inflow velocity in 1.5Um

• At outlet, zero-stress σ .n = 0 is realized by using the ‘do-
nothing’ approach in the variational formulation.

• Along the upper and lower boundary, the usual ‘no-slip’ con-
dition is used for the velocity.

Initial Conditions
The initial conditions are as follows (for 2D eXFSI):

v f (t;0,y) =

 v f (0,y)
1−cos( π

2 t)
2 , t < 2.0,

v f (0,y), t ≥ 2.0,
(31)

and for wave propagation part:

vw f (x,y, t)|t=0 = vws(x,y, t)|t=0 = 0, (32)

uw f (x,y, t)|t=0 = uws(x,y, t)|t=0 = 0 (33)

NUMERICAL SIMULATION
Global refinement is done for every cell and the time dis-

cretization in time is done by the well-known fractional-step-θ
scheme. The fractional-step-θ is a second order scheme and has
a similar work complexity to the Crank-Nicholson scheme.

The WpFSI problem
We present an illustration of the global solution for the dis-

placement field ux on the top surface of a solid plate with ‘L’
shaped liquid domain for the simulation times 0.01 s, 0.05 s, 0.1
s and 0.2 s in the Figure-7. Here, for the simulation time t > 0.04
s, the ‘L’ shaped liquid domain starts to become visible due to
different magnitudes of wave propagation. Moreover, when the
simulation time t > 0.09 s, we can additionally trace the symmet-
ric wave, which is the reflection of the symmetric wave package
from the boundaries.

The eXFSI problem
We introduce three eXFSI test cases that are treated with

different inflow velocities (see Table-1). The parameters are
chosen such that a visible transient behaviour of the double
wedge airfoil can be seen. For the numerical implementation of
the monolithic eXFSI problem, we have verified our solution
obtained via optimization toolbox DOPELIB with the 2D FSI

(a) t = 0.01 sec (b) t = 0.05 sec

(c) t = 0.1 sec (d) t = 0.2 sec

FIGURE 7: An ultrasonic wave propagation in a solid plate with
’L’ shape liquid domain with a disc-shaped force ( fs(x, t)).

TABLE 1: Parameter setting for the eXFSI test cases

Parameter eXFSI-1 eXFSI-2 eXFSI-3

Structure model STVK STVK STVK

ρ f [103 kgm−3] 1 1 1

ρs[103 kgm−3] 1 10 1

ν f [10−3 m−2s−1] 1 1 1

νs 0.4 0.4 0.4

µs[106 kgm−1s−2] 0.50 0.50 2.0

Um[ms−1] 0.2 1.0 2.0

benchmark test [1–7] and have found the same results. To ensure
a ‘fair’ comparison of results, we calculate the comparison
values using the ALE method. In all cases, a uniform time-step
k size is used. Moreover, to ensure the convergence of numerical
simulations, different time-step schemes and step sizes are
used. The time discretization is done by the “fractional-step-θ
scheme” as regards the eXFSI simulation convergence with dif-
ferent time-step sizes. In order to avoid the additional remeshing
around the fluid-solid interface, we use the same mesh in all
time steps, where the interface motion is tracked accurately by a
moving mesh line that moves with the solid-fluid interface.

In Figure-8 we present the global solution for the displace-
ment field ux and uy for different time steps, where for the
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(a) The displacement field component ux (b) The displacement field component uy

FIGURE 8: Global solution, illustration of the displacement field components ux and uy in a solid plate with rectangular liquid domains
with the fluid velocity field at different times for the eXFSI-1 test case.

simulation time t > 0.025 s, the rectangular liquid domains
inside the solid plate start to become visible due to different
magnitudes of wave propagation.

CONCLUSION AND REMARKS
The coupled dynamics of an incompressible fluid with non-

linear hyperelastic solids for FSI effect and wave propagation
gives very large algebraic equations, where serial computations
usually are very costly due to memory limitations and computa-
tion time. Our proposed solver is based on a Newton lineariza-
tion of the fully monolithic system of equations, discretized by
a Galerkin finite element method. The numerical simulation re-
sult of WpFSI and eXFSI on a 2D model is under review, where
these models are utilized to design an off-line and on-line SHM
system. However we present WpFSI and eXFSI-1 test case re-
sults to give an overview of numerical simulation off-line and
on-line SHM system.
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