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Properties of the Er:T system )i

" Erbium = HCP NN B
= ErT, B-phase = FCC .
= B-phase extends from 2.0 - g q; 0 e G
= Sub-stoichiometric B-phase @~ Py NP NP\
due to stoichiometric =
deficiency.
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oxygen as large Er,05 chunks \
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Helium Bubble Shape )

= Helium stored in
platelets oriented along
(111) planes.

= 4(111) planes in FCC,
only observe 2 at a
time in TEM.

= Width ~1-2 nm.
= Platelets v. Spheres
Surface Energy 2y

Ratio of :
Strain Energy ub

> 0.1 Sphere
< 0.1 Platelet

ErT, ~ 0.06
ZrT, ~ 0.26




Helium Bubble Spatial Distribution @&.

= Bubbles observed evenly distributed throughout film.

= Grain Boundary decoration only when GB aligns along
(111) plane

= Bubbles observed around Er,0O; pieces.
o HeiEr 0.37 He:Er [~0:07-0.079]

Oxide Grain boundary with bubbles ~ Grain boundary without bubbles 4




Helium Bubble Growth and e
Interactions | )

Laboratories
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®  Cross-Section| |
® Plan-View

= Length increases with time up
to He:Er ~ 0.15.

___________________________

g i
= Width doesn’t change until Sl e |
He:Er ~0.15. 2ol } Al
= Size distribution log-normal 2sp L _
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= Tight distribution early

o 0.018(CS) “ 0.031(CS)
= Larger distribution later m
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Bond et al., J. Appl. Phys. 107, 083514 (2010
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Helium Bubble Growth and e
Interactions Il

Laboratories

= Bubbles begin to link later in life.
= Length stops growing, width begins to increase.
= Becomes very difficult to even define what is a bubble.




Helium Bubble Transition Point ) o,
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y [ = Surface Energy

Vv = Poisson’s ratio
d = platelet diameter
— ganO-Crack _ s = platelet thickness

ipole Expansion 4

.1 b = Burger’s vector
d111
Gp,

Pressure Nano-Crack (GPa)

= 111 plane spacing
= effective Shear modulus
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Evidence for Bubble Growth Model @&:.

Days after hydriding
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Helium Bubble Pressure

= Pressure in bubble

vV

AV ¢, tAAVTH,

Q

~eTy 1| (%) « () - ()]
Q) = atomic volume (volume of the

tritide per metal atom)

Vy, =volume required by 3-He in
the high pressure bubbles

0 =Q1+ CT(M/QO)T]

Using EOS for 3-He can extract
bubble pressure

= Using Neutron Reflectivity to
measure swelling P ~1-3 GPa

= Models predict 5 GPa
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Helium Release )

0.40 — r T T r r T

Expected °He from T decay 4

= Early life helium storage ~100%. & ERD moastrement

= (Critical release occurs at He:M 2T /; |
~0.33
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Conclusions and Further Questions .

At ~0.33 He:M
“critical release”
then it dies

At 0.14 He:M growth mode
transitions from nano-crack

Nano-cracks to dipole-expansion

Question: Is the self-
trapping mechanism
appropriate for
stoichiometric metal
tritides?

Don’t know
how the eggs
get there.



Overview of this Study

500 nm thick Erbium film
deposited via e-beam PVD on
Silicon wafer with Molybdenum
interaction barrier.

= Expect 10-15% swelling upon
conversion to ErT,.

= Average stoichiometric deficiency
of 6 ~ 0.1.

TEM to image bubbles
XRD for lattice changes

= Nano-Indentation for mechanical
property changes

= |IBA/ERD for helium retention

100 nm Molybdenum

(100) Silicon Wafer
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Average

Std. Dev.

1.844
1.927
1.842
1.987
1.851
1.909
1.893
0.058
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Helium Bubble Nucleation ) i

Self-Trapping in Nickel
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FIG. 2. Computer-drawn sketches of the minimum-
energy configurations of (a) Hes— Hes#*I*; (b) Hey
—bHE|V;!;: (c) HC“—-&HE“V:[:; and (d) HB](,
Helium Binding: He —~He -+ He —»He V1ol ) (see the Appendix) without introducing in-
o —_————————————n— itial vacancies into the calculation. Near-Frenkel pairs
! 2 3 4 5 B 7 B § 10 Il 12 I3 14 15 16 17 18 13 20 are denoted V*I*.

NUMBER OF HELIUM ATOMS

Wilson et al. PRB 24, p.5616 (1981)
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Helium Diffusion in ErT,

1. Helium migrating along path (a) represents direct Octahedral to Octahedral
motion, this path requires ~1.5eV to overcome the energy barrier and move.

2. Helium migrating along path (b) represents an Octahedral-Tetrahedral-
Octahedral path but with a hydrogen atom residing in the Tetrahedral space.

o Helium motion along this path requires ~0.9eV to move to the
tetrahedral site which itself is pseudo-stable as shown by the small
decrease of energy in the tetrahedral site.

3. Helium migrating along path (c) represents an Octahedral-Tetrahedral-
Octahedral path with an unoccupied tetrahedral site.
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