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AlGaAs-GaAs high mobility 2DEGs

Pfeiffer, L. and West, K. W. Physica E 20, 57 (2003).
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GaAs vs. Si based materials

GaAs/AlGaAs structures Si/SiO2 Structures

SiGe heterostructures : Can you get the best of both world?

High mobility

Presence of a tunable
band offset

Deep donors

Large scale integration 
is problematic

Interactions with 
nuclear spin bath

Large scale integration 

Natural isotope is 
nuclear spin free

Shallow donors

Low-mobility

Lack of a tubable band 
offset



SiGe heterostructures
Clean interface between SiGe and Si (or Ge)  Improved mobility

Presence of a tunable band offset  Possibility to make quantum wells

CMOS technology compatible  Possibility for large scale integration

Existence of a 0-nuclear spin isotope  Improved relaxation time in quantum-dots

Additional benefit : Strain tunable

Limitations
Mobility modest compared to GaAs/AlGaAs

Scattering mechanisms and strain characteristics not fully 
understood/optimized

Larger electron mass requiring smaller structures
Need for shallower quantum wells

Shallow donors induce additional charge noise in doped structures
Can be avoided using undoped structures



Outline

 Capacitively induced 2DEG in shallow Si/SiGe heterostructures
• Device growth and fabrication
• Scattering mechanism analysis through mobility vs 

density dependence
• Non-equilibrium charge migration model

 Capacitively induced 2DHG in Ge/SiGe heterostructures
• Device growth and fabrication
• Scattering mechanism analysis through mobility vs 

density curve 
• Non-equilibrium charge migration model
• Effective hole mass as a function of density

 More involved possibilities with Si/SiGe heterostructures
• Artificial disorder/superlattice
• Electron bilayer

+ V



Growth of undoped Si/SiGe
heterostructure

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)

Growth parameters : 
UHVCVD system
Base pressure : 10-10 torr
SiH4 and GeH4 as precursors 
Growth temperature : 550 ° C

10 Ω·cm (room 
temperature)

Cleaned in 10% HF 
solution prior to loading 

in growth chamber.

Substrate



Growth of undoped Si/SiGe
heterostructure

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14  spacer ( 3 m)

SiGe graded buffer ( 1.4 m)

Growth parameters : 
UHVCVD system
Base pressure : 10-10 torr
SiH4 and GeH4 as precursors 
Growth temperature : 550 ° C

Ge % varied from 0 to 20% 
linearly

Virtual substrate



Growth of undoped Si/SiGe
heterostructure

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)

Growth parameters : 
UHVCVD system
Base pressure : 10-10 torr
SiH4 and GeH4 as precursors 
Growth temperature : 550 ° C

Strain relaxed buffer layer

Buffer layer 



Growth of undoped Si/SiGe
heterostructure

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)

Growth parameters : 
UHVCVD system
Base pressure : 10-10 torr
SiH4 and GeH4 as precursors 
Growth temperature : 550 ° C

Series of sample were 
grown with depth of
10, 25, 50 and 100 nm

Spacer



Growth of undoped Si/SiGe
heterostructure

• Clean interfaces
• Growth dimensions are as expected



Fabrication of undoped Si/SiGe
heterostructure

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)

Ion : Phosphorus
Implant energy : 20 keV

and 75 keV
Activation : RTA at 625 °
C for 10 s in formic gas
Contact pads : Ti/Au 

20/500Å
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Ion implantation

Side view : Schematic

Top view : Schematic



Fabrication of undoped Si/SiGe
heterostructure

Material : ALD Al2O3

Used to isolate the ohmic
contacts from the gate

Dielectric layer

Top view : Schematic

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)
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Side view : Schematic

Al2O3 insulator ( 30 nm)



Fabrication of undoped Si/SiGe
heterostructure

Material : Ti/Au 20/400Å 
Used to define a Hall bar

Accumulation gate

Top view : Schematic

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)
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Side view : Schematic

Al2O3 insulator ( 30 nm)

TiAu gate ( 150 nm)



Top view : Schematic

P-type Si substrate

Si quantum well ( 20 nm)

Si cap ( 2 nm)

Si0.86Ge0.14 spacer ( 8 to 98 nm)

Si0.86Ge0.14 spacer ( 3 m)

SiGe graded buffer ( 1.4 m)
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Side view : Schematic

Al2O3 insulator ( 30 nm)

TiAu gate ( 150 nm)

Undoped Si/SiGe HFETS

Process optimized for high mobility structures

Mobility :             ≈ 1.6 cm2 / V·s 
Dielectric :           Al2O3

2DEG depth :       ≈ 65 nm
Ohmic contacts : AuSb alloy 

Mobility :             ≈ 2.4 cm2 / V·s 
Dielectric :           SiO2

2DEG depth :       ≈ 150 nm 
Ohmic contacts : AuSb alloy 



Density vs gate voltage
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 Low gate voltage : Consistent with parallel plate capacitor model
 High gate voltage : Saturation of the electron density



Initial Rxx characterization
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 Clean Rxx traces are observed for all 2DEGs depth
 Good sample quality down to 10 nm depth
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Intermediate density :
  n

;   2.5
 Remote charged 

impurities dominate 
scattering.  Low-
density corrections to 
the RPA model have to 
be considered.   

High density, deep device : 
  n

;   0
 Interface roughness is 

increasing 

Mobility of  3 x 105 cm2 / V · s is achieved 
in 25 nm deep devices

High density, shallow devices : 
  n

;  5
 Non-standard 

scattering mechanism.

Density versus mobility



Non-equilibrium charge migration

C.-T. Huang et al. APL 104, 243510 (2014).

 There is a 2nd narrow QW at the 
surface

Becomes the ground state at 
high enough Vg

 Large concentration of defects near 
the surface

Electrons can’t flow from 
contacts to surface QW.
Non-equilibrium situation

 Electrons can tunnel from buried to 
surface QW

Form a shielding layer near 
the surface
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Non-equilibrium charge migration



Non-equilibrium charge migration

Trapped charges
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Non-equilibrium charge migration

Trapped charges
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Non-equilibrium charge migration

Trapped charges
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Density vs gate voltage
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 Low gate voltage : Consistent with parallel plate capacitor model
 High gate voltage : Saturation of the electron density
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Comparison to experiment

 Amount of migration charge determined from density 
vs. gate voltage curve 

 Qualitatively reproduces the data
 Including low density corrections to the RPA model 

would need to be considered for better accuracy 



Undoped Ge/SiGe HFETS

Strained Ge quantum well ( 14 nm)

n-Si (100) substrate

Si cap ( 1nm)

Si0.2Ge0.8 reverse graded buffer ( 2 m)

Al2O3 insulator ( 30 nm)

TiAu gate ( 150 nm)

A
l-

co
n

tact

A
l-

co
n

tact

Si0.2Ge0.8 barrier ( 484 nm)

Si0.2Ge0.8 relaxed  buffer ( 3 m)

Two-step Ge ( 100 nm)

Top view : Schematic

Side view : Schematic

Can it get better in undoped systems?

Two-step Ge

Serves as virtual substrate
Strain and dislocations are 

located away from the 
2DEG



Density vs gate voltage

 Similar to Si/SiGe systems
 Get charge migration at large magnitude of gate voltage
 Much lower density than in doped systems is achievable



Density versus mobility

Intermediate density regime : 
  n

;   0.29 : Background charged impurity scattering
High density regime : 
Saturation of the mobility  at lower value than in doped 
systems



Dingle ratio analysis

Small dingle ratio : Large angle scattering
Disorder in close to the 2DHG

Large dingle ratio : Small angle scattering
Remote disorder

Dingle ratio increases with density
 Inconsistent with interface 

roughness scattering
 There is an increase in the remote 

charged disorder
 This results in a mobility drop

Dingle ratio :  τt / τq



Charge migration model

Could be explained by charge migration model
Need charges to get trapped inside the spacer

Trapped charges
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Simulation results

Assumption
• All initial scattering 

mechanisms are included in μ
 n0.29

• Migrating charges are treated 
as remote charge centers
within RPA approximation

• Combine scattering 
mechanism using 
Matthiessen’s rule

Optimize for
a) All migrating charges at a 

fixed distance from the 
2DHG

b) Migrating charges evenly 
spaced after a cut-off 
distance from the 2DHG

Good agreement between data and charge migration model



Effective mass

 Obtained from T-
dependence of Rxx oscillation 
amplitude

 Much higher than what is 
expected from measurement 
at high density in doped-
structure

Explanation

• Low-density effect?
• Strain difference between 

doped and undoped
structures?
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Si/SiGe bilayer

 Cannot be done in doped systems
Dopants surface segregation

 Use asymmetric quantum well
Maximal density in lower 
well is fixed

 Back gating would increase 
tunability of system
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Si/SiGe bilayer

 tot integral and fractional Hall states are observed.
 Parameters need to be tuned to distinguish between 

interlayer coherence or ΔSAS coupling
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Artificial superlattice

 Array of holes with 110 nm diameter patterned in the
gate

 At high density, mobility is only reduced by a factor of 2



Artificial superlattice

 Observe commensurate and quantum oscillations in 
the magneto resistance as a function of density

 Can be fitted to extract in-situ potential parameters
 Could be used to create artificial graphene



Summary

 Capacitively induced 2DEG in shallow Si/SiGe heterostructures
• Can get  3 x 105 cm-2 / V · s in 25 nm shallow devices
• Non-equilibrium charge migration model enhances 

mobility at high density

 Capacitively induced 2DHG in Ge/SiGe heterostructures
• Lowest achieved density of  1.5 x 1010 cm-2 

• charge migration model important to describe 
scattering mechanisms at higher density

• Larger effective hole mass than expected from doped 
systems

 More involved possibilities with Si/SiGe heterostructures
• Electron bilayer
• Artificial disorder/superlattice



Thank you!
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