

Thread parallelism in sparse linear algebra and iterative solvers

Mark Hoemmen

Center for Computing Research
Sandia National Laboratories

19 Apr 2016

*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

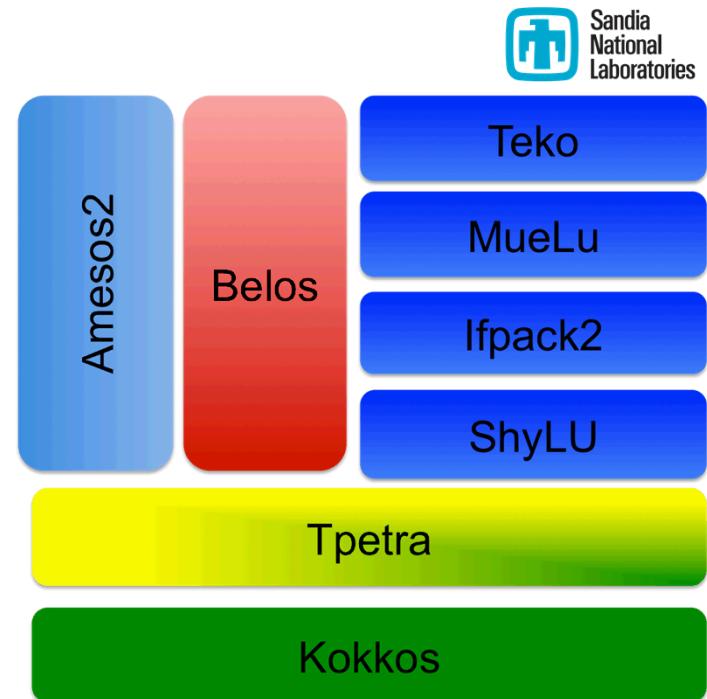
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. XXXX-XXXX C

Outline

- Our sparse matrix library: Tpetra (part of Trilinos project)
- Goal: Support MPI + X parallelism on current & future architectures, where X is OpenMP, CUDA, ...
- Genericity (“X”) via Kokkos programming model
- Fill (creating / changing sparse matrices) interfaces complicate thread parallelization
- Current & planned thread-parallel capabilities

Trilinos' linear solvers

- Sparse linear algebra (Tpetra)
 - Sparse graphs, (block) sparse matrices, dense vectors, parallel solve kernels, parallel communication & redistribution
- Iterative (Krylov) solvers (Belos)
 - CG, GMRES, TFQMR, recycling methods
- Sparse direct solvers (Amesos2)
- Algebraic iterative methods (Ifpack2)
 - Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz
- Shared-memory factorizations (ShyLU)
 - LU, ILU(k), ILUt, IC(k), iterative ILU(k)
 - Direct+iterative preconditioners
- Segregated block solvers (Teko)
- Algebraic multigrid (MueLu)



Tpetra: parallel sparse linear algebra

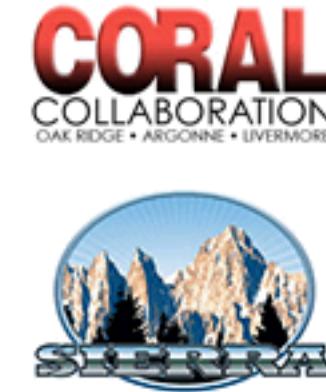
- Tpetra implements
 - Sparse graphs & matrices, & dense vecs
 - Parallel kernels for solving $Ax=b$ & $Ax=\lambda x$
 - Parallel communication & (re)distribution
- Key Tpetra features
 - Can manage > 2 billion (10^9) unknowns
 - Can pick the type of values:
 - Real, complex, extra precision
 - Automatic differentiation
 - Types for stochastic PDE discretizations
 - Center of growing support for MPI + X parallelism, for several X

Tpetra development goals

- Scale from laptop to full supercomputer
- 1 implementation for all platforms & parallelism options
 - Very limited developer time (< 2 full-time staff)
 - Easier to debug solver (convergence) & performance issues
- Maintain backwards compatibility
 - Trilinos only allows breaking it at major releases (every 1-2 years)
 - Balance research, prep for new hardware, & support today's apps (often running on old hardware & software)
 - Sparse linear algebra central to apps & other Trilinos packages
 - Interfaces matter for performance & parallelism
- Exploit optimized kernels but minimize library dependencies
 - We need our own implementations that work everywhere
 - 3rd-party libraries may ignore features needed for e.g., MPI

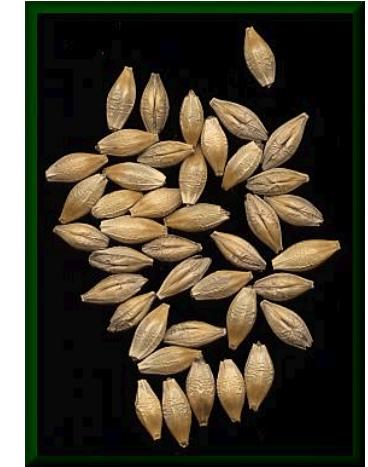
Must support > 3 architectures

- Coming systems to support
 - Trinity (Intel Haswell & KNL)
 - Sierra (CORAL): NVIDIA GPUs + IBM multicore CPUs
 - Clusters, workstations, etc.
- 3 different architectures
 - Multicore CPUs (big cores)
 - Manycore CPUs (small cores)
 - NVIDIA GPUs
- MPI only, & MPI + threads
 - Threads don't always pay on common CPU architectures
 - Porting to threads must not slow down the MPI-only case

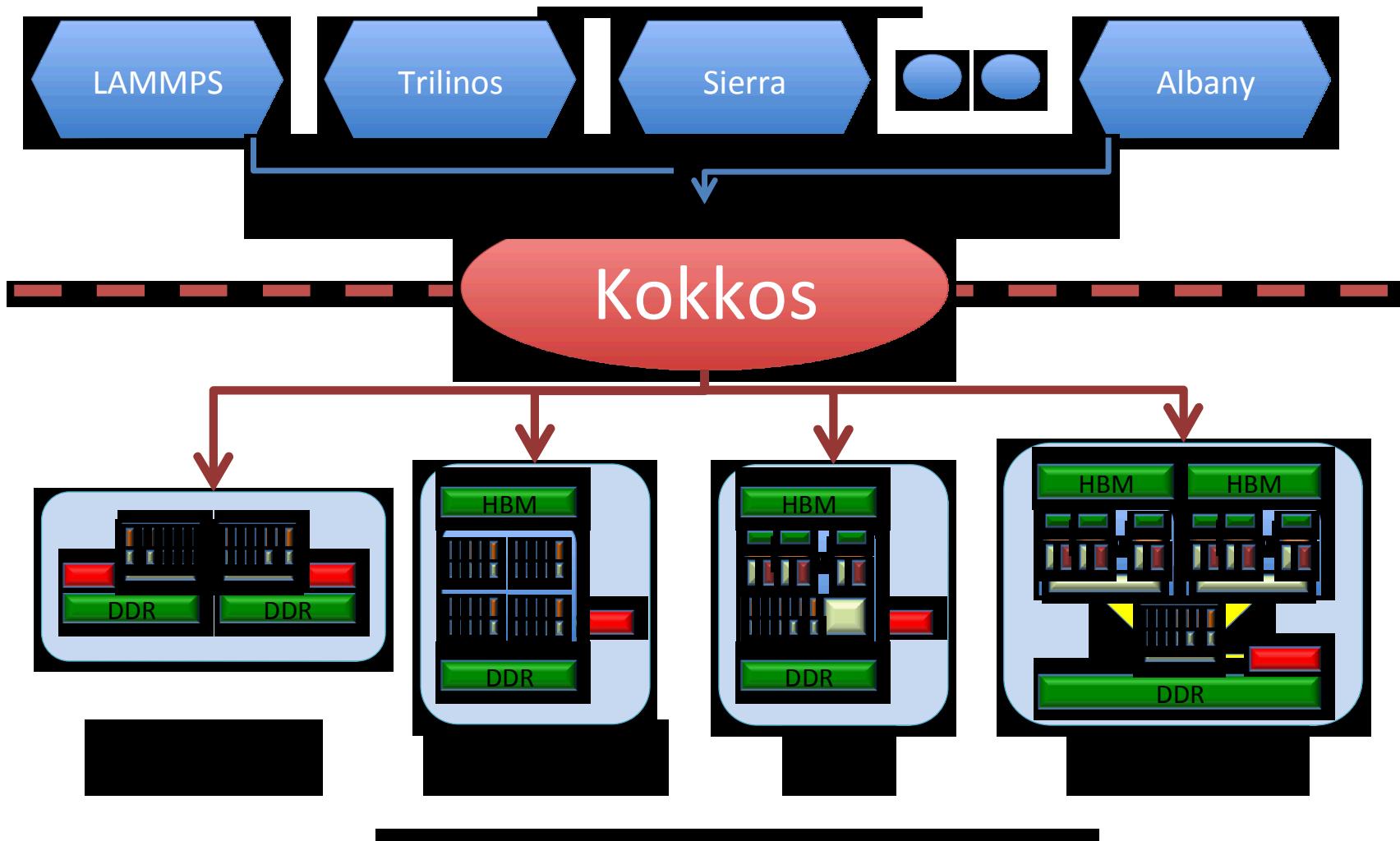


Kokkos: Common C++ - based programming model for thread parallelism on GPUs, CPUs, ...

- Parallel {for, reduce, scan} w/ custom user code
- Exposes different levels of parallelism
 - Flat [0,N), or hierarchical (team, thread, vector)
 - Experimental task parallelism too!
- Different memory & execution spaces
 - Control where data live & code executes
 - Enable “hybrid” (host + GPU) parallelism
- Multidimensional arrays (Kokkos::View) w/ slices
 - Decouple array layout (row/column-major, tiled, ...) from app
 - Default layout optimized for the architecture (SoA / AoS)
 - Unified interface to shared memory, texture fetch, atomic access, ...
- Goal: write code once, run well on many different back-ends



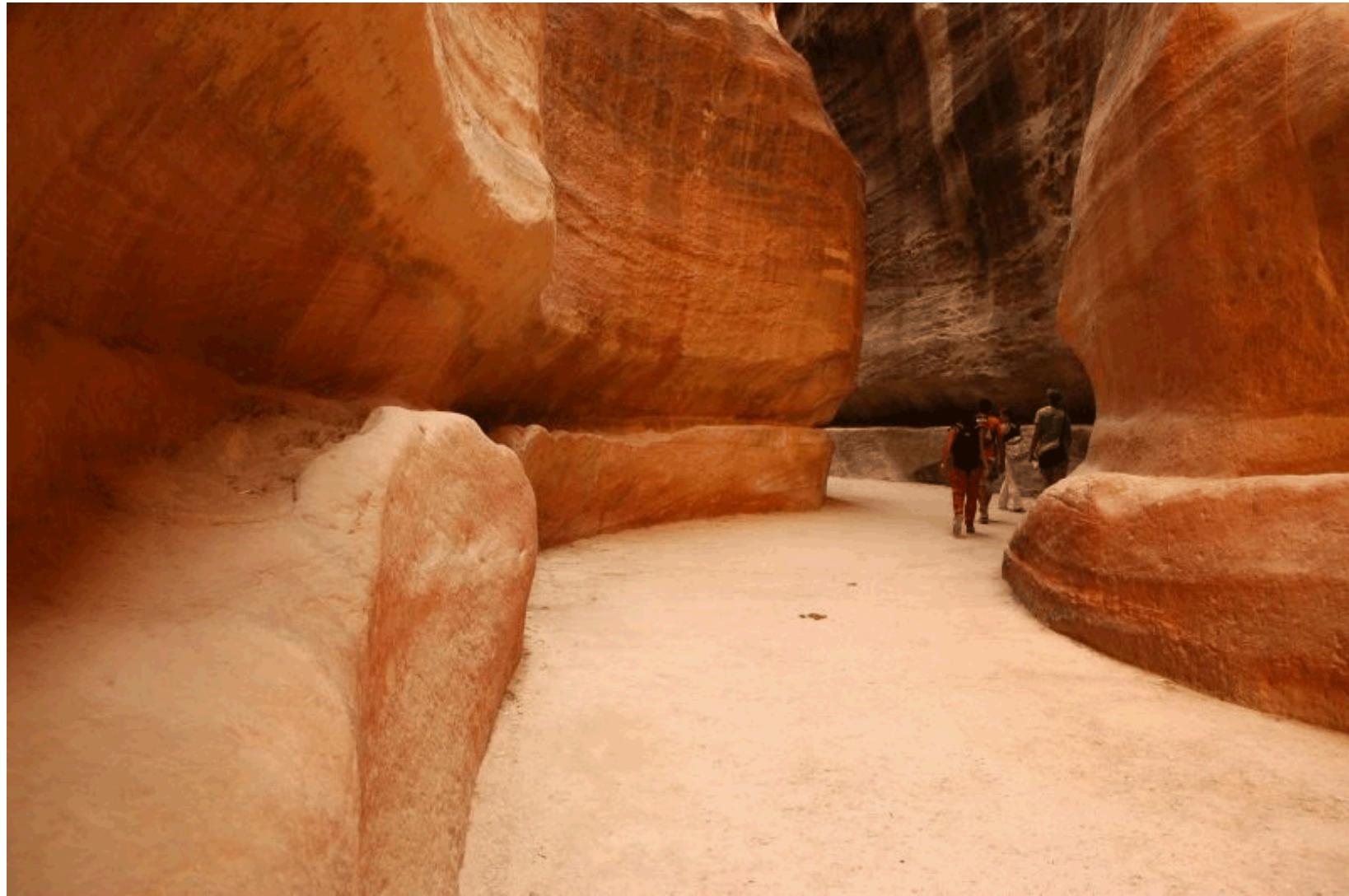
Kokkos: *Performance, Portability, & Productivity*



Kokkos as hedge against...

- Hardware divergence
- Parallel programming model
 - OpenMP, OpenACC, CUDA, TBB, Pthreads, Qthreads, ...
- Traditional shared memory
 - vs. PGAS / distributed shared
- Threads at all
 - “Serial” back-end
 - Kokkos’ semantics require vectorizable (ivdep) loops
- Kokkos protects our HUGE time investment of porting Tpetra

Why is thread parallelization hard?

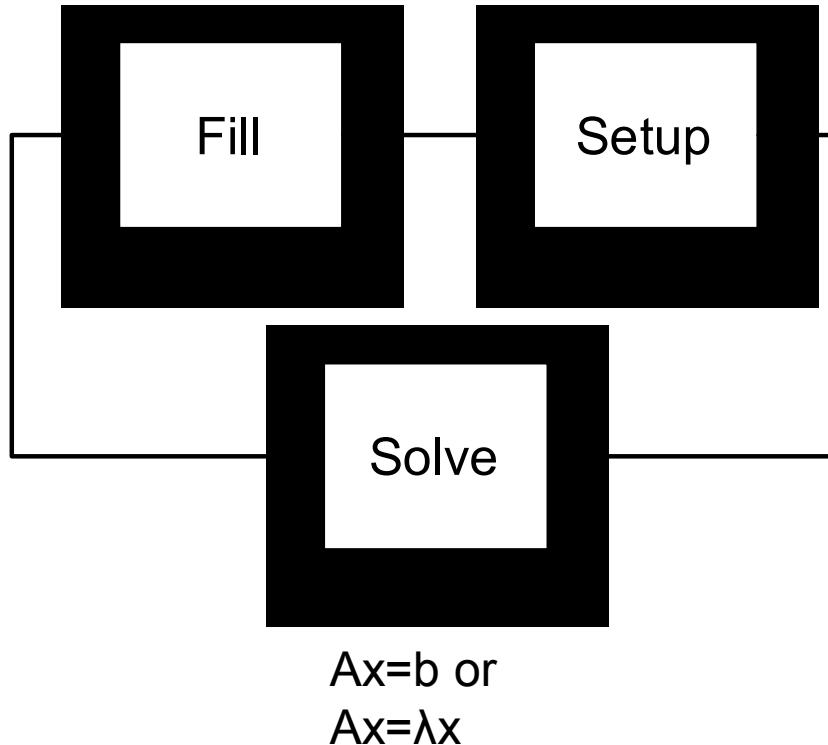


Sparse linear algebra use pattern

- Fill: Create / modify matrix & vector data structures
 - As many ways to do this as there are applications
 - e.g., iterate over rows, entries, mesh points, elements (FEM), volumes (FVM), aggregates (AMG), ...
 - Software interfaces affect performance A LOT
- Setup for solve (e.g., build preconditioner)
- Solve linear system(s), eigenvalue problems, etc.
 - Coarse-grained computational kernels (e.g., sparse mat-vec)
 - Software interfaces affect performance less
- Repeat (nonlinear iteration, time steps, parameter study, ...)
 - Trilinos data structures & solvers optimized for reuse, e.g., of
 - Data structures (graph, basis vectors, allocations) &/or
 - MPI communication patterns (where to send / receive what)

Need thread-parallel fill

Change matrix
(structure / values)
& vector(s)



- Fill & setup not free
- Some solves are cheap, so fill & setup time matter
- Amdahl's Law:
 - Threading just solves makes cute, easy-to-publish papers
 - Solves do take most app time
 - But: 90% time w/ 1 thread → 50% time w/ 10 threads
- Preconditioners create sparse matrices, so they also need fill

Fill makes gradual porting hard

- Iterative linear solves in practice
 - Do NOT need 1000s of iterations
 - ARE preconditioned, often nontrivially
 - Occur in context of nonlinear solves / time stepping (matrix changes!)
 - May take lots of memory
- Implications for linear algebra data structures
 - Fill interfaces affect performance
 - Prefer standard data structures to avoid reimplementation & copying
 - Can't just plug in kernels (e.g., sparse matrix-vector multiply)
- I'm not excited that you made sparse matrix-vector multiply 5% faster with your funny new data structure

Thread-parallel fill interface options

Coarse-grained (batched)

- Pass many items into linear algebra interface at once
- Library parallelizes inside
- **(+)** Need not be thread safe
- **(+)** Hides complexity
- **(-)** Hard for gradual porting
- **(-)** No cross-kernel reuse
- **(-)** Need enough parallelism to keep whole device busy

Fine-grained (Tpetra prefers)

- 1 item at a time
- User parallelizes outside
- **(-)** Interface must be thread safe & scalable
- **(-)** Limited parallelism inside
- **(+)** Easy to add to existing code – even pre-parallel
- **(+)** Users can exploit reuse
- **(+)** Works w/ team/thread

How we ported, & current progress

A brief history of Tpetra

- 2008: Tpetra started becoming usable
- 2009: Explorations of thread parallelism (computational kernels only, no fill interfaces)
- 2009-2010: Initial efforts at preconditioners
- I started working on Tpetra in late 2010
- “Productionization” (several staff): 2011-2013
 - Fix bugs & improve performance of (single-threaded) solvers & fill
 - We integrated into an internal engineering numerical simulation
 - Fruits of our effort in Nalu: <https://github.com/spdomin/nalu>
- “Kokkos refactor” (1.5 full-time staff): Late 2013 – present
 - Stage 1 (FY14-15): Keep interface, replace data structures & kernels
 - Stage 2 (FY15-now): Continue kernels work; evolve fill interface

Keys to gradual porting

- Abstract away memory allocation & deallocation
 - Kokkos::View (multidimensional arrays) as building block
 - Kokkos manages deallocation automatically via ref counting
 - Thread safe; table of references on host, updated via host atomics
 - Off inside parallel_*; can turn off per array (handy for slices in loops)
 - Handles NUMA first-touch initialization too
- Abstract away data-parallel loops & computational kernels
 - Loops: Kokkos::parallel_{for, reduce, scan}
 - I write loop body as functor or C++11 lambda (new CUDA feature)
 - Kokkos semantics force me to write vectorizable & parallelizable loops
 - Computational kernels separated into “KokkosKernels” package
- Manage data movement between memory spaces
 - Kokkos’ abstractions make everything look like GPU
 - CUDA UVM means I can port one kernel at a time

Pattern for parallel dynamic allocation

- Pattern:
 1. Count / estimate allocation size; may use Kokkos parallel_scan
 2. Allocate; use Kokkos::View for best data layout & first touch
 3. Fill: parallel_reduce over error codes; if you run out of space, keep going, count how much more you need, & return to (2)
 4. Compute (e.g., solve the linear system) using filled data structures
- Compare to Fill, Setup, Solve sparse linear algebra use pattern
- Fortran <= 77 coders should find this familiar
- Semantics change: Running out of memory not an error!
 - Generalizes to other kinds of failures, even fault tolerance

Fill in 2012 was not thread-scalable

- Dynamic memory allocation (“dynamic profile”)
 - Impossible in some parallel models; slow on others; implies sync
 - Better: Count, Allocate (thread collective), Fill, Compute
- Throw C++ exceptions on error / when out of space
 - Either doesn’t work (CUDA) or hinders compiler optimization
 - Prevents fruitful retry in (count, allocate, fill, compute)
 - Better: Return success / failed count; user reduces over counts
- Unscalable reference counting implementation
 - Tpetra’s interface relied heavily on something like std::shared_ptr
 - Not hard to make thread *safe*, but updating the ref count serializes!
 - Returning std::shared_ptr (or our thing) updates ref count
 - Better: Hide ref counting inside; make objects have “view semantics”
- Had to fill Tpetra data structures on host (copy), sequentially

Refactor plan: Stage 1 (FY14-15)

- Replace all internal data structures & kernels w/ Kokkos
 - Sparse matrix-vector multiply & vector ops first
 - Later, we factored out local kernels into KokkosKernels
 - Tpetra already had (de)allocation abstraction (“smart pointers”), so it was easier to introduce Kokkos’ arrays & CUDA device allocations
- Assume CUDA UVM so only have to port 1 function at a time
 - Pain point: UVM allocations can’t coexist w/ device kernels
- Thread-parallel fill into Kokkos, & hand off to Tpetra
- C++ partial specialization let pre- & post-refactored versions of Tpetra coexist – users could select which at compile time
- Old version built with older compilers (no need for C++11)

Stage 2 (FY15-16): Thread-safe fill

- Done for CrsMatrix & (Multi)Vector, for methods that
 - Don't change graph structure (no "insert" yet)
 - Don't cause MPI communication ($+=$ values for off-process rows)
- Return error code / success count; don't throw on error
- No more internal temporary array dynamic allocation
- Atomic update option for methods that do $+=$ to values
- Creating / modifying sparse graph
 - Fill into Kokkos data structures, & hand off to Tpetra
 - Tpetra has example showing thread-parallel iteration over finite-element mesh to create graph structure of sparse matrix
 - Tpetra interface to simplify this is in progress, lower priority

Hierarchical parallelism

Under development: KokkosKernels

- Local computational kernels used by Trilinos, usable outside
 - Dense & sparse matrix, graph (e.g., coloring), & tensor kernels
 - Local (no MPI) – Trilinos / users responsible for MPI
 - No required software dependencies other than Kokkos
 - Hooks for 3rd-party libraries like cu{Blas,Sparse} if available
- Multi-year effort w/ many contributors, mostly Trilinos devs
- Provide kernels for all levels of hierarchical parallelism:
 - Global: all available execution resources (e.g., whole GPU)
 - Team: single block / team, use shared memory
 - Thread: single “thread” (/ warp), vectorization inside
 - Serial: “elemental” function (omp declare simd)

Why kernels for different levels?

- Many apps do many small computations in parallel
 - How often do real apps need $10k \times 10k$ DGEMM? (very rarely)
 - e.g., Small dense matrix operations (BLAS & factorizations)
 - PDE discretizations w/ multiple unknowns per mesh point: $\sim 10 \times 10$
 - Multifrontal sparse matrix factorizations: $\sim 100 \times 100$ (NOT square)
- CUDA, OpenMP 4, OpenACC all expose (team, thread)
- Remember coarse (batched) vs. fine-grained fill?
 - Lets users exploit locality & amortize kernel launch overhead
 - Matches what many e.g., finite-element codes already do
 - “Worksets,” “bucket loop”
 - Break loop into data-parallel chunks, sized to fit in cache
 - Do many operations to each chunk before moving on

Multiple memory spaces?

>1 memory or execution spaces

- Upcoming NNSA platforms
 - Trinity (KNL): 2 memory spaces (HBM, DDR4)
 - CORAL (Sierra): 2 execution & memory spaces (NVIDIA GPUs, IBM multicore CPUs)
- Common hardware features
 - 2 memory spaces: “fast & small” vs. “slow & big”
 - Can access each memory space from each exec space (acts like NUMA)
 - “Fast” memory limited; must use as temporary workspace

- Support via some comb of {Kokkos, Tpetra, solvers, app}
- Use cases to support
 - Gradual port (mix new & legacy)
 - Concurrently use 2 exec spaces (e.g., MPI pack & compute)

Strategies for limited GPU memory

- All app data, even whole linear system, may not fit on GPU
- Prefer algorithmic solutions over auto-magic
 - Don't want different libraries to need to arbitrate limited resource
 - Painful run-dependent debugging & performance variation
- Strategy 1: Stage in individual linear systems temporarily
 - Real physics is multiphysics → solve multiple linear systems at same time
 - Works with block preconditioners or nonlinear (loose) coupling
 - Tpetra's current interface could support this, w/ more impl work
- Strategy 2: Domain decomposition (divide up single solves)
 - Affects convergence; doesn't work well for all linear systems
 - Subdomain solvers need enough reuse to amortize data transfer
 - Would take more software work to avoid e.g., data reformatting

Next steps

Questions left to answer

- Dependence on atomic updates (esp. $+=$)
 - Easy way to parallelize sequential loops (e.g., finite-element assembly)
 - Some uncertainty about their efficiency on different hardware
 - Algorithmic fixes take extra memory (store all terms before summing)
- No single pattern for exploiting hybrid (CPU+GPU) parallelism
 - Kokkos exposes hybrid parallelism, but Tpetra + users must exploit it
 - Overlap communication & computation?
 - Treat GPU (+ 1 CPU core?) as another MPI process?
 - Auto-magic load-balancing run-time scheduler?
- For full network bw, may need >1 threads/node using MPI
 - MPI_THREAD_MULTIPLE or its proposed MPI > 3 successors
 - MPI 1-sided avoids locks, but only works well on CPUs
 - No obvious single programming model for all architectures

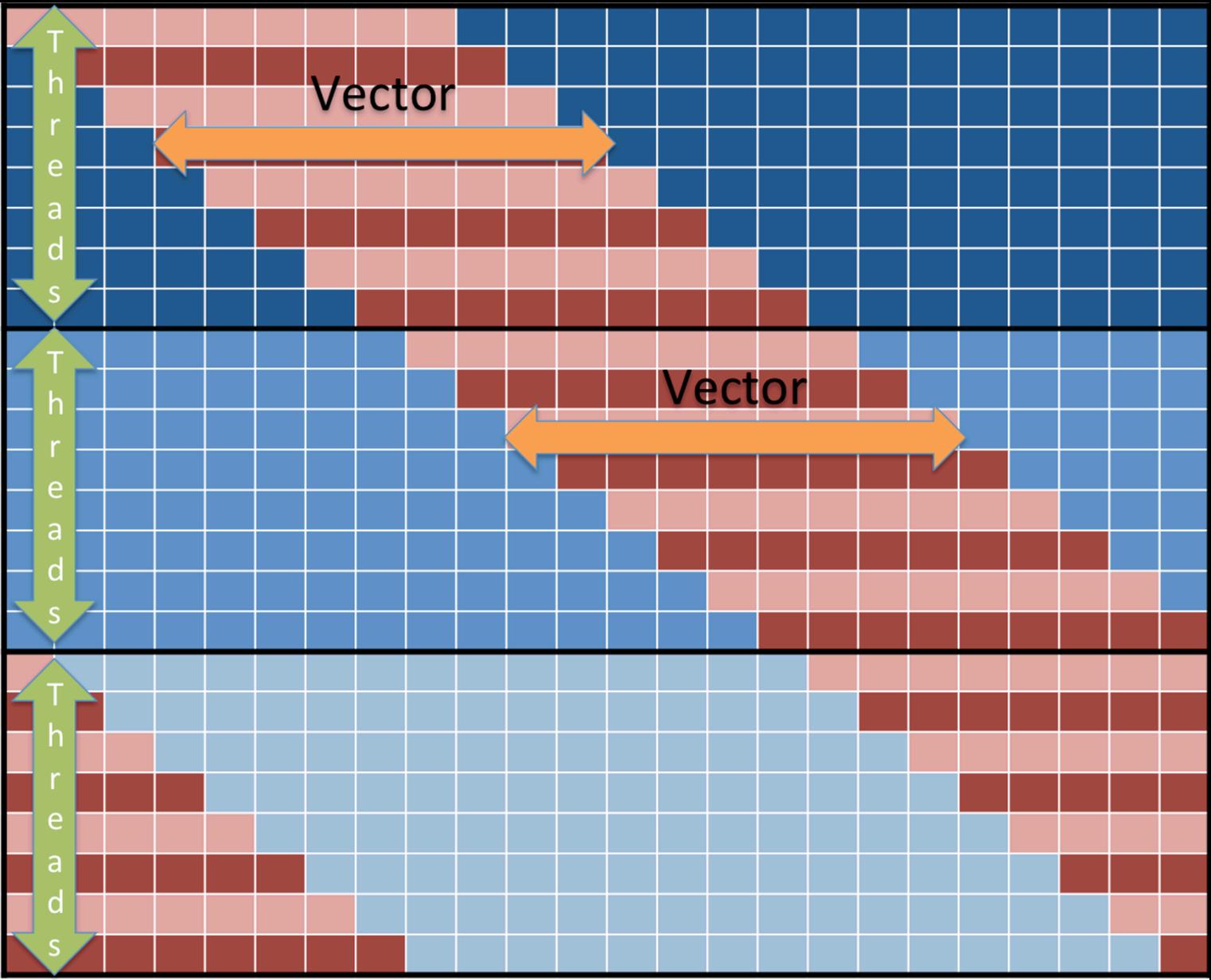
Thanks!

- Trilinos' thread parallelism has been / still is a **HUGE** effort
- Dozens of colleagues & collaborators have contributed
- Super thanks to Christian Trott for **LOTS** of Tpetra help!

Extra slides

SPMV – Using Hierarchical Parallelism

Team 1 Team 2 Team 3



SPMV – Using Hierarchical Parallelism

```
void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {
    int nnz_per_team = 2048;
    int conc = execution_space::concurrency();
    while((conc * nnz_per_team * 4 > A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

    int nnz_per_row = A.nnz()/A numRows();
    int rows_per_team = (nnz_per_team+nnz_per_row-1)/nnz_per_row;
    int vector_length = GetVectorLength(A);
    const int nworkset = (y.dimension_0())+rows_per_team-1)/rows_per_team;

parallel_for(TeamPolicy<Schedule<Dynamic>>(nworkset, AUTO(),vector_length),
    KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {
    const int startRow = team.league_rank()* rows_per_team;
    const int endRow = startRow + rows_per_team < A.numRows() ?
        startRow + rows_per_team : A.numRows()

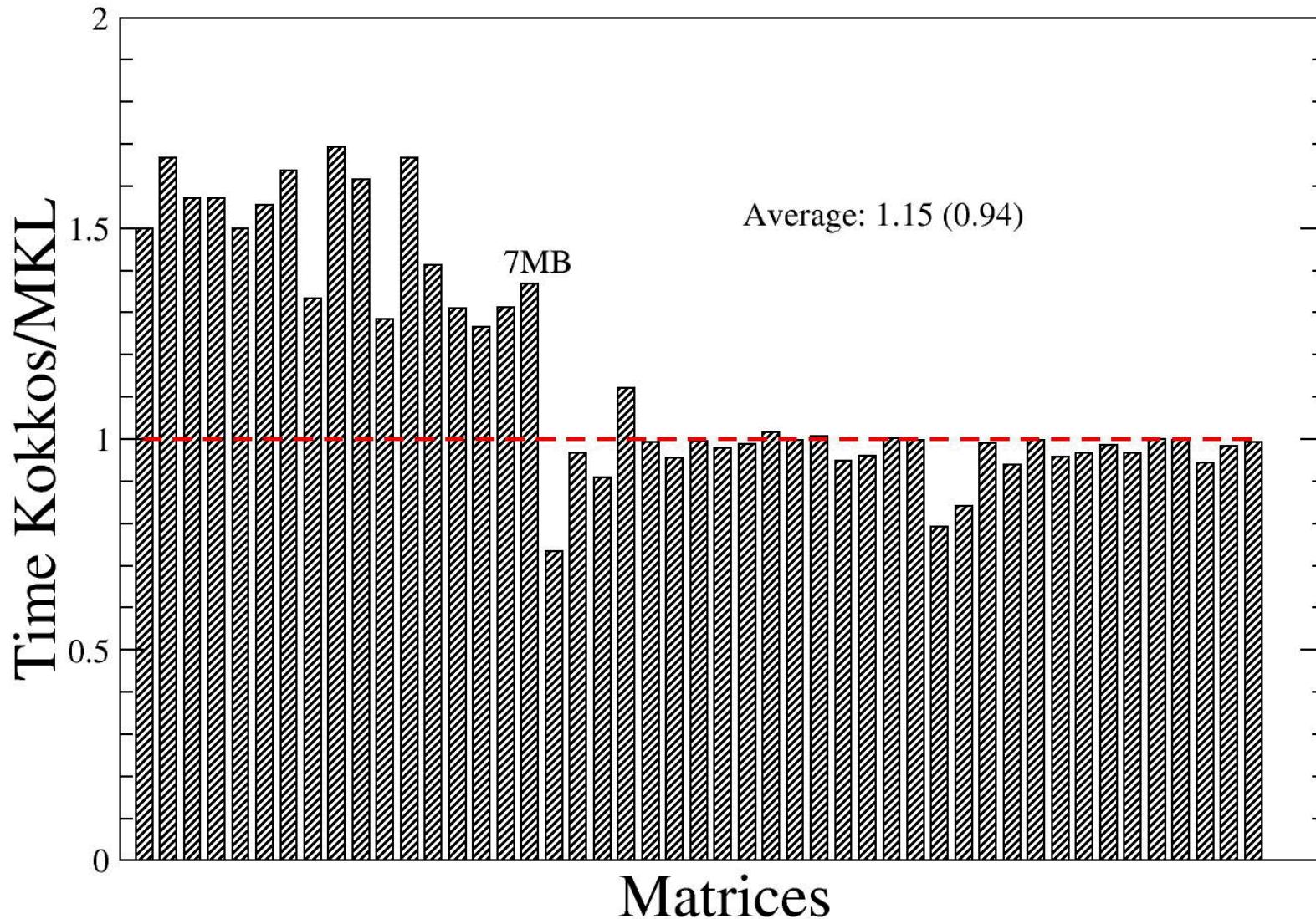
parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
    const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);
    const int row_length = row.length;
    Scalar sum = 0;

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& lsum) {
    const Scalar val = conjugate ?
        ATV::conj (row.value(iEntry)) :
        row.value(iEntry);
    lsum += val * x(row.colidx(iEntry));
},sum);

single(PerThread(team), [&] () {
    sum *= alpha;
    y(iRow) = beta * y(iRow) + sum;
});
}
}
```

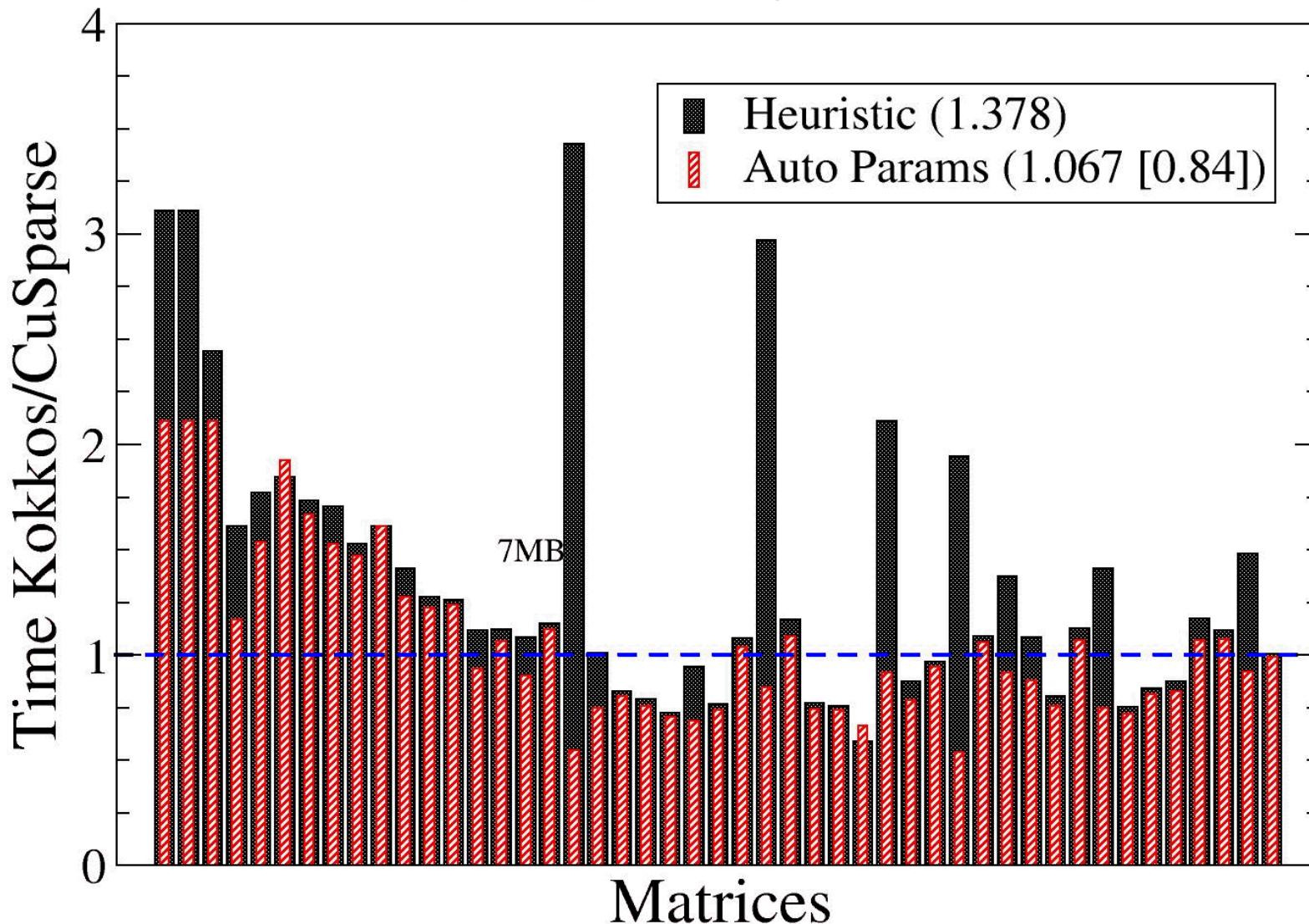
SPMV Benchmark: MKL vs Kokkos

1S HSW 24 Threads, Matrices sorted by size, Matrices obtained from UF

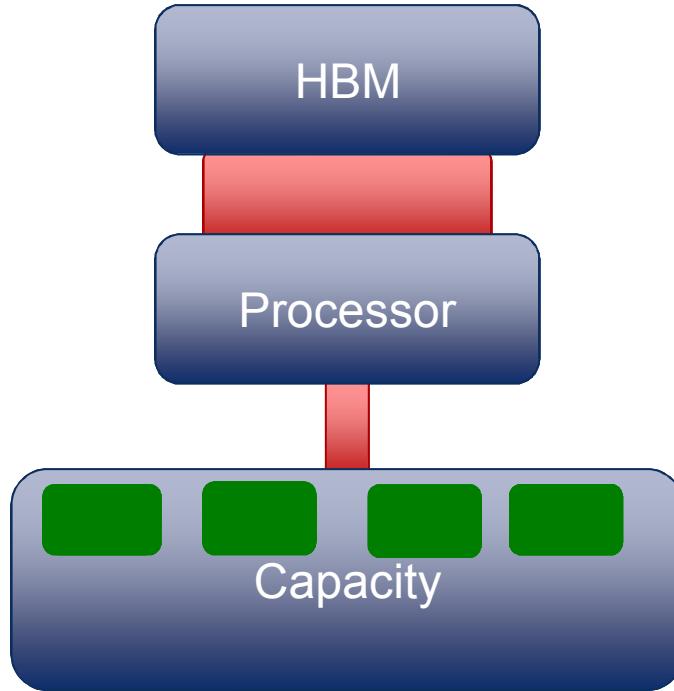


SPMV Benchmark: CuSparse vs Kokkos

K40c Cuda 7.5; Matrices sorted by size; Matrices from UF.



GPU / High-Bandwidth Memory



Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory

$$\text{Time} = N_{\text{iter}} * \text{Size} / \text{BW}_{\text{Capacity}}$$

Run From HBM

$$\text{Time} = N_{\text{iter}} * \text{Size} / \text{BW}_{\text{HBM}} + \text{Size} / \text{BW}_{\text{Capacity}}$$

Expect

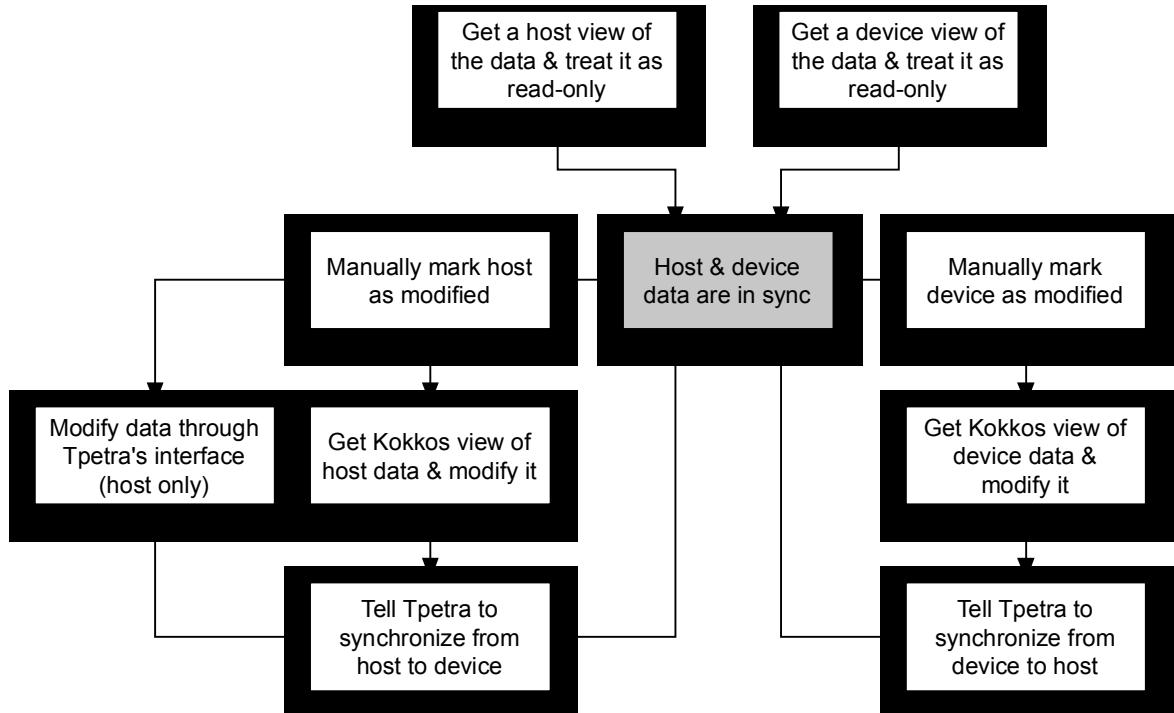
$$\text{BW}_{\text{HBM}} / \text{BW}_{\text{Capacity}} \sim 5-20$$

Question: Generally need higher parallelism to achieve BW_{HBM} vs $\text{BW}_{\text{Capacity}}$
=> What about Direct Solvers?

Tpetra objects are “DualViews”

- 2 memory spaces (“Host” & “Device”)
- 1 *preferred* execution space (associated w/ Device)
- 1 “host” execution space (associated w/ “Host” memory)
- Tpetra *may* execute in another space
 - e.g., overlap (un)pack of communication buffers, w/ computation
- User sets “modified” flags & “syncs” explicitly between spaces
- Successful use in LAMMPS (interactions btw user vs. GPU modules)

“DualView” example: Vector



Tpetra objects act just like Kokkos::DualView.
 Tpetra's evolution of legacy fill interface is host only.
 To fill on (CUDA) device, must use Kokkos interface.

If you only have one memory space, you can ignore all of this; it turns to no-ops.

Preferred use with two memory spaces:

1. Assume unsync'd
2. Sync to memory space where you want to modify it (free if in sync)
3. Get & modify view in that memory space
4. Leave the Tpetra object unsync'd