SAND2016- 3476C

Thread parallelism in
sparse linear algebra
and iterative solvers

Mark Hoemmen
Center for Computing Research
Sandia National Laboratories

@ Nofowal 19 Apr 2016

Laboratories
Exceptional
service
in the
.7 7‘ U.S. DEPARTMENT OF V. YA Q:ﬂ
national “%/ENERGY A’ A

Sandia National Laboratori multi-program laboratory managed and operated by San d Cor p ration, a wholly owned subsidiary of Lockheed Martin
iizterect Corporatiol f the U.S. D p rtmet of Energy’s National Nuclear Security Administration under contra tDE -AC04-94AL85000. SAND NO. XXXX-XXXX C

Sandia

Outline) &

= Qur sparse matrix library: Tpetra (part of Trilinos project)

= Goal: Support MPI + X parallelism on current & future
architectures, where X is OpenMP, CUDA, ...

= Genericity (“X”) via Kokkos programming model

= Fill (creating / changing sparse matrices) interfaces
complicate thread parallelization

= Current & planned thread-parallel capabilities

Trilinos’ linear solvers) i,

= Sparse linear algebra (Tpetra)

= Sparse graphs, (block) sparse matrices,
dense vectors, parallel solve kernels,
parallel communication & redistribution

= [terative (Krylov) solvers (Belos)
= CG, GMRES, TFQMR, recycling methods

= Sparse direct solvers (Amesos2)

= Algebraic iterative methods (Ifpack2)
= Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

= Shared-memory factorizations (ShyLU)
= LU, ILU(k), ILUt, IC(k), iterative ILU(k)
= Direct+iterative preconditioners

= Segregated block solvers (Teko)

= Algebraic multigrid (Muelu)

Sandia

Tpetra: parallel sparse linear algebrd® .

= Tpetra implements
= Sparse graphs & matrices, & dense vecs
= Parallel kernels for solving Ax=b & Ax=Ax
= Parallel communication & (re)distribution

= Key Tpetra features
= Can manage > 2 billion (1079) unknowns
= Can pick the type of values:
= Real, complex, extra precision
= Automatic differentiation
= Types for stochastic PDE discretizations

= Center of growing support for MPI + X
parallelism, for several X

Tpetra development goals) .

= Scale from laptop to full supercomputer

= 1 implementation for all platforms & parallelism options
= Very limited developer time (< 2 full-time staff)

= Easier to debug solver (convergence) & performance issues

= Maintain backwards compatibility

= Trilinos only allows breaking it at major releases (every 1-2 years)

= Balance research, prep for new hardware, & support today’s apps
(often running on old hardware & software)

= Sparse linear algebra central to apps & other Trilinos packages
= |nterfaces matter for performance & parallelism

= Exploit optimized kernels but minimize library dependencies

= We need our own implementations that work everywhere

= 3rd_party libraries may ignore features needed for e.g., MPI
5

Sandia

Must support > 3 architectures 5.

= Coming systems to support

= Trinity (Intel Haswell & KNL)

= Sierra (CORAL): NVIDIA GPUs +
IBM multicore CPUs

= (Clusters, workstations, etc.

COLLA BCI'EATII{Q:I‘;J

DAE BiGE = ARTENE = VER

= 3 different architectures
= Multicore CPUs (big cores)
= Manycore CPUs (small cores)
= NVIDIA GPUs

= MPI only, & MPI + threads

= Threads don’t always pay on
common CPU architectures

= Porting to threads must not
slow down the MPI-only case

Kokkos: Common C++ - based programming
model for thread parallelism on GPUs, CPUs, ...

Laboratories

Parallel {for, reduce, scan} w/ custom user code
= Exposes different levels of parallelism

= Flat [O,N), or hierarchical (team, thread, vector)
= Experimental task parallelism too!
= Different memory & execution spaces

= Control where data live & code executes
= Enable “hybrid” (host + GPU) parallelism

Multidimensional arrays (Kokkos::View) w/ slices
= Decouple array layout (row/column-major, tiled, ...) from app
= Default layout optimized for the architecture (SoA / AoS)
= Unified interface to shared memory, texture fetch, atomic access, ...

= Goal: write code once, run well on many different back-ends

7

Kokkos: Performance, Portability, & Productivity @ e,

- 1= ==

Kokkos as hedge against...) .

= Hardware divergence

= Parallel programming model

= OpenMP, OpenACC, CUDA, TBB,
Pthreads, Qthreads, ...

= Traditional shared memory
= vs. PGAS / distributed shared

= Threads at all

= “Serial” back-end

= Kokkos’ semantics require
vectorizable (ivdep) loops

= Kokkos protects our HUGE time
investment of porting Tpetra

i
iona
Laborat

ories

Sparse linear algebra use pattern @&

= Fill: Create / modify matrix & vector data structures
= As many ways to do this as there are applications

= e.g., iterate over rows, entries, mesh points, elements (FEM), volumes
(FVM), aggregates (AMG), ...

= Software interfaces affect performance A LOT

Setup for solve (e.g., build preconditioner)

Solve linear system(s), eigenvalue problems, etc.
= Coarse-grained computational kernels (e.g., sparse mat-vec)
= Software interfaces affect performance less

Repeat (nonlinear iteration, time steps, parameter study, ...)

= Trilinos data structures & solvers optimized for reuse, e.g., of
= Data structures (graph, basis vectors, allocations) &/or

= MPI communication patterns (where to send / receive what)
11

Need thread-parallel fill) .

Change matrix Preconditioner _
(structure / values) / other solver Fill & setup not free
& vector(s) setup = Some solves are cheap, so
fill & setup time matter
Fil Setup = Amdahl’s Law:

= Threading just solves makes
cute, easy-to-publish papers

= Solves do take most app time
Solve = But: 90% time w/ 1 thread =>»
50% time w/ 10 threads
" Preconditioners create
Ax=Db or sparse matrices, so they

AX=AX also need fill

12

Sandia

Fill makes gradual porting hard) S

= [terative linear solves in practice
= Do NOT need 1000s of iterations
= ARE preconditioned, often nontrivially
= Qccur in context of nonlinear solves / time stepping (matrix changes!)

= May take lots of memory

= |mplications for linear algebra data structures

= Fill interfaces affect performance
= Prefer standard data structures to avoid reimplementation & copying
= Can’tjust plugin kernels (e.g., sparse matrix-vector multiply)

= |’'m not excited that you made sparse matrix-vector multiply
5% faster with your funny new data structure

13

Sandia

Thread-parallel fill interface options Wz

Coarse-grained (batched) Fine-grained (Tpetra prefers)

= Pass manyitemsintolinear = 1item atatime

algebra interface at once = User parallelizes outside
= Library parallelizes inside

" (+) Need not be thread safe = () |nterface must be thread
= (+) Hides complexity safe & scalable

= (-) Hard for gradual porting = (-) Limited parallelism inside

= (-) No cross-kernel reuse (+) Easy to add to existing

= (-) Need enough parallelism code —even pre-parallel

to keep whole device busy " (+) Users can exploit reuse
= (+) Works w/ team/thread

Sandia

How we ported, & current progress @&

A brief history of Tpetra) .

= 2008: Tpetra started becoming usable

= 2009: Explorations of thread parallelism (computational
kernels only, no fill interfaces)

= 2009-2010: Initial efforts at preconditioners
= | started working on Tpetra in late 2010
= “Productionization” (several staff): 2011-2013

= Fix bugs & improve performance of (single-threaded) solvers & fill
= We integrated into an internal engineering numerical simulation
= Fruits of our effort in Nalu: https://github.com/spdomin/nalu

= “Kokkos refactor” (1.5 full-time staff): Late 2013 — present

= Stage 1 (FY14-15): Keep interface, replace data structures & kernels
= Stage 2 (FY15-now): Continue kernels work; evolve fill interface

16

https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu

Sandia

Keys to gradual porting) .

= Abstract away memory allocation & deallocation
= Kokkos::View (multidimensional arrays) as building block

= Kokkos manages deallocation automatically via ref counting
* Thread safe; table of references on host, updated via host atomics
= Off inside parallel_*; can turn off per array (handy for slices in loops)

= Handles NUMA first-touch initialization too

= Abstract away data-parallel loops & computational kernels

= Loops: Kokkos::parallel {for, reduce, scan}
= | write loop body as functor or C++11 lambda (new CUDA feature)
= Kokkos semantics force me to write vectorizable & parallelizable loops

= Computational kernels separated into “KokkosKernels” package
= Manage data movement between memory spaces

= Kokkos’ abstractions make everything look like GPU
= CUDA UVM means | can port one kernel at a time 17

Sandia

Pattern for parallel dynamic allocation @&=.

= Pattern:
1. Count/ estimate allocation size; may use Kokkos parallel_scan
2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

= Compare to Fill, Setup, Solve sparse linear algebra use pattern

= Fortran <= 77 coders should find this familiar

= Semantics change: Running out of memory not an error!

= Generalizes to other kinds of failures, even fault tolerance

Fill in 2012 was not thread-scalable [@&:.

= Dynamic memory allocation (“dynamic profile”)
= |Impossible in some parallel models; slow on others; implies sync
= Better: Count, Allocate (thread collective), Fill, Compute
= Throw C++ exceptions on error / when out of space
= Either doesn’t work (CUDA) or hinders compiler optimization
= Prevents fruitful retry in (count, allocate, fill, compute)

= Better: Return success / failed count; user reduces over counts

= Unscalable reference counting implementation
= Tpetra’s interface relied heavily on something like std::shared_ptr
= Not hard to make thread safe, but updating the ref count serializes!
= Returning std::shared_ptr (or our thing) updates ref count
= Better: Hide ref counting inside; make objects have “view semantics”

= Had to fill Tpetra data structures on host (copy), sequentially y

Refactor plan: Stage 1 (FY14-15) @i

Replace all internal data structures & kernels w/ Kokkos
= Sparse matrix-vector multiply & vector ops first
= |Later, we factored out local kernels into KokkosKernels

= Tpetra already had (de)allocation abstraction (“smart pointers”), so it
was easier to introduce Kokkos’ arrays & CUDA device allocations

= Assume CUDA UVM so only have to port 1 function at a time

= Pain point: UVM allocations can’t coexist w/ device kernels
= Thread-parallel fill into Kokkos, & hand off to Tpetra

= C++ partial specialization let pre- & post-refactored versions
of Tpetra coexist — users could select which at compile time

= QOld version built with older compilers (no need for C++11)

20

Stage 2 (FY15-16): Thread-safe fill @)

= Done for CrsMatrix & (Multi)Vector, for methods that

= Don’t change graph structure (no “insert” yet)
= Don’t cause MPI communication (+= values for off-process rows)

= Return error code / success count; don’t throw on error
= No more internal temporary array dynamic allocation
= Atomic update option for methods that do += to values

Creating / modifying sparse graph
= Fill into Kokkos data structures, & hand off to Tpetra

= Tpetra has example showing thread-parallel iteration over finite-
element mesh to create graph structure of sparse matrix

= Tpetra interface to simplify this is in progress, lower priority

21
-

ional
Laboratories

ical parallelism

Hierarch

Under development: KokkosKernels @

= Local computational kernels used by Trilinos, usable outside
= Dense & sparse matrix, graph (e.g., coloring), & tensor kernels
= Local (no MPI) —Trilinos / users responsible for MPI
= No required software dependencies other than Kokkos
= Hooks for 3"-party libraries like cu{Blas,Sparse} if available

= Multi-year effort w/ many contributors, mostly Trilinos devs
= Provide kernels for all levels of hierarchical parallelism:

= Global: all available execution resources (e.g., whole GPU)

= Team: single block / team, use shared memory
= Thread: single “thread” (/ warp), vectorization inside

III

= Serial: “elemental” function (omp declare simd)

Why kernels for different levels?) i

= Many apps do many small computations in parallel
= How often do real apps need 10k x 10k DGEMM? (very rarely)

= e.g.,, Small dense matrix operations (BLAS & factorizations)
= PDE discretizations w/ multiple unknowns per mesh point: ~10 x 10
= Multifrontal sparse matrix factorizations: ~100 x 100 (NOT square)

= CUDA, OpenMP 4, OpenACC all expose (team, thread)
= Remember coarse (batched) vs. fine-grained fill?

= Lets users exploit locality & amortize kernel launch overhead

= Matches what many e.g., finite-element codes already do
= “Worksets,” “bucket loop”
= Break loop into data-parallel chunks, sized to fit in cache
" Do many operations to each chunk before moving on

24

Multiple memory spaces?) .

>1 memory or execution spaces) .

= Upcoming NNSA platforms
= Trinity (KNL): 2 memory
spaces (HBM, DDR4)

= CORAL (Sierra): 2 execution &
memory spaces (NVIDIA GPUs,
IBM multicore CPUs)

Common hardware features

" 2memory spaces: “fast & = Support via some comb of
small” vs. “slow & big {Kokkos, Tpetra, solvers, app}

= Use cases to support

» Gradual port (mix new & legacy)
= Concurrently use 2 exec spaces
(e.g., MPI pack & compute)

= Can access each memory
space from each exec space
(acts like NUMA)

= “Fast” memory limited; must
use as temporary workspace

26

Strategies for limited GPU memory @

= All app data, even whole linear system, may not fit on GPU
= Prefer algorithmic solutions over auto-magic

= Don’t want different libraries to need to arbitrate limited resource
= Painful run-dependent debugging & performance variation

= Strategy 1: Stage in individual linear systems temporarily
= Real physics is multiphysics = solve multiple linear systems at same time
= Works with block preconditioners or nonlinear (loose) coupling
= Tpetra’s current interface could support this, w/ more impl work
= Strategy 2: Domain decomposition (divide up single solves)
= Affects convergence; doesn’t work well for all linear systems

= Subdomain solvers need enough reuse to amortize data transfer
= Would take more software work to avoid e.g., data reformatting

27

Next steps) o,

Questions left to answer) i

= Dependence on atomic updates (esp. +=)
= Easy way to parallelize sequential loops (e.g., finite-element assembly)

= Some uncertainty about their efficiency on different hardware
= Algorithmic fixes take extra memory (store all terms before summing)
= No single pattern for exploiting hybrid (CPU+GPU) parallelism

= Kokkos exposes hybrid parallelism, but Tpetra + users must exploit it
= Qverlap communication & computation?

= Treat GPU (+ 1 CPU core?) as another MPI process?

= Auto-magic load-balancing run-time scheduler?

= For full network bw, may need >1 threads/node using MPI

= MPI_THREAD_ MULTIPLE or its proposed MPI > 3 successors
= MPI 1-sided avoids locks, but only works well on CPUs

= No obvious single programming model for all architectures

29

Thanks!)

= Trilinos’ thread parallelism has been / still is a HUGE effort
= Dozens of colleagues & collaborators have contributed
= Super thanks to Christian Trott for LOTS of Tpetra help!

30

Extra slides) &

Team3 Team 2 Team 1

SPMV — Using Hierarchical Parallelism) i,

Laboratories

void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {

int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& Isum) {
const Scalar val = conjugate ?
ATV::conj (row.value(iEntry)) :

single(PerThread(team), [&] () {
sum *= alpha;

: MKL vs Kokkos

SPMYV Benchmark

IS HSW 24 Threads, Matrices sorted by size, Matrices obtained from UF

A T O Y
R Y
U
AR
AT
A Ty
AT hh gy
A T T TRy
| S T TSNSy
A R T T T TR

% I R Y

o) Y

o i A R R R

=~ [A R

w Y

@ [Y

m R Y

5] A R R R R R R

> R Y

< R Y

RN

A Y

A O Y

RN

ARG

OIS

[ENEEERNINNENIRN RIS

|/ AR as_y

M A R T T

Y

Y

Y

A

A R

A s

A R R Y

A R Y

A

A R R R

A R

A

R T Y
e L w o

TSIIA/SOIOY L]

Matrices

: CuSparse vs Kokkos

SPMYV Benchmark

Matrices from UF.

?

ize

Matrices sorted by s

?

K40c Cuda 7.5

~~
[
4
oQ
e
| S—
7
Ne)
e =
~
¢
" m
Q
. u a
» Ay

-n O S
25 =

0 = D]

T < Q

o y—

BGAARA ARG AR AR LR ARG Lﬁu

E AN W

| | _ | | | _ | | | _ | | |
@\ v 02

asredSn)/SOYOY Wl],

GPU / High-Bandwidth Memory @

Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory
Time = Ny, * Size / BWypa0iy

(rm——— Run From HBM

Processor Time = N, * Size /| BW g +
Size | BW capacity

Expect
BVVHBM/ BV\/Capacity ~ 5-20

Capacity

Question: Generally need higher parallelism to achieve BW g, vs BWCapacity
=> \What about Direct Solvers?

36

Tpetra objects are “DualViews”) .

= 2 memory spaces (“Host” & “Device”)

= 1 preferred execution space (associated w/ Device)

= 1 “host” execution space (associated w/ “Host” memory)
= Tpetra may execute in another space

= e.g., overlap (un)pack of communication buffers, w/ computation

= User sets “modified” flags & “syncs” explicitly between spaces

= Successful use in LAMMPS (interactions btw user vs. GPU
modules)

“DualView” example: Vector L

Get a device view of
the data & treat it as

read-only
Host & device Manually mark
data are in sync device as modified

Get Kokkos view of
device data &
modify it

Get a host view of
the data & treat it as
read-only

Manually mark host
- as modified
Modify c:lat.a through Get Kokkos view of
Tpetra's interface e
host data & modify it
(host only)
- Tell Tpetra to

synchronize from
host to device

Tell Tpetra to
synchronize from
device to host

Tpetra objects act just like Kokkos::DualView.
Tpetra’s evolution of legacy fill interface is host only.
To fill on (CUDA) device, must use Kokkos interface.

If you only have one
memory space, you can
ignore all of this; it turns
to no-ops.

Preferred use with two

memory spaces:

1. Assume unsync’d

2. Sync to memory
space where you
want to modify it
(free if in sync)

3. Get & modify view in
that memory space

4. Leave the Tpetra

object unsync’d

38

