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Outline

 Our sparse matrix library: Tpetra (part of Trilinos project)

 Goal: Support MPI + X parallelism on current & future 
architectures, where X is OpenMP, CUDA, …

 Genericity (“X”) via Kokkos programming model

 Fill (creating / changing sparse matrices) interfaces 
complicate thread parallelization

 Current & planned thread-parallel capabilities
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Trilinos’ linear solvers
 Sparse linear algebra (Tpetra)

 Sparse graphs, (block) sparse matrices, 
dense vectors, parallel solve kernels, 
parallel communication & redistribution

 Iterative (Krylov) solvers (Belos)
 CG, GMRES, TFQMR, recycling methods
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 Sparse direct solvers (Amesos2)

 Algebraic iterative methods (Ifpack2)
 Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

 Shared-memory factorizations (ShyLU)
 LU, ILU(k), ILUt, IC(k), iterative ILU(k)

 Direct+iterative preconditioners

 Segregated block solvers (Teko)

 Algebraic multigrid (MueLu)



Tpetra: parallel sparse linear algebra

 Tpetra implements
 Sparse graphs & matrices, & dense vecs

 Parallel kernels for solving Ax=b & Ax=λx

 Parallel communication & (re)distribution

 Key Tpetra features
 Can manage > 2 billion (10^9) unknowns

 Can pick the type of values:

 Real, complex, extra precision

 Automatic differentiation

 Types for stochastic PDE discretizations

 Center of growing support for MPI + X 
parallelism, for several X
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Tpetra development goals

 Scale from laptop to full supercomputer

 1 implementation for all platforms & parallelism options
 Very limited developer time (< 2 full-time staff)

 Easier to debug solver (convergence) & performance issues

 Maintain backwards compatibility
 Trilinos only allows breaking it at major releases (every 1-2 years)

 Balance research, prep for new hardware, & support today’s apps 
(often running on old hardware & software)

 Sparse linear algebra central to apps & other Trilinos packages 

 Interfaces matter for performance & parallelism

 Exploit optimized kernels but minimize library dependencies
 We need our own implementations that work everywhere

 3rd-party libraries may ignore features needed for e.g., MPI
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Must support > 3 architectures

 Coming systems to support
 Trinity (Intel Haswell & KNL)

 Sierra (CORAL): NVIDIA GPUs + 
IBM multicore CPUs

 Clusters, workstations, etc.

 3 different architectures
 Multicore CPUs (big cores)

 Manycore CPUs (small cores)

 NVIDIA GPUs

 MPI only, & MPI + threads
 Threads don’t always pay on 

common CPU architectures

 Porting to threads must not 
slow down the MPI-only case
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Kokkos: Common C++ - based programming 
model for thread parallelism on GPUs, CPUs, …

 Parallel {for, reduce, scan} w/ custom user code

 Exposes different levels of parallelism
 Flat [0,N), or hierarchical (team, thread, vector)

 Experimental task parallelism too!

 Different memory & execution spaces
 Control where data live & code executes

 Enable “hybrid” (host + GPU) parallelism

 Multidimensional arrays (Kokkos::View) w/ slices
 Decouple array layout (row/column-major, tiled, …) from app

 Default layout optimized for the architecture (SoA / AoS)

 Unified interface to shared memory, texture fetch, atomic access, …

 Goal: write code once, run well on many different back-ends
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Kokkos: Performance, Portability, & Productivity
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Kokkos as hedge against…

 Hardware divergence

 Parallel programming model
 OpenMP, OpenACC, CUDA, TBB, 

Pthreads, Qthreads, …

 Traditional shared memory
 vs. PGAS / distributed shared

 Threads at all
 “Serial” back-end

 Kokkos’ semantics require 
vectorizable (ivdep) loops

 Kokkos protects our HUGE time 
investment of porting Tpetra
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Why is thread parallelization hard?
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Sparse linear algebra use pattern

 Fill: Create / modify matrix & vector data structures
 As many ways to do this as there are applications

 e.g., iterate over rows, entries, mesh points, elements (FEM), volumes 
(FVM), aggregates (AMG), …

 Software interfaces affect performance A LOT

 Setup for solve (e.g., build preconditioner)

 Solve linear system(s), eigenvalue problems, etc.
 Coarse-grained computational kernels (e.g., sparse mat-vec)

 Software interfaces affect performance less

 Repeat (nonlinear iteration, time steps, parameter study, …)
 Trilinos data structures & solvers optimized for reuse, e.g., of 

 Data structures (graph, basis vectors, allocations) &/or

 MPI communication patterns (where to send / receive what)
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Need thread-parallel fill

Fill Setup

Solve

 Fill & setup not free

 Some solves are cheap, so 
fill & setup time matter

 Amdahl’s Law: 
 Threading just solves makes 

cute, easy-to-publish papers

 Solves do take most app time

 But: 90% time w/ 1 thread 
50% time w/ 10 threads

 Preconditioners create 
sparse matrices, so they 
also need fill
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Fill makes gradual porting hard

 Iterative linear solves in practice
 Do NOT need 1000s of iterations

 ARE preconditioned, often nontrivially

 Occur in context of nonlinear solves / time stepping (matrix changes!)

 May take lots of memory

 Implications for linear algebra data structures
 Fill interfaces affect performance

 Prefer standard data structures to avoid reimplementation & copying

 Can’t just plug in kernels (e.g., sparse matrix-vector multiply)

 I’m not excited that you made sparse matrix-vector multiply
5% faster with your funny new data structure
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Thread-parallel fill interface options

Coarse-grained (batched)

 Pass many items into linear 
algebra interface at once

 Library parallelizes inside

 (+) Need not be thread safe

 (+) Hides complexity

 (-) Hard for gradual porting

 (-) No cross-kernel reuse

 (-) Need enough parallelism 
to keep whole device busy

Fine-grained (Tpetra prefers)

 1 item at a time

 User parallelizes outside

 (-) Interface must be thread 
safe & scalable

 (-) Limited parallelism inside 
(+) Easy to add to existing 
code – even pre-parallel

 (+) Users can exploit reuse

 (+) Works w/ team/thread
14



How we ported, & current progress
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A brief history of Tpetra

 2008: Tpetra started becoming usable

 2009: Explorations of thread parallelism (computational 
kernels only, no fill interfaces)

 2009-2010: Initial efforts at preconditioners

 I started working on Tpetra in late 2010

 “Productionization” (several staff): 2011-2013
 Fix bugs & improve performance of (single-threaded) solvers & fill

 We integrated into an internal engineering numerical simulation

 Fruits of our effort in Nalu: https://github.com/spdomin/nalu

 “Kokkos refactor” (1.5 full-time staff): Late 2013 – present
 Stage 1 (FY14-15): Keep interface, replace data structures & kernels

 Stage 2 (FY15-now): Continue kernels work; evolve fill interface
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Keys to gradual porting

 Abstract away memory allocation & deallocation
 Kokkos::View (multidimensional arrays) as building block

 Kokkos manages deallocation automatically via ref counting

 Thread safe; table of references on host, updated via host atomics

 Off inside parallel_*; can turn off per array (handy for slices in loops)

 Handles NUMA first-touch initialization too

 Abstract away data-parallel loops & computational kernels
 Loops: Kokkos::parallel_{for, reduce, scan}

 I write loop body as functor or C++11 lambda (new CUDA feature)

 Kokkos semantics force me to write vectorizable & parallelizable loops

 Computational kernels separated into “KokkosKernels” package

 Manage data movement between memory spaces
 Kokkos’ abstractions make everything look like GPU

 CUDA UVM means I can port one kernel at a time 17



Pattern for parallel dynamic allocation

 Pattern:
1. Count / estimate allocation size; may use Kokkos parallel_scan

2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep 
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

 Compare to Fill, Setup, Solve sparse linear algebra use pattern

 Fortran <= 77 coders should find this familiar

 Semantics change: Running out of memory not an error!
 Generalizes to other kinds of failures, even fault tolerance
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Fill in 2012 was not thread-scalable

 Dynamic memory allocation (“dynamic profile”)
 Impossible in some parallel models; slow on others; implies sync

 Better: Count, Allocate (thread collective), Fill, Compute

 Throw C++ exceptions on error / when out of space
 Either doesn’t work (CUDA) or hinders compiler optimization

 Prevents fruitful retry in (count, allocate, fill, compute)

 Better: Return success / failed count; user reduces over counts

 Unscalable reference counting implementation
 Tpetra’s interface relied heavily on something like std::shared_ptr

 Not hard to make thread safe, but updating the ref count serializes!

 Returning std::shared_ptr (or our thing) updates ref count

 Better: Hide ref counting inside; make objects have “view semantics”

 Had to fill Tpetra data structures on host (copy), sequentially
19



Refactor plan: Stage 1 (FY14-15)

 Replace all internal data structures & kernels w/ Kokkos
 Sparse matrix-vector multiply & vector ops first

 Later, we factored out local kernels into KokkosKernels

 Tpetra already had (de)allocation abstraction (“smart pointers”), so it 
was easier to introduce Kokkos’ arrays & CUDA device allocations

 Assume CUDA UVM so only have to port 1 function at a time 
 Pain point: UVM allocations can’t coexist w/ device kernels

 Thread-parallel fill into Kokkos, & hand off to Tpetra

 C++ partial specialization let pre- & post-refactored versions 
of Tpetra coexist – users could select which at compile time

 Old version built with older compilers (no need for C++11)
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Stage 2 (FY15-16): Thread-safe fill

 Done for CrsMatrix & (Multi)Vector, for methods that 
 Don’t change graph structure (no “insert” yet)

 Don’t cause MPI communication (+= values for off-process rows)

 Return error code / success count; don’t throw on error

 No more internal temporary array dynamic allocation

 Atomic update option for methods that do += to values

 Creating / modifying sparse graph
 Fill into Kokkos data structures, & hand off to Tpetra

 Tpetra has example showing thread-parallel iteration over finite-
element mesh to create graph structure of sparse matrix

 Tpetra interface to simplify this is in progress, lower priority
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Hierarchical parallelism
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Under development: KokkosKernels

 Local computational kernels used by Trilinos, usable outside
 Dense & sparse matrix, graph (e.g., coloring), & tensor kernels

 Local (no MPI) – Trilinos / users responsible for MPI 

 No required software dependencies other than Kokkos

 Hooks for 3rd-party libraries like cu{Blas,Sparse} if available

 Multi-year effort w/ many contributors, mostly Trilinos devs

 Provide kernels for all levels of hierarchical parallelism:
 Global: all available execution resources (e.g., whole GPU)

 Team: single block / team, use shared memory

 Thread: single “thread” (/ warp), vectorization inside 

 Serial: “elemental” function (omp declare simd)
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Why kernels for different levels?

 Many apps do many small computations in parallel
 How often do real apps need 10k x 10k DGEMM? (very rarely)

 e.g., Small dense matrix operations (BLAS & factorizations)

 PDE discretizations w/ multiple unknowns per mesh point: ~10 x 10

 Multifrontal sparse matrix factorizations: ~100 x 100 (NOT square)

 CUDA, OpenMP 4, OpenACC all expose (team, thread)

 Remember coarse (batched) vs. fine-grained fill?
 Lets users exploit locality & amortize kernel launch overhead

 Matches what many e.g., finite-element codes already do

 “Worksets,” “bucket loop”

 Break loop into data-parallel chunks, sized to fit in cache

 Do many operations to each chunk before moving on
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Multiple memory spaces?
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>1 memory or execution spaces

 Upcoming NNSA platforms
 Trinity (KNL): 2 memory 

spaces (HBM, DDR4)

 CORAL (Sierra): 2 execution & 
memory spaces (NVIDIA GPUs, 
IBM multicore CPUs)

 Common hardware features
 2 memory spaces: “fast & 

small” vs. “slow & big”

 Can access each memory 
space from each exec space 
(acts like NUMA)

 “Fast” memory limited; must 
use as temporary workspace
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 Support via some comb of 
{Kokkos, Tpetra, solvers, app}

 Use cases to support
 Gradual port (mix new & legacy)
 Concurrently use 2 exec spaces 

(e.g., MPI pack & compute)



Strategies for limited GPU memory 

 All app data, even whole linear system, may not fit on GPU

 Prefer algorithmic solutions over auto-magic
 Don’t want different libraries to need to arbitrate limited resource

 Painful run-dependent debugging & performance variation

 Strategy 1: Stage in individual linear systems temporarily
 Real physics is multiphysics  solve multiple linear systems at same time

 Works with block preconditioners or nonlinear (loose) coupling

 Tpetra’s current interface could support this, w/ more impl work

 Strategy 2: Domain decomposition (divide up single solves)
 Affects convergence; doesn’t work well for all linear systems

 Subdomain solvers need enough reuse to amortize data transfer

 Would take more software work to avoid e.g., data reformatting
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Next steps
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Questions left to answer

 Dependence on atomic updates (esp. +=)
 Easy way to parallelize sequential loops (e.g., finite-element assembly)

 Some uncertainty about their efficiency on different hardware

 Algorithmic fixes take extra memory (store all terms before summing)

 No single pattern for exploiting hybrid (CPU+GPU) parallelism
 Kokkos exposes hybrid parallelism, but Tpetra + users must exploit it

 Overlap communication & computation?

 Treat GPU (+ 1 CPU core?) as another MPI process?

 Auto-magic load-balancing run-time scheduler?

 For full network bw, may need >1 threads/node using MPI
 MPI_THREAD_MULTIPLE or its proposed MPI > 3 successors

 MPI 1-sided avoids locks, but only works well on CPUs

 No obvious single programming model for all architectures
29



Thanks!

 Trilinos’ thread parallelism has been / still is a HUGE effort

 Dozens of colleagues & collaborators have contributed

 Super thanks to Christian Trott for LOTS of Tpetra help!
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Extra slides
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SPMV – Using Hierarchical Parallelism
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Basic Algorithm  y = Ax:

for irow in rows {                // Distribute over Threads
for j in length(irow) {         // Vectorize reduction
col = A.column(irow,j)
val = A.values(irow,j)
y(irow) += val * x(col);

}
}

Better Work Setting for better Cache Locality of x:

for set in row_sets {             // Distribute over Thread-Teams
for irow in rows(set) {         // Distribute over Threads         
for j in length(irow) {       // Vectorize Reduction        

col = column(irow,j)
val = values(irow,j)
y(irow) += val * x(col);

}
}

}



SPMV – Using Hierarchical Parallelism
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void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {
int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

int nnz_per_row = A.nnz()/A.numRows();
int rows_per_team = (nnz_per_team+nnz_per_row-1)/nnz_per_row;
int vector_length = GetVectorLength(A);
const int nworkset = (y.dimension_0()+rows_per_team-1)/rows_per_team;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {
const int startRow = team.league_rank() * rows_per_team;
const int endRow = startRow + rows_per_team < A.numRows() ? 

startRow + rows_per_team : A.numRows()  

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);
const int row_length = row.length;
Scalar sum = 0;

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& lsum) {
const Scalar val = conjugate ?

ATV::conj (row.value(iEntry)) :
row.value(iEntry);

lsum += val * x(row.colidx(iEntry));
},sum);

single(PerThread(team), [&] () {
sum *= alpha;
y(iRow) = beta * y(iRow) + sum;

});
});

}
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GPU / High-Bandwidth Memory 

36

Capacity

HBM

Processor

Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory
Time = Niter * Size / BWCapacity

Run From HBM
Time = Niter * Size / BWHBM + 

Size / BWCapacity

Expect
BWHBM/BWCapacity ~ 5-20

Question: Generally need higher parallelism to achieve BWHBM vs BWCapacity

=> What about Direct Solvers?



Tpetra objects are “DualViews”

 2 memory spaces (“Host” & “Device”)

 1 preferred execution space (associated w/ Device)

 1 “host” execution space (associated w/ “Host” memory)

 Tpetra may execute in another space
 e.g., overlap (un)pack of communication buffers, w/ computation

 User sets “modified” flags & “syncs” explicitly between spaces

 Successful use in LAMMPS (interactions btw user vs. GPU 
modules)
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“DualView” example: Vector
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Tell Tpetra to
synchronize from 

host to device

Tell Tpetra to
synchronize from 

device to host

Host & device
data are in sync

Get a host view of
the data & treat it as 

read-only

Get a device view of
the data & treat it as 

read-only

Manually mark host
as modified

Manually mark 
device as modified

Get Kokkos view of
host data & modify it

Get Kokkos view of
device data & 

modify it

Modify data through
Tpetra's interface

(host only)

If you only have one 
memory space, you can 
ignore all of this; it turns 
to no-ops.

Preferred use with two 
memory spaces:
1. Assume unsync’d
2. Sync to memory 

space where you 
want to modify it 
(free if in sync)

3. Get & modify view in 
that memory space

4. Leave the Tpetra 
object unsync’d

Tpetra objects act just like Kokkos::DualView.
Tpetra’s evolution of legacy fill interface is host only.
To fill on (CUDA) device, must use Kokkos interface.


