
Photos placed in 
horizontal position 
with even amount 

of white space
between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. XXXX-XXXX C

Thread parallelism in 
sparse linear algebra 
and iterative solvers

Mark Hoemmen

Center for Computing Research

Sandia National Laboratories

19 Apr 2016

SAND2016-3476C



Outline

 Our sparse matrix library: Tpetra (part of Trilinos project)

 Goal: Support MPI + X parallelism on current & future 
architectures, where X is OpenMP, CUDA, …

 Genericity (“X”) via Kokkos programming model

 Fill (creating / changing sparse matrices) interfaces 
complicate thread parallelization

 Current & planned thread-parallel capabilities

2



Trilinos’ linear solvers
 Sparse linear algebra (Tpetra)

 Sparse graphs, (block) sparse matrices, 
dense vectors, parallel solve kernels, 
parallel communication & redistribution

 Iterative (Krylov) solvers (Belos)
 CG, GMRES, TFQMR, recycling methods

3

 Sparse direct solvers (Amesos2)

 Algebraic iterative methods (Ifpack2)
 Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

 Shared-memory factorizations (ShyLU)
 LU, ILU(k), ILUt, IC(k), iterative ILU(k)

 Direct+iterative preconditioners

 Segregated block solvers (Teko)

 Algebraic multigrid (MueLu)



Tpetra: parallel sparse linear algebra

 Tpetra implements
 Sparse graphs & matrices, & dense vecs

 Parallel kernels for solving Ax=b & Ax=λx

 Parallel communication & (re)distribution

 Key Tpetra features
 Can manage > 2 billion (10^9) unknowns

 Can pick the type of values:

 Real, complex, extra precision

 Automatic differentiation

 Types for stochastic PDE discretizations

 Center of growing support for MPI + X 
parallelism, for several X

4



Tpetra development goals

 Scale from laptop to full supercomputer

 1 implementation for all platforms & parallelism options
 Very limited developer time (< 2 full-time staff)

 Easier to debug solver (convergence) & performance issues

 Maintain backwards compatibility
 Trilinos only allows breaking it at major releases (every 1-2 years)

 Balance research, prep for new hardware, & support today’s apps 
(often running on old hardware & software)

 Sparse linear algebra central to apps & other Trilinos packages 

 Interfaces matter for performance & parallelism

 Exploit optimized kernels but minimize library dependencies
 We need our own implementations that work everywhere

 3rd-party libraries may ignore features needed for e.g., MPI
5



Must support > 3 architectures

 Coming systems to support
 Trinity (Intel Haswell & KNL)

 Sierra (CORAL): NVIDIA GPUs + 
IBM multicore CPUs

 Clusters, workstations, etc.

 3 different architectures
 Multicore CPUs (big cores)

 Manycore CPUs (small cores)

 NVIDIA GPUs

 MPI only, & MPI + threads
 Threads don’t always pay on 

common CPU architectures

 Porting to threads must not 
slow down the MPI-only case

6



Kokkos: Common C++ - based programming 
model for thread parallelism on GPUs, CPUs, …

 Parallel {for, reduce, scan} w/ custom user code

 Exposes different levels of parallelism
 Flat [0,N), or hierarchical (team, thread, vector)

 Experimental task parallelism too!

 Different memory & execution spaces
 Control where data live & code executes

 Enable “hybrid” (host + GPU) parallelism

 Multidimensional arrays (Kokkos::View) w/ slices
 Decouple array layout (row/column-major, tiled, …) from app

 Default layout optimized for the architecture (SoA / AoS)

 Unified interface to shared memory, texture fetch, atomic access, …

 Goal: write code once, run well on many different back-ends

7



Kokkos: Performance, Portability, & Productivity

8

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

LAMMPS Sierra AlbanyTrilinos



Kokkos as hedge against…

 Hardware divergence

 Parallel programming model
 OpenMP, OpenACC, CUDA, TBB, 

Pthreads, Qthreads, …

 Traditional shared memory
 vs. PGAS / distributed shared

 Threads at all
 “Serial” back-end

 Kokkos’ semantics require 
vectorizable (ivdep) loops

 Kokkos protects our HUGE time 
investment of porting Tpetra

9



Why is thread parallelization hard?

10



Sparse linear algebra use pattern

 Fill: Create / modify matrix & vector data structures
 As many ways to do this as there are applications

 e.g., iterate over rows, entries, mesh points, elements (FEM), volumes 
(FVM), aggregates (AMG), …

 Software interfaces affect performance A LOT

 Setup for solve (e.g., build preconditioner)

 Solve linear system(s), eigenvalue problems, etc.
 Coarse-grained computational kernels (e.g., sparse mat-vec)

 Software interfaces affect performance less

 Repeat (nonlinear iteration, time steps, parameter study, …)
 Trilinos data structures & solvers optimized for reuse, e.g., of 

 Data structures (graph, basis vectors, allocations) &/or

 MPI communication patterns (where to send / receive what)
11



Need thread-parallel fill

Fill Setup

Solve

 Fill & setup not free

 Some solves are cheap, so 
fill & setup time matter

 Amdahl’s Law: 
 Threading just solves makes 

cute, easy-to-publish papers

 Solves do take most app time

 But: 90% time w/ 1 thread 
50% time w/ 10 threads

 Preconditioners create 
sparse matrices, so they 
also need fill

12

Preconditioner
/ other solver

setup

Change matrix 
(structure / values)

& vector(s)

Ax=b or 
Ax=λx



Fill makes gradual porting hard

 Iterative linear solves in practice
 Do NOT need 1000s of iterations

 ARE preconditioned, often nontrivially

 Occur in context of nonlinear solves / time stepping (matrix changes!)

 May take lots of memory

 Implications for linear algebra data structures
 Fill interfaces affect performance

 Prefer standard data structures to avoid reimplementation & copying

 Can’t just plug in kernels (e.g., sparse matrix-vector multiply)

 I’m not excited that you made sparse matrix-vector multiply
5% faster with your funny new data structure

13



Thread-parallel fill interface options

Coarse-grained (batched)

 Pass many items into linear 
algebra interface at once

 Library parallelizes inside

 (+) Need not be thread safe

 (+) Hides complexity

 (-) Hard for gradual porting

 (-) No cross-kernel reuse

 (-) Need enough parallelism 
to keep whole device busy

Fine-grained (Tpetra prefers)

 1 item at a time

 User parallelizes outside

 (-) Interface must be thread 
safe & scalable

 (-) Limited parallelism inside 
(+) Easy to add to existing 
code – even pre-parallel

 (+) Users can exploit reuse

 (+) Works w/ team/thread
14



How we ported, & current progress

15



A brief history of Tpetra

 2008: Tpetra started becoming usable

 2009: Explorations of thread parallelism (computational 
kernels only, no fill interfaces)

 2009-2010: Initial efforts at preconditioners

 I started working on Tpetra in late 2010

 “Productionization” (several staff): 2011-2013
 Fix bugs & improve performance of (single-threaded) solvers & fill

 We integrated into an internal engineering numerical simulation

 Fruits of our effort in Nalu: https://github.com/spdomin/nalu

 “Kokkos refactor” (1.5 full-time staff): Late 2013 – present
 Stage 1 (FY14-15): Keep interface, replace data structures & kernels

 Stage 2 (FY15-now): Continue kernels work; evolve fill interface

16

https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu


Keys to gradual porting

 Abstract away memory allocation & deallocation
 Kokkos::View (multidimensional arrays) as building block

 Kokkos manages deallocation automatically via ref counting

 Thread safe; table of references on host, updated via host atomics

 Off inside parallel_*; can turn off per array (handy for slices in loops)

 Handles NUMA first-touch initialization too

 Abstract away data-parallel loops & computational kernels
 Loops: Kokkos::parallel_{for, reduce, scan}

 I write loop body as functor or C++11 lambda (new CUDA feature)

 Kokkos semantics force me to write vectorizable & parallelizable loops

 Computational kernels separated into “KokkosKernels” package

 Manage data movement between memory spaces
 Kokkos’ abstractions make everything look like GPU

 CUDA UVM means I can port one kernel at a time 17



Pattern for parallel dynamic allocation

 Pattern:
1. Count / estimate allocation size; may use Kokkos parallel_scan

2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep 
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

 Compare to Fill, Setup, Solve sparse linear algebra use pattern

 Fortran <= 77 coders should find this familiar

 Semantics change: Running out of memory not an error!
 Generalizes to other kinds of failures, even fault tolerance

18



Fill in 2012 was not thread-scalable

 Dynamic memory allocation (“dynamic profile”)
 Impossible in some parallel models; slow on others; implies sync

 Better: Count, Allocate (thread collective), Fill, Compute

 Throw C++ exceptions on error / when out of space
 Either doesn’t work (CUDA) or hinders compiler optimization

 Prevents fruitful retry in (count, allocate, fill, compute)

 Better: Return success / failed count; user reduces over counts

 Unscalable reference counting implementation
 Tpetra’s interface relied heavily on something like std::shared_ptr

 Not hard to make thread safe, but updating the ref count serializes!

 Returning std::shared_ptr (or our thing) updates ref count

 Better: Hide ref counting inside; make objects have “view semantics”

 Had to fill Tpetra data structures on host (copy), sequentially
19



Refactor plan: Stage 1 (FY14-15)

 Replace all internal data structures & kernels w/ Kokkos
 Sparse matrix-vector multiply & vector ops first

 Later, we factored out local kernels into KokkosKernels

 Tpetra already had (de)allocation abstraction (“smart pointers”), so it 
was easier to introduce Kokkos’ arrays & CUDA device allocations

 Assume CUDA UVM so only have to port 1 function at a time 
 Pain point: UVM allocations can’t coexist w/ device kernels

 Thread-parallel fill into Kokkos, & hand off to Tpetra

 C++ partial specialization let pre- & post-refactored versions 
of Tpetra coexist – users could select which at compile time

 Old version built with older compilers (no need for C++11)

20



Stage 2 (FY15-16): Thread-safe fill

 Done for CrsMatrix & (Multi)Vector, for methods that 
 Don’t change graph structure (no “insert” yet)

 Don’t cause MPI communication (+= values for off-process rows)

 Return error code / success count; don’t throw on error

 No more internal temporary array dynamic allocation

 Atomic update option for methods that do += to values

 Creating / modifying sparse graph
 Fill into Kokkos data structures, & hand off to Tpetra

 Tpetra has example showing thread-parallel iteration over finite-
element mesh to create graph structure of sparse matrix

 Tpetra interface to simplify this is in progress, lower priority

21



Hierarchical parallelism

22



Under development: KokkosKernels

 Local computational kernels used by Trilinos, usable outside
 Dense & sparse matrix, graph (e.g., coloring), & tensor kernels

 Local (no MPI) – Trilinos / users responsible for MPI 

 No required software dependencies other than Kokkos

 Hooks for 3rd-party libraries like cu{Blas,Sparse} if available

 Multi-year effort w/ many contributors, mostly Trilinos devs

 Provide kernels for all levels of hierarchical parallelism:
 Global: all available execution resources (e.g., whole GPU)

 Team: single block / team, use shared memory

 Thread: single “thread” (/ warp), vectorization inside 

 Serial: “elemental” function (omp declare simd)

23



Why kernels for different levels?

 Many apps do many small computations in parallel
 How often do real apps need 10k x 10k DGEMM? (very rarely)

 e.g., Small dense matrix operations (BLAS & factorizations)

 PDE discretizations w/ multiple unknowns per mesh point: ~10 x 10

 Multifrontal sparse matrix factorizations: ~100 x 100 (NOT square)

 CUDA, OpenMP 4, OpenACC all expose (team, thread)

 Remember coarse (batched) vs. fine-grained fill?
 Lets users exploit locality & amortize kernel launch overhead

 Matches what many e.g., finite-element codes already do

 “Worksets,” “bucket loop”

 Break loop into data-parallel chunks, sized to fit in cache

 Do many operations to each chunk before moving on

24



Multiple memory spaces?

25



>1 memory or execution spaces

 Upcoming NNSA platforms
 Trinity (KNL): 2 memory 

spaces (HBM, DDR4)

 CORAL (Sierra): 2 execution & 
memory spaces (NVIDIA GPUs, 
IBM multicore CPUs)

 Common hardware features
 2 memory spaces: “fast & 

small” vs. “slow & big”

 Can access each memory 
space from each exec space 
(acts like NUMA)

 “Fast” memory limited; must 
use as temporary workspace

26

 Support via some comb of 
{Kokkos, Tpetra, solvers, app}

 Use cases to support
 Gradual port (mix new & legacy)
 Concurrently use 2 exec spaces 

(e.g., MPI pack & compute)



Strategies for limited GPU memory 

 All app data, even whole linear system, may not fit on GPU

 Prefer algorithmic solutions over auto-magic
 Don’t want different libraries to need to arbitrate limited resource

 Painful run-dependent debugging & performance variation

 Strategy 1: Stage in individual linear systems temporarily
 Real physics is multiphysics  solve multiple linear systems at same time

 Works with block preconditioners or nonlinear (loose) coupling

 Tpetra’s current interface could support this, w/ more impl work

 Strategy 2: Domain decomposition (divide up single solves)
 Affects convergence; doesn’t work well for all linear systems

 Subdomain solvers need enough reuse to amortize data transfer

 Would take more software work to avoid e.g., data reformatting

27



Next steps

28



Questions left to answer

 Dependence on atomic updates (esp. +=)
 Easy way to parallelize sequential loops (e.g., finite-element assembly)

 Some uncertainty about their efficiency on different hardware

 Algorithmic fixes take extra memory (store all terms before summing)

 No single pattern for exploiting hybrid (CPU+GPU) parallelism
 Kokkos exposes hybrid parallelism, but Tpetra + users must exploit it

 Overlap communication & computation?

 Treat GPU (+ 1 CPU core?) as another MPI process?

 Auto-magic load-balancing run-time scheduler?

 For full network bw, may need >1 threads/node using MPI
 MPI_THREAD_MULTIPLE or its proposed MPI > 3 successors

 MPI 1-sided avoids locks, but only works well on CPUs

 No obvious single programming model for all architectures
29



Thanks!

 Trilinos’ thread parallelism has been / still is a HUGE effort

 Dozens of colleagues & collaborators have contributed

 Super thanks to Christian Trott for LOTS of Tpetra help!

30



Extra slides

31



SPMV – Using Hierarchical Parallelism

32

Basic Algorithm  y = Ax:

for irow in rows {                // Distribute over Threads
for j in length(irow) {         // Vectorize reduction
col = A.column(irow,j)
val = A.values(irow,j)
y(irow) += val * x(col);

}
}

Better Work Setting for better Cache Locality of x:

for set in row_sets {             // Distribute over Thread-Teams
for irow in rows(set) {         // Distribute over Threads         
for j in length(irow) {       // Vectorize Reduction        

col = column(irow,j)
val = values(irow,j)
y(irow) += val * x(col);

}
}

}



SPMV – Using Hierarchical Parallelism

33

void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {
int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

int nnz_per_row = A.nnz()/A.numRows();
int rows_per_team = (nnz_per_team+nnz_per_row-1)/nnz_per_row;
int vector_length = GetVectorLength(A);
const int nworkset = (y.dimension_0()+rows_per_team-1)/rows_per_team;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {
const int startRow = team.league_rank() * rows_per_team;
const int endRow = startRow + rows_per_team < A.numRows() ? 

startRow + rows_per_team : A.numRows()  

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);
const int row_length = row.length;
Scalar sum = 0;

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& lsum) {
const Scalar val = conjugate ?

ATV::conj (row.value(iEntry)) :
row.value(iEntry);

lsum += val * x(row.colidx(iEntry));
},sum);

single(PerThread(team), [&] () {
sum *= alpha;
y(iRow) = beta * y(iRow) + sum;

});
});

}



34



35



GPU / High-Bandwidth Memory 

36

Capacity

HBM

Processor

Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory
Time = Niter * Size / BWCapacity

Run From HBM
Time = Niter * Size / BWHBM + 

Size / BWCapacity

Expect
BWHBM/BWCapacity ~ 5-20

Question: Generally need higher parallelism to achieve BWHBM vs BWCapacity

=> What about Direct Solvers?



Tpetra objects are “DualViews”

 2 memory spaces (“Host” & “Device”)

 1 preferred execution space (associated w/ Device)

 1 “host” execution space (associated w/ “Host” memory)

 Tpetra may execute in another space
 e.g., overlap (un)pack of communication buffers, w/ computation

 User sets “modified” flags & “syncs” explicitly between spaces

 Successful use in LAMMPS (interactions btw user vs. GPU 
modules)

37



“DualView” example: Vector

38

Tell Tpetra to
synchronize from 

host to device

Tell Tpetra to
synchronize from 

device to host

Host & device
data are in sync

Get a host view of
the data & treat it as 

read-only

Get a device view of
the data & treat it as 

read-only

Manually mark host
as modified

Manually mark 
device as modified

Get Kokkos view of
host data & modify it

Get Kokkos view of
device data & 

modify it

Modify data through
Tpetra's interface

(host only)

If you only have one 
memory space, you can 
ignore all of this; it turns 
to no-ops.

Preferred use with two 
memory spaces:
1. Assume unsync’d
2. Sync to memory 

space where you 
want to modify it 
(free if in sync)

3. Get & modify view in 
that memory space

4. Leave the Tpetra 
object unsync’d

Tpetra objects act just like Kokkos::DualView.
Tpetra’s evolution of legacy fill interface is host only.
To fill on (CUDA) device, must use Kokkos interface.


