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Abstract—Through various means of structural and synaptic
plasticity enabling online learning, neural networks are con-
stantly reconfiguring their computational functionality. Neural
information content is embodied within the configurations, rep-
resentations, and computations of neural networks. To explore
neural information content, we have developed metrics and com-
putational paradigms to quantify neural information content. We
have observed that conventional compression methods may help
overcome some of the limiting factors of standard information
theoretic techniques employed in neuroscience, and allows us to
approximate information in neural data. To do so we have used
compressibility as a measure of complexity in order to estimate
entropy to quantitatively assess information content of neural
ensembles. Using Lempel-Ziv compression we are able to assess
the rate of generation of new patterns across a neural ensemble’s
firing activity over time to approximate the information content
encoded by a neural circuit. As a specific case study, we have
been investigating the effect of neural mixed coding schemes due
to hippocampal adult neurogenesis.

I. INTRODUCTION

Unlike artificial neural networks with explicit training and
testing operating modes, the brain is continuously adapting
through various means of structural and synaptic plasticity
enabling online learning. Effectively, biological neural net-
works are constantly re-configuring their computational func-
tionality, and are comprised of a high dimensional, distributed
representation. Neural information content is embodied within
the configurations, representations, and computations of neural
networks. The representational capacity of neural circuits is an
unknown but desirable trait to measure. A better understanding
of neural representations has the potential to impact adaptive
representations and encoding, machine learning, and neuro-
morphic hardware designs. Even though it only occurs in a few
brain regions (hippocampus and olfactory bulb), of particular
interest is the process of adult neurogenesis by which new
neurons are added to an existing neural circuit.

As follows, we present an overview of the adult neuroge-
nesis process motivating the need for a quantitative under-
standing of its representational capacity and then introduce
information theory as one approach to do so while discussing
limitations to how it has been applied to neural circuits.
We then present an extension of an approach based upon
compression theory applicable to neural ensembles and use

it to assess the effect of adult neurogenesis in terms of
information representation.

II. BIOLOGICAL PROCESS OF ADULT NEUROGENESIS

The study of the biological process of adult neurogene-
sis only began relatively recently; while observations of the
neurogenesis process in the adult go back to the 1950s [1],
it was only in the 1990s that extensive characterization and
appreciation of the process occurred [2] [3]. Since then,
the neuroscience community has rapidly characterized the
neurogenesis process at all scales ranging from molecular and
cellular studies to systems and behavioral levels.

The process of adult neurogenesis in the dentate gyrus (DG)
region (shown in Fig. 1) is reviewed extensively in Aimone
et al. [4], but we briefly survey it here. Each day, roughly
1,000 new neurons are born from a stem cell population that
resides locally within the DG. This rate is highly regulated by
a number of intrinsic and extrinsic factors, as is the ultimate
survival of the neurons that are born. While numbers differ
somewhat from study to study, within several weeks about half
of the neurons that are born no longer exist, most likely due
to activation of apoptotic pathways (an internal gene signaling
cellular death mechanism). If a neuron lives to about four to
six weeks old, it most likely will persist indefinitely.

In rodents, new neurons take approximately two months to
achieve maturity. During this time, they progress from a neu-
roblast cell phenotype, which lacks the projections commonly
associated with neurons, to fully functional granule cells that
are indistinguishable from those born at earlier ages. Once
new input and output synapses start to form at about 14 to 16
days old, the cells mature rapidly, obtaining new synapses at a
rapid pace. By about two months old, the neurons have about
5,000 to 6,000 input glutamatergic synapses from both internal
and external cortical populations. A final key observation is
that synapses on young neurons are more plastic, i.e., more
amenable to learning, than those on mature neurons.

In addition to this difference in connectivity and synaptic
plasticity, young neurons are distinct from the mature neurons
in their basic electrophysiological properties. Young neurons
typically have a higher membrane resistance, which allows
individual synapses to have a higher relative impact than a
similar weighted (same maximum conductance) synapse on
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Fig. 1. Dentate gyrus region (shown in green) of the hippocampus within
medial temporal lobe of the human brain, one of two regions of the brain
with substantial levels of lifelong neurogenesis

a mature neuron. The combination of these properties the
physiology, connectivity, and plasticity of young neurons has
led to a widespread acceptance that these cells are more active
or hyperexcitable compared to the mature population [4].

This increased excitability for young neurons is notable
given the existing hypotheses for DG function. Prior to the
widespread acknowledgement that the DG hosted new neu-
rons, theorists and computational neuroscientists had generally
come to a consensus that the DG was responsible for two key
functions (pattern separation and conjunctive encoding), both
related to a key memory encoding role. Since the 1980s, the
DG has been thought to be critical for driving the encoding
of memories in the downstream CA3 region [5] [6]. This
training function was due in part to its sparse but powerful
output synapses, which were potentially capable of individu-
ally driving a downstream CA3 pyramidal neuron [7]. As a
result, the DG could act like a quasi-supervised trainer to the
rest of the hippocampus’ memory formation. The question has
remained what the DG is training. One hypothesis is that the
DG is simply responsible for selecting as orthogonal a sparse
representation in the downstream CA3 network as possible to
minimize interference between memories [6]. At the extreme,
this is effectively a hash coding hypothesis; each memory gets
randomly assigned a subset of neurons in the DG, which then
results in a random CA3 ensemble. In the high dimensions
that are in play in the DG and hippocampus, a somewhat
sparse activation could yield effectively unlimited number of
combinations and a very low potential rate of interference.
The other hypothesis is more information based; the DG is
not producing an information-free hash code, but rather a very
sparse code that is a function of the cortical inputs that drive
the whole hippocampus. In this view, the information content
of the DG can be extremely high, but the outcome is the same;
a nearly orthogonal representation ensemble in the CA3 to
encode whatever events are occurring.

The difference between these two hypotheses is subtle, and

indeed it has caused a significant amount of debate in the
broader hippocampus field [8]. Notably, the implications for
neurogenesis are potentially quite substantial. The bulk of
neurogenesis behavioral studies, which are explained in detail
in Aimone et al. [4], have interpreted their results using the
pattern separation hypothesis, however it is quite possible that
alternative interpretation based on information coding may yet
prove informative.

There is considerable debate about whether the activity
of young neurons directly contributes to the DG pattern
separation function [9] or whether their impact is to increase
information content in episodic memories [10]. These two
ideas have been discussed extensively in the literature, but
there has been little attempt to develop metrics to quantify how
an ensemble of neurons may provide either a pattern separation
function or be increasing information content sent into the
hippocampus. Most studies on the pattern separation ability
of the DG have focused on looking at average correlations
of the output population as compared to the correlations of
an input layer [11]. This reduction in similarity is typically
measured without reference to the overall information encoded
in the system. For example, if the EC contains substantial
information about two events that may have occurred at a park,
is it sufficient for the DG to simply encode only one feature
that may have differed between the two events (say one had
a dog involved and another a cat)? While this is potentially
optimal from a pattern separation perspective, it would poten-
tially trivialize the ultimate memory formed. Rather, the DG
likely needs to maintain a balance between information coding
and separation; effectively minimizing correlation between DG
outputs is likely best thought of as a constraint as opposed to
a function in and of itself [10].

This more sophisticated view of DG function requires
both simultaneously assessing DG information content and
correlations in a quantifiable, parametric sense. While there
are a number of techniques to assess similarity (correlations,
cosyne angles, Hamming distance, etc.), the ideal metric is not
immediately obvious, as this is likely going to be a function of
how network similarity impacts the downstream CA3 region.
Further, the quantification of information content is a major
challenge in systems neuroscience. Examining the nature of
information representation in a model of thousands or millions
of neurons requires the development of new approaches to
ascertain the information content of large populations of
neurons. Next we briefly introduce information theory and
describe how we have used it to quantify the impact of adult
neurogenesis in terms of neural information content.

III. INFORMATION THEORY

Pioneered by Claude Shannon in 1948, information theory
was developed as a formal mathematical approach to measure
the information in a message [12]. Precise notions about
information, not to mention tools that could be used to study it,
did not exist prior to this time. Shannon suggested information
be measured as the base two logarithm of the inverse of the



probability. Intuitively, the more surprising a message is, the
more information it conveys.

There have been many other attempts to use formal Shan-
non information theory on neural networks such as: Plug-
in Entropy, Jacknife debiased, Asympotically debiased, Ma
bound, Bayesian/Dirichlet prior, Coverage-adjusted, Best up-
per bound, etc. For a detailed overview of these and other
techniques see [13]. However, these approaches have had
varying levels of success and there are limitations to such ap-
proaches. Entropy (and many other concepts from information
theory) calculations require knowledge of the firing behav-
ior probability distributions for the neurons. However, these
distributions are unknown and difficult to estimate. It is also
intractable to simply record firing behaviors directly due to
limitations of in vivo recording capabilities of all the neurons
in an ensemble during an experimental task of interest. And
additionally, neural plasticity alters the response properties of
neurons, effectively creating non-stationary distributions which
complicates the recording challenge. And additionally, there is
some determinism to neurons as their behavior is influenced by
the inputs they receive (requiring conditional probabilities), as
opposed to being independently stochastic. These challenges
are further amplified as many of the techniques of information
theory are applicable to single neurons but not large ensembles
of neurons.

Rather, we approached this problem by identifying com-
pression methods used broadly in computing as a potential
route to quantify the redundancy in the network representation
over time, thus providing an estimate for independent infor-
mation communicated by a network. Compression can take
a number of different forms. Here, we were concerned with
lossless compression, which guarantees that the inputs are fully
retrievable from the outputs (i.e., no information is lost in the
compression process), at the possible expense of a suboptimal
compression. The alternative - lossy compression is widely
used in file formats such as TIFF images and MP3 audio files
works by allowing information that is not perceived by the end
user to be eliminated as well, which typically results in a more
compressed signal, but one which contains less information
than the original source. For the purposes of our neural
analysis, we are concerned with obtaining an estimate of total
independent information content, which lossy compression
will fail to provide. Specifically, we have investigated the use
of online, dictionary based compression.

IV. MATERIAL & METHODS

A. Lempel-Ziv & Normalized Complexity Analysis

Lempel-Ziv (LZ) coding is an online, adaptive class of
techniques for source coding [14][15][16]. It consists of adap-
tive dictionary compression algorithms which are universally
optimal in that their asymptotic compression rate approaches
the entropy rate of the source for any stationary ergodic source
[17]. Rather than building an optimal coding based upon
known a priori knowledge of the frequency of occurrence of
the symbols being encoded (such as Huffman coding does),
the LZ algorithm parses a string and builds dictionary entries

Fig. 2. Neural transform concept - taking the transformation of unknown
signal of interest N(t) yields components n1 to ne. These subcomponents
may then be operated upon by C(•) to yield an approximation of original
signal N(t)

based upon the shortest phrase not yet seen. Repeated sub-
strings result in larger dictionary entries, so effectively the
LZ algorithm is able to dynamically generate more efficient
representations for the most prevalent sub-strings.

Applied to the neural domain, this approach allows us
to analyze the encoding of neural ensembles without know-
ing firing behaviour probability distributions of each neuron.
Rather, we have used complexity as a measure of compress-
ibility in order to estimate entropy to quantitatively assess the
information content of a signal. Szczepanski et al. applied
the general Lempel-Ziv complexity (LZ-Complexity) measure
to estimate entropy of real and simulated neurons [18]. But
unlike the work of Szczepanski et al., rather than applying
LZ-Complexity analysis to an individual neuron’s spike train,
we have applied the approach to a neural population as a
whole. LZ-Complexity is based upon measuring the rate of
generation of new patterns along a sequence of characters
in a string being compressed [14]. Applied to neuron spike
trains, this technique looks for repeated spiking behavior over
time. Instead, by applying it across an entire neural ensemble,
we assessed repeated patterns of neural activity. Figure 2
illustrates this concept using compression as the function
C(T (N)) to estimate the neural infomration content for neural
ensemble N .

We have explored a couple of approaches to analyzing
the multidimensional signal comprised of an ensemble of
neurons firing over time. Our first approach was to take the
co-activity of all neurons in the ensemble at an instance in
time and concatenate each of these temporal segments into
a single spike signal. This approach is depicted in Fig. 3.
Alternatively, rather than concatenating each segment into a
single spike signal we also investigated a piecewise analysis
in which a single segment (whether temporal or ensemble)
at a time is passed to the dynamically expanding dictionary.
An illustration of this approach is shown in Fig. 4. Using this
piecewise approach, the same dictionary is repeatedly utilized
and updated with each segment presented. However, dictionary
entries cannot span different segments (as is the case with the
concatenated single spike signal).

Regardless of which approach is used, the spike signal is



Fig. 3. Concatenation of neural firings across the population ensemble to
generate a binary spike signal preserving temporal synchrony.

Fig. 4. Temporal piecewise segmentation of of neural firings

converted into a binary signal where an action potential is
encoded as a one and the absence of activity by a zero. The
normalized complexity may then be computed as follows:

cα(x
n) =

Cα(x
n)

n
∗ logαn. (1)

Normalized complexity measures the generation rate of new
patterns along a word of length n with letters from an alphabet
of size α (in this case two). Additionally, it can be proven
[17] that as the string length (our series of neural firings in
this case) goes to infinity, the supremum of the normalized
complexity approaches the entropy of the signal S:

lim sup
n→∞

cα(x
n) ≤ Hα(S). (2)

Consequently, this provides us with a technique to ap-
proximate the information content encoded within a neural
ensemble as expressed by the firing behavior the neurons
exhibit.

B. Approximate Function Understanding Through Sampling

As a simplification overlooking the vast intricacies involved
in their operation, neural behavior may be described as a
function. Neurons fire in response to input stimuli which are
able to drive the potential of the neuron beyond threshold.

Fig. 5. Truth table for three input Boolean functions and an observational
sampling

Ignoring the complexities of various learning mechanisms
which facilitate the dynamic modification of neural responses
to a given stimuli, the behavior of a neuron is a functional
response. Each neuron yields a mapping from inputs to its
functional output (namely whether or not to fire). As a simple,
yet related, mathematical expression consider the canonical
Boolean function. As the fundamental basis of digital logic
and computing Boolean functions describe the behavior the
function exhibits over all possible binary inputs. This is
typically represented by a truth table such as that shown in the
upper left of Fig. 5. In this example, there are three inputs (A,
B, and C) which allows for eight possible binary permutations.
Three arbitrary Boolean functions of the inputs are defined by
the columns N1, N2, and N3. In a small idealized scenario
such as this, it is tractable to furthermore specify the minimal
functional representation as well.

In the neural domain this idealized analysis is not possible.
In general neurons typically have 10,000 input connections.
Even for a single neuron with binary synaptic connectivity,
it is not tractable to consider 210,000 possible unique input
permutations. Rather, whether in a computational neural model
or physiology recordings one can only sample the neural
response behavior over a small subset of the possible space.
This is analogous to only sampling a subset of the full Boolean
truth table such as the selection of the red boxes leading to
the breakout table show in Fig. 5.

Without complete knowledge there are limits to what in-
formation may be inferred from this sampling. For exam-
ple, in conjunction the three Boolean functions (N1, N2,
N3) have five unique response patterns over all possible
inputs(000,010,011,100, and 101). But the arbitrary sampling
shown only captures four of the five possibilities and can-
not completely infer the full functionality encoded by these
Boolean functions. Rather, one can only estimate the be-
havioral properties of the combined function. Compression
analysis, as previously described, is one means of inferring the
complexity of the functionality and in effect estimating the en-
coding of the composite function. How well the functionality
may be inferred also depends upon the sampling provided.

This is the exact same limitations imposed by the neural
domain. Rather than having absolute knowledge of the inputs
and outputs of all neurons over the full set of possible



permutations, instead a typical neural recording is analogous
to the breakout table in Fig. 5.

C. Control Study Experimental Paradigm

As a control study to investigate the accuracy of our
compression based information estimation method, we have
implemented an experimental paradigm which allows us to
vary neural input resolution to control what the information
content of the ensemble should be. Our analysis technique is
a general technique and not specific to any neural region, but
for our experimental paradigm we are examining information
encoding within the DG, with the input to the DG coming
from entorhinal cortex (EC). Grid cells of the EC encode
a path trajectory through space and serve as the inputs to
the DG place cells. By varying the precision of the EC
grid cell encoding of the input space we can define to what
fidelity the neural encoding is able to distinguish the input
path. This notion is captured in the upper portion of Fig. 6.
The top square of the figure illustrates an arbitrary trajectory
through space. The middle three squares portray DG grid cell
encodings of various fidelities. As can be seen in the leftmost
square with a resolution of four (partitioning the space into
fourths along each dimension), this low resolution cannot
distinguish between the twists and turns of the trajectory.
Rather, anytime the input path lies within the region that grid is
activated. Conversely, the higher resolution partitioning of the
space (such as that shown by the other two samples) encodes
a higher fidelity representation of the original path allowing
it to distinguish precision such as the large loop in the upper
right quadrant. As a result, the increased resolution provides
more information in the sense that you are more certain about
the precise position in physical space.

The various grid cell encodings then serve as the input to
DG place cells whose firing activity are the neural samplings
we are interested in analyzing for information content. In this
paradigm, the DG place cells are randomly placed topolog-
ically. And additionally, each place cell has a field width
parameter which dictates the extent of which inputs are able
to drive it to fire. The bottom portion of Fig. 6 illustrates
various configurations of place cell widths corresponding to
encoding schemes. The leftmost example corresponds to a
neural ensemble consisting entirely of mature, tightly tuned
neurons that respond to precise inputs. Conversely, the middle
example illustrates a neural ensemble consisting solely of
broadly tuned neurons which respond to a broad set of inputs.
The rightmost example portrays a mixed coding scheme, such
as that hypothesized by neurogenesis where young neurons are
broadly tuned and hyper receptive, but as they mature become
tightly tuned to respond to specific inputs.

This experimental paradigm allows us to generate neural
spiking outputs which we can then run our compression
techniques on to approximate the information content in a
controlled manner.

Fig. 6. Control Study Experimental Paradigm

V. RESULTS

For our assessments we have primarily analyzed ensem-
bles of 100 to 500 randomly placed neurons over 1,000 to
10,000 timesteps. Fig. 7 depicts one path intended to loosely
resemble Brownian motion across the space. Fig. 8 illustrates
the resulting firing rates of these neurons over this path for
resolutions of 4 and 100. With fairly narrow place cell widths,
only neurons closest to the active grid location are driven
to fire. Consequently, as can be seen in the top half of the
figure, the neurons which happen to be located central to
grid positions with the coarse binning resolution of four fire
frequently. Alternatively when the resolution is much finer,
such as captured in the lower half of the figure, a lot more
neurons fire, but less frequently. In this sense, the neural
encoding of the path is distributed across multiple neurons
and has the ability to represent more information.

Keeping the neuron positions, path, and place cell widths
fixed for a given analysis we have then varied the resolution
and estimated the information content based upon the observed
neural firings. The resolution of the EC grid cell encoding
provides a theoretical upper bound as to what precision the
compression analysis approximation can estimate - namely
log2(resolution

2). However, not all paths fully cover the
space nor do they cover each region uniformly. And so a
more precise theoretical upper bound may be computed for
a specific path by using the frequency of occurrence of a
particular resolution region as the probability of the event that
that particular region will be active. Treating the regions of
space as outcomes, these frequentist inferences allow us to
calculate the actual entropy of a specific path through space



Fig. 7. Sample random path over 10,000 timesteps

Fig. 8. Ensemble firing rates for resolutions 4 and 100

Fig. 9. Ensemble Entropy vs. Theoretical Upper Bound

as a straightforward calculation.
Applying this compression analysis of neural information

content yields the approximations captured in Fig. 9 compared
with the theoretical information content upper bound (shown
in red). Across the x-axis are increasing resolutions from 1 to
10, and the y-axis is the information estimate (entropy).

We have also applied the approach to ensembles of mixed
place cell widths to investigate the effect on information
content with a mixed coding scheme. As follows are results
of varying the mix ratio all with a path resolution of 25 and
fixed neuron positions and path for all experiments. In these
experiments we used 100 neurons and averaged the results
of 25 random paths. Figure 10 depicts this computational
paradigm.

Figure 11 illustrates the results of an assessment of the
impact of neurogenesis rates for a fixed mixed coding ratio.
In the chart, the place cell width listed along a row slice is the
majority cell type with the resolution at a column intersection
corresponding to the mixed in minority cell type. For example,
in a given row column intersection with a 10 percent mix there
will be 90 neurons with place cell widths given by the row
and 10 neurons with that given by the column. Increasing the
place cell width size simulates increased neurogenesis as the
broader place cells equate to young, more excitable neurons.
The main diagonal along the plot corresponds to a pure coding
at a single given resolution. See the Results Tables Appendix
for a tabular view of the neural information content estimates
of this mixed coding experiment as well as three other mixed
coding ratios.

VI. DISCUSSION

A. Conclusions

We have presented a general approach to analyze the encod-
ing of neural ensembles by using complexity as a measure of
compressibility in order to estimate entropy to quantitatively
assess the information content of a signal. As a general
technique, it may be applied to a desired neural region of
interest as opposed to serving as a custom analysis which is not
re-usable. Key properties of the compression based approach



Fig. 10. Dentate gyrus adult neurogenesis information content computational
paradigm

Fig. 11. Plot of normalized information content estimate for a DG ensemble
consisting of a 10% mixed coding

are that it requires little a priori knowledge, and it may be
applied on ensembles without having to individually compute
and combine single channel information content values.

As a specific case study, we have used this technique to
asses the impact of adult neurogenesis on DG information
encoding. We have discovered that adult neurogenesis quantifi-
ably increases neural information content, but saturates given
too many young neurons. This is captured in Fig. 11 in
which the slice plots increase information content with the
inclusion of broader place width neurons (simulating young
neurons) but diminishes with too many broad place width
neurons. Intuitively, having some young neurons which are
highly plastic and amenable to encoding novelty makes sense,
and likewise having too many of these less specialized neurons
is analogous to imprecision in a representation (decreasing the

overall neural information content). This general trend held
across the various mixed coding ratios as well, with the greater
mix ratios resulting in steeper slopes to the gain as well as
decline in neural information content at the extremes. These
results are consistent with Aimone et. al’s 2011 study [10]
which argued that neurogenesis is used to improve information
content; not simply to increase pattern separation as suggested
by Sahay et al. [9].

B. Next Steps

Our next steps for this research include evaluating the use
of alternative compression techniques to explore any insights
alternative techniques may identify. Additionally, alternative
compression techniques may prove to be a better estimate
of neural information content. It is possible that the intrinsic
properties of different compression algorithms may prove to be
better suited for certain neural ensembles if the neural circuit
of interest has known properties such as temporal periodicity.
Additionally, sensitivity analysis techniques may help char-
acterize the techniques robustness to paramaterizations such
as noise in the neural firing signal or ordering effects in the
algorithmic approach to computing neural information content.

APPENDIX

Results Tables
As follows are the full experimental results of assessing the

neural information content of the DG while varying the mixed
coding ratio. For each of the experiments 100 neurons were
used with a fixed EC sampling resolution providing the inputs
to the DG model.

In each of the charts, the place cell width listed along the
rows is the majority cell type with the resolution at the column
intersection corresponding to the mixed in minority cell type.
For example, in a given row column intersection with a five
percent mix there will be 75 neurons with place cell widths
given by the row and 25 neurons with that given by the
column. The main diagonal of each table corresponds to a
pure coding at a given resolution.

Fig. 12. 10% Mixed Coding Results



Fig. 13. 15% Mixed Coding Results

Fig. 14. 25% Mixed Coding Results
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