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Interconnect Delays Dominate @
Modern Transistors
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Keith Buchanan, “The evolution of interconnect technology for silicon integrated circuitry,” GaAs
MANTECH Conference, (2002)
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3D ICs Reduce Interconnect Length @

Treating Interconnects as
distributed circuit elements :
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Figure 12. Wirelength distribution for three-dimensional and two-
dimensional architectures.

D. Stroobandt, “Recent advances in system-level
interconnect prediction,” IEEE Circuits and Systems, 11,
pp3-20, (2000).
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Predominately “3DIC” = TSVs CEE

Hght Stacked Chips (WSP)
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Monolithic 3D-ICs
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Wong et. al., “Monolithic 3D Integrated Circuits,”
Ishihara et. al., “Monolithic 3D-ICs with single grain Si thin film IEEE VLSI TSA, 1-4244-0585-8/07, (2012).

transistors,” Solid State Electronics, 71, pp. 80-87, (2012). 2




Device Level 3D-ICs




3D-ICs by Folding Space




An interconnect connecting 1-
2 is W away from the traces
on the floor and has negligible
overlap with traces on the side
wall.
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Spatial DOF Routes to Reduced
Resistance




Manufacturable Route to 3D-ICs in T
Folded Space: High Aspect Ratio Si
Etching




Device Level 3D-1Cs with Local @
Interconnects




Device Level 3D-ICs with Regional
Interconnects

Cross-Spine
Interconnect

After device level patterning — standard BEOL
planarization and interconnects are possible




Device Level 3D-IC
Fabrication




Required Processing Steps CEE

Blanket Processes
Oxidation, CVD, ALD, anneal

+

Directional Processes
Implantation, Deposition, Plasma Etch

Long Channel Metal Gate CMOS

Well PMOS NMOS Contact Metal 1
Implant Source/Drain  Source/Drain Cuts Deposition
Implant Implant
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Blanket Processes - Oxidation ®

Conformal oxidation, CVD deposition and ALD
Prospects for HYM:  deposition have all been demonstrated and present
no issues for HVM processing.
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Oblique Processing Flow

1.) All lithography occurs on a CMP-flat surface, so this
approach is compatible with high NA immersion lithography
2.) Steps (C)-(G) required for each patterning step (but

SAQP is no picnic either

Prospects for HVM:
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Prospects for HVM:

Oblique Implantation
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1.) Modern ion implant tools already perform angled halo
implants in HVM.
2.) Selection of proper membrane can provide improved
stopping power.




Backfill and Evacuation

Backfill Material Membrane Material

SiO, (CVD - inorganic) AIN
Polysilicon (CVD — inorganic) Si;N,
Polyimide (spin applied - Photoresist
organic)
W, Al 50




O
e

=

Me

(<

/

keyhole = — sio,

1.) Only an angled fixture required
2.) Inherently a liftoff process

3.) Flux homogenization may be necessary

no rotation 21

Prospects for HVM:




Oblique Deposition
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Oblique Plasma Etching
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Oblique Plasma Etching CEE
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Wire mesh to .
allow ions to penetrate “

Recessed
To accommodate wafer

E_

M: 1.) Die-level Faraday cage clamp ring converts current

Prospects for HV
P ICP to oblique processing equipment.
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Prospects G

« This approach is crazy — but so is considering
graphene, CNTs, non- Von Neumann computing, etc.

* Quantitative measurement of resolution for dep,
implant and etch is still required.

* Impact of non-<100> silicon surfaces.

« Strategies are required for layout, placement and
routing, alignment, isolation, strain, planarization, in-
line testing etc.

« Use of familiar materials, current toolsets and 60+
years of insight are un-matched for alternative
approaches.

« This approach does not preclude engagement of
either TSV-centric or monolithic 3D |IC approaches.
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Notes from a Plenary G

Greg Yeric “Moore’s Law at 50: Are we planning for retirement?” — IEDM 2015

« “The scaling roadmap for the next 10 years is truly complex,
and it is possible to foresee significant sacrifices in density
for the sake of scheduling”

« “the achievable transistor density has eroded, even as we
have added significant wafer cost with new Middle of Line
(MOL) layers.”

« “Breakthroughs in wire parasitics would be some of the
most impactful to Power/Performance/Area scaling.”

* “This level of circuit impact increases the need for
investment in the metal stack aimed not just at pitch scaling
but also at improving RC.”

* “From at least the 45 nm node, we can create smaller logic
blocks using gate pitches larger than nominal, owing to the
combined effects of parasitics, strain, and lithography

limitations.”
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Sources of MPL Distortion




Example SEMs of vertical patterned
etches
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