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Electrocatalysis in energy devices i) i
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Alkaline fuel cell:

Anode: 2H, + 40H™ — 4H,0 + 4e”
Cathode: O, + 2H,0 + 4e~ — 40H™ Oxygen Reduction Reaction
(ORR)
Overall: 2H, + 0, — 2H,0
Fuel cell schematic
Secondary metal-air battery (e.g. Zn-air):
Discharge Anode: 2705y — 2Zn** + 4e”
Cathode: 0, + 2H,0 + 4e~ — 40H™ ORR
Overall: 2Zns) + 0y + 2H,0 = 2Zn** + 40H™
§ Moo G (@ Duros Charge Anode: 2Zn*t +4e” — 2Zns)
Zn-air battery schematic Cathode: 40H™ — 0, +2H,0 + 4e~ Oxygen Evolution Reaction
(OER)
Overall: ~ 2Zn** +40H™ - 2Zn(s + 0, + 2H,0
Alkaline Electrolyzer:
Anode: 40H™ — 0, +2H,0 + 4e” OER
Cathode: 4H,0 + 4e~ — 2H, + 40H~ Hydrogen Evolution Reaction
(HER)

Electrolyzer schematic

Overall: 4H,0 — 2H, + 0,



Nanoscale Electrocatalysts ) e,

Approach: Develop new nanoscale non-PGM electrocatalysts

Graphene/Ni-a-MnO, MnOx/PEDOT PEDOT Ni,Co;,0,
Cu-a-MnO, Nanowires Thin Films <% Thin Films

Graphene [Nanowire/ Nafion',

(ORR/OER): ACS Appl. Mater. Interfaces 2016, in prep., ACS Appl. Mater. Interfaces 2015, Chem. Commun. 2015, J. Phys. Chem. C
2014, Electroanal. 2013, ACS Nano 2012, Chem. Commun. 2012: (HER/OER): J. Mater. Chem. A 2016 submitted, RSC Adv. 2015




Oxygen Reduction Reaction
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2HO; " (3g) = 20H " (3q) + 05 (g

Direct 4 e  reduction n=4
02 (g) + 2H20 (|) + 4e T —> 40H _(aq)
2 e reduction to form peroxide n=2 Electrocatalyst
O; g + H,0 ) +2e° — HO,™ (5 + OH ™, r—
Indirect2 +2=4 ¢ methodology
r;:ferendce | r‘oTTing disk
electrode ’ counter
H02 ) (aq) + H20 (1) + 29 T — 3OH - (aq) electrode
Disproportionation ;_ d ' - l
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Oxygen Reduction Reaction )

Formation of surface hydroxide

4+()2- - 3 - -
Mn™0%) + Hy0 (5q) + €= Mn*'-OH~, + OH,,

Displacement of surface hydroxide

Mn3+—0H_(s) + 02 (g)adsorbed + e — Mn4+—0—02_ (S) + OH_ (aq)

Formation of surface peroxide

4 2— - 3 - -
Mn +—0—0 (S) + Hzo(aq) + e — Mn +—0—0H (S) + OH (aq)

Formation of surface oxide

Mn3**-0-OH-, + &= — Mn* 0%, + OH—,,,

Mn(Il1)/Mn(IV)
T




RDE Electrode Data
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What factors are important for MnOx? ) e

> Size:

» Morphology:

» Phase: (a-MnO, vs. 3-MnQO, vs. y-MnO,)
» Valency: Mn(ll1l)/Mn(IV) ratio

» Conductivity: (Doping, Hybridize with NPs, Carbon,
semi-conducting polymers)

= Composite Catalysts




Manganese oxide Nanowires ) i
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An effective catalyst must facilitate O, adsorption and HO,- decomposition

Phase: a
1} —particles
|~ nanowires

0 } —nanospheres
i | — without carbon
= 1l
oS-
<< !
£}

3t 2500 rpm

4}

Size: nm MnO, > pm MnO, 06 04 02 00 02
E/V vs. Ag/AgCI

L 4 nanospheres

ik ® particles

o nanowires

Morphology: nanowires/spheres > nanoparticles b

Bulk particles

'.' 3r
7.9 m?/g 32.9 m?/g 40.1 m?/g
000 002 004 006 008 010 042
F. Cheng, et al. Chem. Mater. 2010, 22, 898-905 o2/ rad12s!?




Ni- and Cu-a-MnO, Nanowires )
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I VI Hydrothermal synthesis \Y; vV
MnSO4-H20 + (Ni/Cu-SO4-H,0) + KMnOa4 > Ni-a-MnO, or Cu-a-MnO,

140° C,12-120 h

> B VU VEPUULCI - - >

o
300

2°°WLTEL
100

o
300

100

o

00-44-0141

Intensity

10 20 30 40 50 60 70 80
2-Theta (°)
0.5 4500
ol ~ " 4000
05 < 500!
T 3000
1 | g
Ll MnO, 5 2500 |
o 2000
20 CUM“OZ j g 1500
NiMnO, £ 10w
%600 -500-400 300200100 0 100 200 2004 006 008 01 012 0.14
Potential [mV vs Hg/HgO] rad"?s"?

a-MnO,: n=3.1

For highly active a-MnO, see: F. Cheng et al. Chem. Mater. 2010, 22, 898-905.




What is role of metal ion (Cu)dopant ?

—
N

A/lcm

— -0.001

y

-0.0015
-0.002

-0.0025

Current densit

-0.003

-0.0005 -

Increasing
Cu content

2500 rpm
0.1 M KOH
0,

Average 1:1
Average 1:0.5
—— Average 1:0.25

Sandia

A National

Laboratories

Series of Cu-a-MnO, NW electrocatalysts
Ratio | Onset n Current | Half- | Rate Rct
Mn:Cu (mV) (e-) density | wave | (cm/s) (Q)
(mA/cm? | (mV)

) .
1:0.25 | -107.7 | 3.28 -1.93 -312 | 0.0078 | 5744 |:
1:0.5 -97.3 | 3.31 -2.14 -303 | 0.0097 | 4380 |.
1:1 -100.3 | 3.20 -2.82 -292 | 0.019 | 3430 |.
v

-0.6

-0.5 04 -03 -0.2 01 0 01 0.2

Potential [V vs. Ag/AgCl]

« Smaller crystallite size
« Lattice volume expansion

* More Covalent bonding
« Higher Mn3*/Mn#* ratio

« Conductivity ?

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.




Electronic Effects of Cu ?
AE Mn 3s splitting correlates with Mn3*/Mn4*

4.7 ;
XPS [ yan | '
AE Mn 3s AE =[ 4.62eV E_ 4.65 B -
Cu-2.92 s _+_
s
™ 455} 1
[
=
|-|<JJ 457
Cu-2.39
4.45 |
wn 4'40 0:1 0:2 0:3 014 I:II.5 0:6 0:7 0.8
& Surface % Cu, XPS
Cu-1.30 Y
s | [l
S asf +
)
Mn02 ‘5 4.55
=
|-|<-j| 45¢
445+
94 92 90 88 8 84 82 80 T R
Binding Energy (eV) Bulk % Cu, AAS

* Increasing copper leads to increasing surface Mn3*

* Increasing Cu leads to better electrocatalyst
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Electron Configuration of Mn3*

d“ and d” are most active metal ions in O, B-site of perovskite oxide catalysts
=> relevant to our Mn3* here.

d4 = High Spin in Octahedral coordination

0z o2
Oxygen - 02-/;"'} I v‘.,u\
Mn3* (Mn3+‘
o c|>2- 0z
gt ’Ilr. :
Transition metal (B-site) Lanthanide (A-site) d f Id . h d_manifold in
: -manifold wit
S d*4: d-manifold : tetragonal
@25pA0m;; > oxygen ligands
1.0 3 (hl hs In) symmetry
@ 05 g §oM gn sp (high spin)
?i 0.8 _,_:_' - ‘-J "3;:(? & e _________________________ — X -y
SEEE RN & — 4B 4+ d
ol 5 8 Y4 44 hd L
IlaCato, B Y lamNo, T 4_4_4_125::: ------------------ dxy
0.6 T T T T L — BT e 4—4—
1 2 3 4 5 6 7 8 9 d
d-electron Xz, yz

Adapted from J. Suntivich et al. Nature
Chemistry. 2011. 3, 546-550.




The role of Mn3*/Mn* Couple ) S,

H,0 + e * The transfer of the e, electron during

O—M"‘“'—O the OH/0,% exchange drives the
reaction forward
e n OH- .
e O, adsorption energy trends of Mn-O,

can be approximated by those of Mn-O*

OH-
O— Mh*—0 O—Mn*—0 Hence more t_:ov§lent structures should
have faster kinetics (as observed)
O, +e
ooz Rate-limiting step
—_— 4+ -
H,O + e O Mn O * (0-0) & x*(0-O)
dze_T_ 4 dzg_” !
Mn3*: d4 ion =
High Spin in Octahedral coordination Mn3-OH- + O, + & —> Mn*-00% 4+ OH

*Adapted from: J. Suntivich et al. Nature Chemistry 2011 3, 546-550.




Conductivity effects of M"*? ) B,

Charge transfer resistance values suggest increased conductivity
As Prepared Dispersed NWs Electrical Contacts

Ni-a-MnO,

G-Mn02
Ni-a-MnO,
Cu-a-MnO,

CY15 CINT User Proposal:
w/Brian Swartzentruber
and Collin Delker

47 nanowire devices were prepared
and tested (R=AV /1)

Population

=] = (5] w E=Y wm =4 -l (=]

Temperature Dependent measurements - W - B PV
pending Lo s s s e




Increase Electrocatalysis with carbon @i,

Cu-a-MnO, NWs / GLC / Nafion

N 0.1 M KOH
§ -1 0, 4
E
-2 4
:l? CuMnO,/GLC
7))
o 3 NiMnO,/GLC oLc:
E Conc.1uctivity =259 S/cm
Surface Area (carbon) = 900-1000 m?/g
ch 20% P/C Excellent Dispersion of NWs
= 4 i
(_:)‘ Cu-a-MnO, NWs / Vulcan XC-72/ Nafion

. P 4 g P T Wy .J.
P 7 oy ;

-5
-600 -500 -400 -300 -200 -100 0 100 200
Potential [mV vs. Hg/HgO]

Cu-MnO,: 78% of current obtained by Pt/C, n= 3.9

Ni-MnO,: 91% of current obtained by Pt/C, rate = 3.50 x 10-2cm/s
Pt/C rate = 3.24 x 10-2cm/s . DU

CuMnO, outperforms Pt/C in the potential range of -127 mV to -267 mV Vulcan:

Conductivity = 107.5 S/cm
For GLC (Prof. JM Tour@ Rice) synthesis see: Surface Area (carbon) = 230-250 m?/g
Z. Jinetal. J. Am. Chem. Soc. 2010, 132, 15246-15251. Poor dispersion of NWs




What about intrinsically conductive polymers? (i) i
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AE,=0.75V vs. SCE
® ® oX
o o ® . >
° °
o ¢ o o
°
o o o ® o ¢

¢ SDS ¢ LiCIO,-3H,0 ¢ EDOT * Mn(OAc),

Hydrous o o

MnO,
e PEDOT 4 s\

PEDOT discovered in 1980’s

Prepared via chemical or electrochemical methods

« Highly Conductive ~1-100 S cm~' and stable
« PEDOT/PSS as replacement for Nafion (PEM fuel cells)

« PEDOT is catalyst for ORR in alkaline — limited literature

« MnOXx/PEDOT studied extensively for super-capacitors
Core-shell structures vs. Good dispersion

* Perfect Project for a HS Student ! (Kaitlyn Eldred)




Mass (ng cm?)

MnOx/PEDOT composite thin films for the ORR (i) iim
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SVATA

S

AE,, =0.75V vs. SCE

Sakmeche et al.
Chem. Commun. 1996, 24,
2723-2724.

* SDS ¢LiClO,-3H,0¢ EDOT ® Mn(OAc),

70

60
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40

30

20

10

QCM
MnOX/PE .
DOT 5"
MnOx
“#PEDOT :
05 1 15 2 25 3 3.5

Time (minutes)

>

PEDOT

Hydrous o ‘

o
MnO,
e PEDOT *FZ/S\Q‘




MnOx/PEDOT composite thin films for the ORR (i) o

<—-ﬁ PEDOT
—_— / \
] AE,, =0.75 V vs. SCE Hydrous g o
[ oX - "
o e . > MnOx
° o ® : / \
° e PEDOT
e ® ® o L S n
* SDS °LiClO,-3H,0° EDOT ¢ Mn(OAc),
EDS
100 | T T T T T T
n 100__ =8.9224 + 0.73244x R=0.99947
g0 | A so—jy=15.153+0.095386x R=0.99684 |
2
E 60 |
- S
3 ﬂ £ 1
A
o
O 40 { i
ao 2ln 40 GICI 50 160 11;0 140
20 H Deposition time (seconds)
0 v 1 1 1 1 1
0 1 2 3 4 5

Energy (keV) 87nm @80s J111nm@ 120 s




RDE Electrode Data

idisk (mA cm'z)
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Onset Value

Half wave potential

Slope ~ kinetics

Diffusion limited current

Mass loading
Rotation rate
Scan rate




MnOx/PEDOT composite thin films for the ORR (i) iim
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0r €----- Onset
0.4 |
£
: 08 | Fmm————- Half wave
E
. Y A IR e Slope ~ kinetics
~ 42l 20% Pt/IC i
nOx/PE
DOT
1.6 <----- ==———-- Diffusion limited current

03 04 05 06 07 08 09 1

40 pg cm?2 E (V vs. RHE)
400 rpm
5mV s
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MnOXx/PEDOT composite thin films for the ORR () im
Disk Ring
0 Ll I I I I I 1 I I
0.15 i
-0.4
.g “.‘E
< 0.8 : 0.1 -
E E
<> 42 20% Pt/C =
0.05 MnOx -
nOx/PE
DOT MnOx/PEDOT
-1.6 0 210% PtIC \g
03 04 05 06 07 08 09 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40 ug cm2 E (V vs. RHE) Disk/Ring: E (V vs. RHE)
400 rpm C/Pt
2mV s C/Au
C/IC




MnOx/PEDOT composite thin films for the ORR
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80

70

Peroxide percentage

10 -

Peroxide formed

60

PEDOT  /

MnOx

Pt/C

MnOx/PEDOT

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E (V vs. RHE)

%H,0, = 200 (I/N) / (In/N+I)

ne )

3.8

2.8

n value

e ————

3.92 - 3.86
MnOx/PEDOT

- PEDOT

2.6 |

2.96

~

0.3 04 0.5 06 0.7 0.8 0.9

E (V vs. RHE)

n = 4 (I)/(Io+1/N)




MnOx/PEDOT composite thin films for the ORR (i) o

Oxygen reduction reaction Electrochemical Impedance

(O2 + 2H20 + 4e- = 40H") 200 Spectroscopy
o PEDOT MnOXx
IRCT= 3117l o - RCT=478
0.4 s} o "
n E " . "
£ .
(T g - " auEm, . -
<E: -0.8 2 100 . . g
g N_§ L L™ " = -ﬁ
— ) u
1.2 20% PC . <" * MnOx/PEDOT "
n=3.98 50 | - R. =3610 -
nOx/PE = CT ™ "
1.6 DOT | 20% Pt/C
1 1 1 1 1 ln - 31.92 0 L RCT = 1394 Q
03 04 05 06 07 08 09 1 0 100 200 300 400 500
40 ug cm2 E (V vs. RHE) i, wave Zm“ (Q sz)
400 rpm
2mV s

Composite improvement over components alone — synergism




MnOx/PEDOT composite thin films for the ORR (i) iim
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Mn3+-l)Mn4+ Bulk EDOT

I I |
0.0004 - \MInOx
2+ 3+
—~ 0.0002 L PEDOT Surface bound Min®=Nn
< MnOx/PEDOT
0 pmmm— -
-0.0002 L
-1 -0.5 0 0.5 1
E (V vs. SCE) 0.75V
Optimize Potential Optimize Concentration
0.85 — 0.8 -1.65 ; . . : 3.75
Eonset 10.75 m —~ -16 ¢ 4{3.7
o o8t — 07 B s
I . T O 155 4 3.65
Y 5 E -
g 0.75 0.65 CDA v_ 15 ) 36 ?
a ) 0.6 f .é lterminal n -
5 @ 5 -1.45 [ {3.55
g E,, loss & g
w® 0.7 1/2 r:F1 S L. |35
) 05
-1.35 L L L L 3.45
0.65 L L L L . L 0.45 0 5 10 15 20 25
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 MnZ]  (mM)
(V VS. SCE) deposition

deposition




MnOx/PEDOT composite thin films for the ORR (i) iim
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ORR ORR half ORR Mass n value | Rotation
onset wave terminal loading (e7) rate
potential | potential mass (mg cm?) (RPM)
(Vvs. (V vs. activity
RHE) RHE) (mA mg™)
[terminal
potential
vs. RHE]
MnO_/PEDOTO 0.877 0.825 -40.425 0.040 392 400
025 V] MnOx/PEDOT is most active
PEDOT- 0.707 0575 0014 352.1 39 500 PEDOT cata IyStS to date
CoMn,0,' [0.26 V]

hammze | s | T (Onset, half wave and terminal current)

HPCF-800° 0.757 0732 -19.635 0.153 37 400
[0.16 V]
PEDOT/rGO/ 0.807 0.727 -15.833 0.120 33— 400 Promisi ng as Pt/C alternative
[0.16 V] 338 .
H,50," for alkaline ORR
PEDOT double- | 0.657 0557 3531 0354 292 900
layer bowls® [-0.24 V]
GC/PEDOTIL® | 0635 0535 NDY ND 2 400
[0.03 V]
PEDOT’ 0.702 0397 170 0.1 ND ND
[0.06 V]
VPP-PEDOT? 0732 0.544 ND ND ND 1500
[0.06]
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PEDOT/MnOx electrocatalysts ) 5.
| |

|| Summary
AE,, =0.75V vs. SCE Hydrous
: > MnO,
[ ]
. e PEDOT
[

o —
= Simple electrodeposition

24| PEDOT | = MnO,/PEDOT >> PEDOT or MnOx

) g = Synergistic behavior observed

< T

& = MnO,/PEDOT (n = 3.92) on par with
~ a2 20% Pt/C Pt/C (n = 3.98)

nOx/P| = |CPs as potential replacement for C ?

1.6 EDOT |

03 04 05 06 07 08 09 1
E (V vs. RHE)
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What factors are important ? h) s

» Size: Nano >Micro
» Phase: a-MnO, > (3-MnO, > y-MnO,

F. Cheng, et al.
Chem. Mater. 2010, 22, 898—905

7.9 mlg '32.9m2g 40.1 m2/g
> Valency: Mn(lI1)/Mn(IV) ratio o Jra0_om oy 70
0¥ | ¥ 0. o 0(?\0

» Conductivity (Doping, Hybridize with NPs, carbon)
~ D.J.DavisetalJ Phys Chem C.2014, 118 17342-17350.




What about intrinsically conductive polymers? (i) i
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AE,=0.75V vs. SCE
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¢ SDS ¢ LiCIO,-3H,0 ¢ EDOT * Mn(OAc),

Hydrous o o

MnO,
e PEDOT 4 s\

PEDOT discovered in 1980’s

Prepared via chemical or electrochemical methods

« Highly Conductive ~1-100 S cm~' and stable
« PEDOT/PSS as replacement for Nafion (PEM fuel cells)

« PEDOT is catalyst for ORR in alkaline — limited literature
« MnOXx/PEDOT studied extensively for super-capacitors

* Perfect Project for a HS Student ! (Kaitlyn Eldred)




What about intrinsically conductive polymers? (i) i
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¢ SDS ¢ LiCIO,-3H,0 ¢ EDOT * Mn(OAc),

Hydrous o o

MnO,
e PEDOT 4 s\

PEDOT discovered in 1980’s

Prepared via chemical or electrochemical methods

« Highly Conductive ~1-100 S cm~' and stable
« PEDOT/PSS as replacement for Nafion (PEM fuel cells)

« PEDOT is catalyst for ORR in alkaline — limited literature
« MnOXx/PEDOT studied extensively for super-capacitors

* Perfect Project for a HS Student ! (Kaitlyn Eldred)




MnOx/PEDOT composite thin films for the ORR (i) iim
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PEDOT

Hydrous o o
MnO,

AE,, =0.75V vs. SCE

>

Sakmeche et al.
Chem. Commun. 1996, 24,
—® ©® o o *5s 2723-2724.

* SDS ¢LiClO,-3H,0¢ EDOT ® Mn(OAc),

e PEDOT

SEM
QCM

~
o
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MnOx

Mass (ug cm™)
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-
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Electrochemical Analysis ) e,
Rotating DISk EIectrode (RDE) Studles
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Overlay
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20,0015 2 i
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Conductivity effects of M"*? ) B,

Charge transfer resistance values suggest increased conductivity

Copper Nickel
Cu-1.3: 5744 + 1925 Q **Ni-2.0: 7919 Q
Cu-2.4:4380+ 796 Q Ni-4.4: 4840 Q

Cu-2.9: 3430 + 1136 Q

As Prepared Dispersed NWs Electrical Contacts

Ni-a.—Mn02

4-point conductivity measurements

CY15 CINT User Proposal:
w/Brian Swartzentruber and Collin Delker




Conductivity effects of M"*?

2ug Dilute w/ IPA  2.1-4.2mg Drop on '
powder/LIPA 160-320x  powder/LIPA  Oxide/Si

(o] (o] (@]
Spin Bilayer, Electron Beam H Develop - a
— ~ —— <
Photoresist Lithography %)LO 1MIBK:3IPA ‘;i./
n
Metal Deposition _ Lift-Off of Appl
— —_——— pply up to 20 V
140-170 nm Au / Photoresist Measure Currentand R = av
over 10 nm Ti — in Acetone / Calculate Resistance I

Sandia
National
Laboratories

Population




