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Electrocatalysis in energy devices

Fuel cell schematic

Zn-air battery schematic

Electrolyzer schematic

Catalysts: environmentally benign, earth-abundant, and overall potentially cost effective



Nanoscale Electrocatalysts
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(ORR/OER): ACS Appl. Mater. Interfaces 2016, in prep., ACS Appl. Mater. Interfaces 2015, Chem. Commun. 2015, J. Phys. Chem. C 
2014, Electroanal. 2013, ACS Nano 2012, Chem. Commun. 2012: (HER/OER): J. Mater. Chem. A 2016 submitted, RSC Adv. 2015 

Approach: Develop new nanoscale non-PGM electrocatalysts



Oxygen Reduction Reaction

Direct 4 e- reduction

O2 (g) + 2H2O (l) + 4e - → 4OH –
(aq)

O2 (g) + H2O (l) + 2e - → HO2
-

(aq) + OH –
(aq)

2 e- reduction to form peroxide

HO2
-

(aq) + H2O (l) + 2e - → 3OH –
(aq)

Indirect 2 + 2 = 4 e-

Disproportionation

2HO2
-

(aq) → 2OH -
(aq) + O2 (g)

Electrocatalyst

RDE/RRDE 
methodology

n = 4

n =2



Oxygen Reduction Reaction

Formation of surface hydroxide

Mn4+O2–
(s) + H2O (aq) + e–→  Mn3+–OH–

(s) + OH–
(aq)

Mn3+–OH–
(s) + O2 (g)adsorbed + e– → Mn4+–O–O2–

(s) + OH–
(aq)

Displacement of surface hydroxide

Mn4+–O–O2–
(s) + H2O(aq) + e– → Mn3+–O–OH–

(s) + OH–
(aq)

Formation of surface peroxide

Formation of surface oxide

Mn3+–O–OH–
(s) + e– → Mn4+O2–

(s) + OH–
(aq)

Mn(III)/Mn(IV)



RDE Electrode Data

A

B

D
C

Mass loading
Rotation rate
Scan rate

Onset Value 

Half wave

Diffusion limited current

Slope ~ kinetics

onset

half wave



What factors are important for MnOx?

 Size: 

 Morphology:

 Phase: (α-MnO2 vs. β-MnO2 vs. γ-MnO2)

 Valency: Mn(III)/Mn(IV) ratio

 Conductivity: (Doping, Hybridize with NPs, Carbon,
semi-conducting polymers)

= Composite Catalysts

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.



Manganese oxide Nanowires

α-MnO2 β-MnO2 -MnO2

An effective catalyst must facilitate O2 adsorption and HO2
- decomposition

Phase:

Size: nm MnO2 > m MnO2 

> >

Morphology: nanowires/spheres > nanoparticles

F. Cheng, et al. Chem. Mater. 2010, 22, 898–905

Bulk particles Nanowires Nanospheres

7.9 m2/g 32.9 m2/g 40.1 m2/g



Ni- and Cu-α-MnO2 Nanowires

For highly active -MnO2 see:  F. Cheng et al. Chem. Mater. 2010, 22, 898-905.

MnSO4·H2O + (Ni/Cu-SO4·H2O) + KMnO4 Ni-α-MnO2 or Cu-α-MnO2

Hydrothermal synthesis

140°C, 12-120 h

EDS: Cu Map

(002)

(200)

Cu-MnO2

73.6 m2 g-1

54.1 m2 g-1

43.7 m2 g-1

VIIII IV IV

00-44-0141 

n = 3.4

n = 3.5

-MnO2: n = 3.1

T.N. Lambert et al. Chem. Commun. 2012 48, 7931-7933.



What is role of metal ion (Cu)dopant ?

Ratio
Mn:Cu

Onset 
(mV)

n
(e-)

Current 
density
(mA/cm2

)

Half-
wave
(mV)

Rate
(cm/s)

Rct
(Ω)

1:0.25 -107.7 3.28 -1.93 -312 0.0078 5744

1:0.5 -97.3 3.31 -2.14 -303 0.0097 4380

1:1 -100.3 3.20 -2.82 -292 0.019 3430

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.

Cu(%)--MnO2

Increasing
Cu content

2500 rpm
0.1 M KOH
O2

Series of Cu--MnO2 NW electrocatalysts

• Smaller crystallite size
• Lattice volume expansion
• More Covalent bonding
• Higher Mn3+/Mn4+ ratio
• Conductivity ?



Electronic Effects of Cu ?

MnO2

Cu-1.30

Cu-2.39

Cu-2.92
ΔE =  

XPS
ΔE Mn 3s

 Increasing copper leads to increasing surface Mn3+

 Increasing Cu leads to better electrocatalyst

ΔE Mn 3s splitting correlates with Mn3+/Mn4+ 

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.



Electron Configuration of Mn3+

Adapted from J. Suntivich et al. Nature 
Chemistry. 2011. 3, 546-550.

Mn3+

O2-

O2-
O2-

O2-

d4 : d-manifold
d-manifold with
oxygen ligands

(high spin)

Mn3+Mn3+

O2-

OH-

O2-

O2-

d-manifold in 
tetragonal 
symmetry
(high spin)

dz
2

dxy

dxz, yz

dx
2
-y

2

eg

t2g

O2- O2-

O2-O2-

d4 = High Spin in Octahedral coordination

d4 and d7 are most active metal ions in Oh B-site of perovskite oxide catalysts
 relevant to our Mn3+ here.

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.



The role of  Mn3+/Mn4+ Couple

Mn3+-OH- Mn4+-OO2-

Rate-limiting step

Mn3+ : d4 ion = 
High Spin in Octahedral coordination

*Adapted from: J. Suntivich et al. Nature Chemistry 2011 3, 546-550.

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.

 The transfer of the eg electron during 
the OH-/O2

2- exchange drives the 
reaction forward

 O2 adsorption energy trends of Mn-O2

can be approximated by those of Mn-O*

 Hence more covalent structures should 
have faster kinetics (as observed)



Conductivity effects of Mn+ ?
Charge transfer resistance values suggest increased conductivity

200 nm

Dispersed NWs

1 µm

Ni-α-MnO2

As Prepared Electrical Contacts

α-MnO2

Ni-α-MnO2

Cu-α-MnO2

P
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u
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ti

o
n

Log(R)

CY15 CINT User Proposal: 
w/Brian Swartzentruber
and Collin Delker

47 nanowire devices were prepared 
and tested (R = ΔV / I)

Temperature Dependent measurements
pending 

J. A. Vigil et al. manuscript in preparation



Cu-MnO2: 78% of current obtained by Pt/C, n = 3.9
Ni-MnO2: 91% of current obtained by Pt/C, rate = 3.50 x 10-2 cm/s

Pt/C rate = 3.24 x 10-2 cm/s
CuMnO2 outperforms Pt/C in the potential range of  -127 mV to -267 mV 

Increase Electrocatalysis with carbon

1 µm

Cu--MnO2 NWs / GLC / Nafion

GLC:
Conductivity = 2.59 S/cm
Surface Area (carbon) = 900-1000 m2/g
Excellent Dispersion of NWs 

1 µm

Cu--MnO2 NWs / Vulcan XC-72/ Nafion

Vulcan:
Conductivity = 107.5 S/cm
Surface Area (carbon) = 230-250 m2/g
Poor dispersion of NWs 

T.N. Lambert et al. Chem. Commun. 2012 48, 7931-7933 

For GLC (Prof. JM Tour@ Rice) synthesis see: 
Z. Jin et al. J. Am. Chem. Soc. 2010, 132, 15246–15251.

NiMnO2

CuMnO2

20% Pt/C

2500 rpm
0.1 M KOH
O2

CuMnO2/GLC

NiMnO2/GLC



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

What about intrinsically conductive polymers? 

PEDOT

Mn(OAc)2EDOT

ΔEox = 0.75 V vs. SCE

SDS LiClO4
● 3H2O

Hydrous 
MnOx

S

OO

n

• PEDOT discovered in 1980’s

• Prepared via chemical or electrochemical methods

• Highly Conductive ~ 1-100 S cm−1 and stable

• PEDOT/PSS as replacement for Nafion (PEM fuel cells)

• PEDOT is catalyst for ORR in alkaline – limited literature

• MnOx/PEDOT studied extensively for super-capacitors
Core-shell structures vs. Good dispersion

• Perfect Project for a HS Student ! (Kaitlyn Eldred)



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

PEDOT

Mn(OAc)2EDOT
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SEM
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200 nm
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PEDOT
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Sakmeche et al. 
Chem. Commun. 1996, 24, 

2723-2724.

200 nm

120 s



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

PEDOT

Mn(OAc)2EDOT

ΔEox = 0.75 V vs. SCE

SDS LiClO4
● 3H2O

Hydrous 
MnOx

S
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n

MnS

S
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111 nm @ 120 s87 nm @ 80 s

Avg d = 58 nm @ 40 s

Cross sectional analysis
EDS

PEDOT



RDE Electrode Data

A

B

D
C

Mass loading
Rotation rate
Scan rate

Onset Value 

Half wave potential

Diffusion limited current

Slope ~ kinetics



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

PEDOT

MnOx

MnOx/PE
DOT

20% Pt/C

40 μg cm-2

400 rpm
5 mV s-1

Onset

Half wave

Diffusion limited current

Slope ~ kinetics



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

PEDOT

MnOx

MnOx/PE
DOT

20% Pt/C

40 μg cm-2

400 rpm
2 mV s-1

Disk Ring

PEDOT

MnOx/PEDOT

20% Pt/C

MnOx

Disk/Ring:
C/Pt
C/Au
C/C



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

Peroxide formed n value

3.92 – 3.86
MnOx/PEDOT

Pt/CMnOx/PEDOT

MnOx

PEDOT
3.98

3.68
MnOx

2.96
PEDOT

Pt/C

n = 4 (ID)/(ID+IR/N)%H2O2 = 200  (IR/N) / (IR/N+ID)



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

MnOx/PEDOT composite thin films for the ORR

PEDOT
n = 2.96

MnOx
n = 3.68

MnOx/PE
DOT

n = 3.92

20% Pt/C
n = 3.98

40 μg cm-2

400 rpm
2 mV s-1

Oxygen reduction reaction
( O2 +  2H2O  + 4e- = 4OH- )

MnOx/PEDOT
RCT = 361 Ω

20% Pt/C
RCT = 394 Ω

MnOx
RCT = 478

PEDOT
RCT = 3117

Electrochemical Impedance 
Spectroscopy

i 1/2 wave

Composite improvement over components alone → synergism
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MnOx/PEDOT composite thin films for the ORR

←

←

← ←

MnOx
PEDOT
MnOx/PEDOT

Optimize Potential Optimize Concentration

iterminal

Eonset

E1/2

n

Mn2+Mn3+

Mn3+Mn4+

Surface bound

Bulk EDOT

0.75 V
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MnOx/PEDOT composite thin films for the ORR

MnOx/PEDOT is most active
PEDOT catalysts to date

(Onset, half wave and terminal current)

Promising as Pt/C alternative 
for alkaline ORR



PEDOT/MnOx electrocatalysts

 Simple electrodeposition

 MnOx/PEDOT >> PEDOT or MnOx

 Synergistic behavior observed

 MnOx/PEDOT (n = 3.92) on par with 
Pt/C (n = 3.98)

 ICPs as potential replacement for C ?

Summary

PEDOT

Mn(OAc)2EDOT

ΔEox = 0.75 V vs. SCE

SDS LiClO4
● 3H2O

Hydrous 
MnOx

PEDOT

MnOx

MnOx/P
EDOT

20% Pt/C
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What factors are important ?

 Size: Nano >Micro
 Phase: α-MnO2 > β-MnO2 > γ-MnO2

 Morphology

Valency: Mn(III)/Mn(IV) ratio

 Conductivity (Doping, Hybridize with NPs, carbon)

α-MnO2 β-MnO2 -MnO2> >

Bulk particles Nanowires Nanospheres

7.9 m2/g 32.9 m2/g 40.1 m2/g

F. Cheng, et al. 
Chem. Mater. 2010, 22, 898–905

D. J. Davis et al. J. Phys. Chem. C. 2014, 118, 17342-17350.
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What about intrinsically conductive polymers? 

PEDOT

Mn(OAc)2EDOT
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• PEDOT discovered in 1980’s

• Prepared via chemical or electrochemical methods

• Highly Conductive ~ 1-100 S cm−1 and stable

• PEDOT/PSS as replacement for Nafion (PEM fuel cells)

• PEDOT is catalyst for ORR in alkaline – limited literature

• MnOx/PEDOT studied extensively for super-capacitors

• Perfect Project for a HS Student ! (Kaitlyn Eldred)



J. A. Vigil et al. ACS Appl. Mater. Interfaces 2015, 7 (41), 22745–22750. 

What about intrinsically conductive polymers? 

PEDOT

Mn(OAc)2EDOT

ΔEox = 0.75 V vs. SCE

SDS LiClO4
● 3H2O

Hydrous 
MnOx

S

OO

n

• PEDOT discovered in 1980’s

• Prepared via chemical or electrochemical methods

• Highly Conductive ~ 1-100 S cm−1 and stable

• PEDOT/PSS as replacement for Nafion (PEM fuel cells)

• PEDOT is catalyst for ORR in alkaline – limited literature

• MnOx/PEDOT studied extensively for super-capacitors
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MnOx/PEDOT composite thin films for the ORR
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SEM

PEDOT

QCM

200 nm 200 nm

200 nm

40 s 80 s

120 s

PEDOT

MnOx

MnOx/PE
DOT

Sakmeche et al. 
Chem. Commun. 1996, 24, 

2723-2724.



a b

c d

Electrochemical Analysis
Rotating Disk Electrode (RDE) Studies

Overlay
2500 rpm

2.92% 
Cu

2.39% 
Cu

1.30% 
Cu

increasing 
Cu 
content



Conductivity effects of Mn+ ?
Charge transfer resistance values suggest increased conductivity

200 nm

Dispersed NWs Electrical Contacts

CY15 CINT User Proposal: 
w/Brian Swartzentruber and Collin Delker

** as determined from EDS

1 µm

Ni-α-MnO2

As Prepared

4-point   conductivity measurements

Copper Nickel
Cu-1.3: 5744 + 1925 Ω **Ni-2.0: 7919 Ω
Cu-2.4: 4380 + 796 Ω Ni-4.4: 4840 Ω
Cu-2.9: 3430 + 1136 Ω



Conductivity effects of Mn+ ?
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