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Abstract—This paper presents a high-level summary of the
architecture and early experience with Trinity, the first DOE ASC
Advanced Technology System (ATS). Trinity is a Cray XC40
supercomputer with planned delivery in two phases: a Haswell first
phase, with Knights Landing being added to phase 2. The paper
describes many aspects of the overall Trinity platform and project.
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1. INTRODUCTION

Trinity is the U.S. Department of Energy’s (DOE) Advanced
Simulation and Computing (ASC) major computing system.
Phase 1 of Trinity was delivered in fiscal year 2015. The system
is being procured and operated by the New Mexico Alliance for
Computing at Extreme Scale (ACES), a joint Los Alamos
National Laboratory (LANL) and Sandia National Laboratories
(SNL) partnership, and will be installed at LANL. ACES is
funded by the DOE’s ASC Program. Procurement of a major
system is a complex and time-consuming process, with the
Trinity contract awarded to Cray Inc. on July 9, 2014. The early
phase of the procurement was a joint effort with National Energy
Research Scientific Computing (NERSC).

Trinity is designed to support the largest, most demanding
Directed Stockpile Work (DSW) applications that support the
NNSA’s Stockpile Stewardship Program. ATS platforms are used
by applications from all three nuclear weapons laboratories, and
the mission need was developed with tri-lab input. The mission
need concentrates on increases in geometric and physics fidelities
in 3D, while satisfying analysts’ time-to- solution expectations.
The 3D weapon applications are mainly constrained by available
memory. The main driver for Trinity is the desire to run multiple
large jobs on the system. Trinity was the first DOE system
specified by memory, not by floating operations per second
(FLOPS).

The ASC national computing strategy defines two types of
systems [1]. The Commodity Technology Systems (CTS) are
robust, cost-effective systems that are designed to meet the day-
to-day simulation needs of the Stockpile Stewardship Program
(SSP).

The Advanced Technology Systems (ATS) are first-of-a-kind
systems that identify and foster technical capabilities and features
that are beneficial to ASC applications. These systems have a
dual purpose, to meet unique mission needs of the Stockpile
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Stewardship Program, and to help prepare the ASC Program for
future system designs. These are leadership-class systems, among
the largest in the world. When procuring an ATS there is a
tension between acquiring the right-sized platform to meet the
mission needs and pursuing promising new technologies. ATS
procurements include Non-Recurring Engineering (NRE) funding
to enable delivery of new technologies for leading-edge
platforms.

The ASC notational computing platform procurement
timeline is shown in Figure 1. The strategy includes deliberate
efforts to transition the application codes to each ATS platform.
Trinity is the first ATS procured by ASC.

Trinity NRE covers improved burst buffer software, advanced
power management, and the Trinity Center of Excellence (COE).
The COE directly supports modifying select applications for
Trinity, and is an essential element in making effective use of
Trinity.

Trinity is a single system that contains both Intel Haswell and
Xeon Phi Knights Landing (KNL) processors. It is based on the
Cray XC architecture. The Haswell partition, delivered in FY 15,
is well suited to existing codes and provides the immediate ability
to partially satisfy stockpile stewardship mission needs while the
application codes are modified for the KNL partition. The KNL
partition, delivered in FY16, results in a system significantly
more capable than current platforms and provides the application
developers with an attractive next-generation processor
architecture. The intentional mix of processor types (Haswell and
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Figure 1: The notational ASC computing platform timeline



KNL) results in a platform that meets both of the ATS
requirements, support of  large simulations for Stockpile
Stewardship Program with current ASC applications while
advancing the development and use of emerging programming
models and work flows.

II.  ARCHITECTURE

Trinity is a Cray XC40 supercomputer, with delivery over two
phases; phase 1 is based on Intel Xeon Haswell compute nodes,
and phase 2 will add Intel Xeon Phi Knights Landing (KNL)
compute nodes. The high level Trinity architecture is shown in
Figure 2.
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Figure 2: Trinity high-level architecture

Phase 1 was delivered and accepted in the latter part of 2016,
and consists of 54 cabinets, including multiple node types.
Foremost are 9436 Haswell-based compute nodes, delivering ~1
PiB of memory capacity and ~11 PF/s of peak performance.
Each Haswell compute node features two 16-core Haswell
processors operating at 2.3 GHz, along with 128GiB of DDR4-
2133 memory, spread across 8 channels (4 per CPU). Phase 1
also includes 114 Lustre router nodes (see Section Error!
Reference source not found.) and 300 burst buffer nodes (see
Section III.C).  Trinity utilizes a Sonexion-based Lustre
filesystem with 78 PB of usable storage and approximately 1.6
TB/s of bandwidth. However, due to the limited number of
Lustre router nodes in Phase 1, only about half of this bandwidth
is achievable. Phase 1 also includes all of the other typical
service nodes: 2 boot, 2 SDB, 2 UDSL, 6 DVS, 12 MOM, and 10
RSIP. Additionally, Trinity utilizes 6 external login nodes.

Phase 2 is scheduled to begin delivery in mid-2016. It adds
more than 9500 Xeon Phi Knights Landing (KNL) based
compute nodes. Each KNL compute node consists of a single
KNL with 16 GiB of on-package memory and 96 GiB of DDR4-
2400 memory. It has a peak performance of approximately 3
TF/s. In total, the KNL nodes add ~1 PiB of memory capacity
and ~29 PF/s peak performance. In addition to the KNLs, Phase
2 also adds the balance of the Lustre router nodes (108 additional,
total of 222) and burst buffer nodes (276 additional, total of 576).
When all burst buffer nodes are installed, they will provide 3.69
PB of raw storage capacity and 3.28 TB/s of bandwidth.

III. EARLY PERFORMANCE RESULTS

A. Application Performance

ACES management recognized the importance of good
application performance and setup as part of the four Trinity
SOW [1] performance related deliverables. They were completed
during Trinity Phase 1 acceptance in December 2015. Of the
four, ASC application code Capability Improvement (CI) metric,
measuring applications performance at near full scale was a
principal focus. The CI metric measured three application’s
performance improvement, defined as the product of an increase
in problem size, and/or complexity, and an application specific
runtime speedup factor over baseline measurement on NNSA’s
Cielo [2][3](a Cray XE6). For example, if the problem size
increases by a factor of eight and the run time speedup is 1.2, the
CI is 8x1.2=9.6. The three applications picked as representative
of the Tri-Lab workload are: SIERRA/Nalu [4] [S] (SNL),
PARTISN [6] (LANL), and, Qbox [7] (LLNL). For Trinity,
target performance for the CI metric is an average of eight, but
split into four for the Phase 1 Haswell partition and four for the
Phase 2 KNL partition. The second important acceptance
performance deliverable was a target of 400 on the Sustained
System Performance (SSP) metric [8], measured as a geometric
mean of the performance of eight applications. The third
deliverable was to run five chosen applications/benchmarks from
the SSP suite at near full scale of Trinity. This along with a
fourth deliverable to run several micro-benchmarks provided
excellent insight into performance and scaling characteristics of
Trinity. The sections below provide short descriptions of results
from Trinity Phase-1 performance acceptance tests. Further
details are available in [9].

To provide some context a short description of a few primary
factors that have an impact on performance follows. Trinity
nodes are set up to support Hyperthreads. Processor Turbo Boost
is turned on and the operating clock frequency varies with the
thermal load. Assuming a nominal 2.3 GHz operation, the peak
node double precision performance (7.67X of Cielo) is
32cores*16FLOPs/cycle*2.3 GHz = 1,177.6 GF/s/node. Each
core is capable of 16 DP FLOPs per cycle from the two 256 bit
AVX2 units with FMA. The software environment included
Craype 2.4.2, Cray Libsci 13.2.0, Cray Alps 1.8.3, Intel 15.0
compiler, Cray CCE 8.4.0 compiler, GNU 5.1.0 compiler and
Cray MPICH/7.2.5. Trinity is listed at 8,101 TF/s on top500.org
and 182.6 TF/s on hpcg-benchmark.org.

1) ASC  Capability
Performance

Improvement  (CI)  Application

SIERRA/Nalu is a low Mach CFD code that solves a wide
variety of variable density acoustically incompressible flows
spanning from laminar to turbulent flow regimes. The SIERRA
Mechanics [4] simulation code suite is the principal mechanics
code used by SNL in support of the U.S. Stockpile Stewardship
Program. Open source versions of Nalu (version 1.0.0) along
with the Trilinos solver (version 12.0.0) were used for this
benchmark. The test problem of interest is a turbulent open jet
(Reynolds number of ~6,000) with passive mixture fraction
transport using the one equation Ksgs LES model. The problem
is discretized on unstructured meshes with hexahedral elements.
The problem run on Cielo and Trinity is the R6 mesh that
consists of nine billion elements, with total degree-of-freedom
count approaching 60 billion. Two figures of merit were used;
both involve the solution of the momentum equations. The



speedups of the two metrics are weighted to produce a single
speedup factor for Nalu. The first figure of merit is the average
solve time per linear iteration. The second is the average matrix
assemble time per nonlinear step. Speedup is defined as:

Speedup = Speedup solve*0.67 + Speedup assemble*0.33

Runs of Nalu on 9300 nodes on Trinity and 8192 nodes of Cielo
were used for the CI computation. The excellent scaling of Nalu
on Trinity resulted in a performance gain of 4.26X for the
assembly time and a performance gain of 3.89X for the matrix
solve time, resulting in a CI metric value of 4.009.

The PARTISN particle transport code [6] provides neutron
transport solutions on orthogonal meshes in one, two, and three
dimensions. A multi-group energy treatment is used in
conjunction with the Sn angular approximation. Much effort has
been devoted to making PARTISN efficient on massively
parallel computers. The package can be used for time-dependent
calculations where even one simulation can run for weeks on
thousands of processors. The primary components of the
computation involve KBA sweeps and associated zero-
dimensional physics. The KBA sweep is a wave-front algorithm
that provides 2-D parallelism for 3-D geometries, and is tightly
coupled by dependent communications. Runs of PARTISN on
9418 nodes on Trinity, with an input of 11,520 zones/core were
compared to 8192-node baseline run on Cielo with an input of
2,880 zones/core. This gave a complexity increase of 9.19 and a
run time ratio of 0.512, resulting in the CI metric value for
PARTISN of 4.84.

Qbox is a first-principles molecular dynamics code used to
compute the properties of materials at the atomistic scale [7].
The main algorithm uses a Born-Oppenheimer description of
atomic cores and electrons, with valence electrons treated
quantum mechanically using Density Functional Theory and a
plane wave basis. Nonlocal pseudopotentials are used to describe
the core electrons and nuclei, and derived to match all-electron
single atom calculations outside of a given cutoff radius. The
computational profile consists primarily of parallel dense linear
algebra and parallel 3D complex-to-complex Fast Fourier
Transforms. The Qbox benchmark problem is the initial self-
consistent wavefunction convergence of a large crystalline gold
system (fcc, a0 = 7.71 a.u). The metric for this benchmark is the
maximum total wall time to run a single self-consistent iteration
with three non-self-consistent inner iterations. Runs of Qbox on
9418 nodes on Trinity, with an input of 8,800 atoms were
compared to 6,144-node baseline run on Cielo with an input of

2880 atoms. The computation complexity grows as the cube of
the number of atoms. This gave a complexity increase of 166.37.
The run time ratio was measured to be 0.208, resulting in a CI
metric value for Qbox of 34.7.

Figure 3 summarizes the measured CI performance for each of
the Tri-Lab applications and the average of the three
applications. The achieved average CI performance of 14.517
exceeds the target of 4.0 set for Phase 1. Investigations on
performance optimizations with input parameter changes and run
time optimizations such as threads per MPI rank and MPI task
rank ordering are available in [9].

2)  Sustained System Performance( SSP) benchmarks
A second performance goal was a target System Sustained
Performance (SSP) of 400. SSP [8] is computed using the
geometric mean of the run time of eight application benchmarks
at various scales as shown in Table 1. The measured performance
on Trinity running these applications was 500.

As part of acceptance, some of the SSP applications were run
at near full scale using “extra-large” inputs. This performance
data together with important micro-benchmarks like OMB, SMB,
STREAM, IOR, and PSNAP provide important insights into
Trinity performance. These are discussed in [9].
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Table 1: Trinity System Sustai

ned Performance (SST) results

Application Name MPI Tasks Threads |Nodes Used| Reference Tflops Time (seconds) Pi
miniFE(Total CG Time) 49152 1 1536 1065.151 49.5116| 0.014005964
miniGhost(Total time) 49152 1 1536 3350.20032 1.77E+01| 0.122949267
AMG(GMRES Solve wall Time) 49152 1 1536 1364.51 66.233779]  0.013412384
UMT(cumulativeWorkTime) 49184 1 1537 18409.4 454.057| 0.026378822
SNAP(Solve Time) 12288 2 768 4729.66 1.77E+02|  0.034793285
miniDFT(Benchmark_time) 2016 1 63 9180.11 377.77| 0.385726849
GTC(NERSC_TIME) 19200 1 300 19911.348 868.439| 0.076425817
MILC(NERSC_TIME) 12288 1 384 15036.5 393.597| 0.099486409
Geom. Mean=| 0.052990429
ssp=|  500.0176846
B. File System Performance
The Trinity parallel file system is implemented using the N-1 Read
Lustre-based Cray Sonexion 2000 product. The file system is 400000
divided into two equally sized scratch file systems. Phase 1 450000
consists of approximately one-half of the LNET routers, thus 400000 |
bandwidth performance is expected to be one-half of the fully
. 250000 = B
deployed phase 2 system. As part of acceptance, optimally tuned 2 IR
IOR benchmark runs were defined to achieve maximum g 200000 _
o . 150000 - - X 4M_Transfer_Size
performance. Maximum performance was evaluated while .
1 100000 — L = “8M_ Transfer Size
scaling stream counts per OST and processor counts per node.
The benchmark was run against both scratch file systems to 50000 1 IR0
verify functionality and performance. File-per-processor (N-N) 0"
o . . P P P OIS (@ o
IOR runs exhibited performance of 600 GiB/s using 8 streams per SER ISR A
OST and 2 processors per node . Optimally tuned shared file (N- Processor Count
1) IOR runs yielded performance of 350-400 GiB/sec using 32

processors per node and a transfer size of 8MiB. The file was
targeted to a Lustre directory striped nearly full ost count wide
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Figure 5: Trinity N-N read performance
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Figure 4: Trinity N-N write performance

Figure 7: Trinity N-1 read performance

with a Lustre stripe size of 8M to match the transfer size

Performance sweeps and IOR tuned to match application
patterns are shown in Figures 4 through 7. The tests were
executed on one of the two scratch file systems. Figure 4 shows
file-per-processor (N-N) write results using 32 processors per
node and transfer sizes of 4MB and 8MB. Peak performance of
411 GiB/s occurred at the 32K and 64K processor count. Read
performance peaked at 430GiB/s at a processor count of 64K, as
shown in Figure 5.

It should be noted that these plots do not necessarily represent
peak performance. In some cases, the rates shown are 15% lower
than previous identical runs. A post analysis showed that the file
system problems did exist during the execution of the tests.

The phase 1 acceptance test included a test to dump 0.8TiB in
20 minutes. This test was successful using IOR N-N targeting
both file systems simultaneously. The rates obtained were 686
GiB/s for write and 572GiB/s for read. This test used the optimal
8 streams per OST and 2 processors per node configuration
described previously.

The next set of performance sweeps were based on the N-1
/O pattern. Figure 6 shows N-1 write performance as processor
count is scaled over a widely striped directory. Peak N-1
performance of 307 GiB/s occurred at a processor count of 64k
and using a 4MiB transfer size.  Figure 7 shows the
corresponding read performance. Performance peaked at 337
GiB/s also at a processor count of 64K



To gain insight on the impact of Lustre DNE, metadata
performance was measured using mdtest targeting directories
hosted by all Metadata Servers (one directory per Metadata
Server). Results are shown in Figure 8. The goal of the test was
to create, stat, and delete 1 million files while varying processor
count. This test was run during acceptance and yielded peak
create, stat, and delete rates of 172k ops/s, 458k ops/s, and 259k
ops/s respectively.

C. Burst Buffer Integration and Performance

Trinity includes the first large scale instance of on-platform
burst buffers using the Cray DataWarp® product. Work on
integration with the Rhine/Redwood environment is on-going and
performance results will be provided as they become available.

The Trinity burst buffer is provided in two phases along with
the two phases of Trinity. The phase 1 burst buffer consists of
300 DataWarp nodes. This is expanded to 576 DataWarp nodes
by phase 2. In this section, unless otherwise noted, the phase 1
burst buffer will be described.

The 300 DataWarp nodes are built from Cray service nodes,
each with a 16 core Intel Sandy Bridge processor and 64
gigabytes of memory. Storage on each DataWarp node is
provided by two Intel P3608 Solid State Drive (SSD) cards. The
DataWarp nodes use the Aries high speed network for
communications with the Trinity compute nodes and for
communications with the Lustre Parallel File System (PFS) via
the LNET router nodes.

Each SSD card has 4 TB of capacity and is attached to the
service node via a PCI-E x4 interface. The SSD cards are over-
provisioned to improve the endurance of the card from the
normal 3 Drive Writes Per Day (DWPD) over 5 years to 10
DWPD over 5 years. This reduces the available capacity of each
card. The total usable capacity of the 300 DataWarp nodes is 1.7
PiB.

The DataWarp nodes run a Cray provided version of Linux
together with a DataWarp specific software stack consisting of an
enhanced Data Virtualization Service (DVS) server and various
configuration and management services. The DataWarp nodes
also provide a staging function that can be used to
asynchronously move data between the PFS and DataWarp.
There is a centralized DataWarp registration service that runs on
the Cray System Management Workstation (SMW). Compute
nodes run a DVS client that is enhanced to provide support for
DataWarp. The DataWarp resources can be examined and
controlled via several DataWarp specific command line interface
(CLI) utilities that run on any of the system’s nodes.

DataWarp can be configured to operate in a number of
different modes. The primary use case at LANL is to support
checkpoint and analysis files, these are supported by the striped
scratch mode of DataWarp. Striped scratch provides a single file
name space that is visible to multiple compute nodes with the file
data striped across one or more DataWarp nodes. A striped
private mode is additionally available. In the future, paging space
and cache modes may be provided. This section will discuss
LANL’s experience with striped scratch mode.

A DataWarp allocation is normally configured by job script
directives. Trinity uses the Moab Work Load Manager (WLM).
The WLM reads the job script at job submission time and records
the DataWarp directives for future use. When the requested
DataWarp capacity is available, the WLM will start the job. Prior
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Figure 6: Trinity N-1 write performance

to the job starting, the WLM uses DataWarp CLI utilities to
request instantiation of a DataWarp allocation and any requested
stage-in of data from the PFS. After the job completes, the WLM
requests stage-out of data and then frees the DataWarp allocation.
The stage-in and stage-out happen without any allocated compute
nodes or any compute node involvement. The DataWarp
allocation is made accessible via mount on only the compute
nodes of the requesting job. Unix file permissions are effective
for files in DataWarp and are preserved by stage-in and stage-out
operations.

A DataWarp allocation is normally only available for the life
of the requesting job, with the exception of a persistent DataWarp
allocation that may be accessed by multiple jobs, possibly
simultaneously. Simultaneous access by multiple jobs is used to
support in-transit data visualization and analysis use cases.

Correct operation of DataWarp in conjunction with the WLM
was achieved after several months of extended integration testing
on-site at LANL. Numerous fixes and functional enhancements
have improved the stability and usability of the DataWarp feature
on Trinity. Due to this effort, production use of DataWarp has
been limited as of early April, 2016.

IV. SYSTEMS MANAGEMENT AND INTEGRATION

A. ACES/Cray Collaboration

ACES and Cray have been collaborating on the
Rhine/Redwood (CLE 6.0/SMW 8.0) software release while it
was still in active development and through several beta releases
until the release of UP00 in December 2015. This collaboration
is unprecedented for Cray and it has proven to be very
successful. As new releases of CLE 6.0/SMW 8.0 became
available, system administrators at LANL would install, test, and
give feedback directly to the developers. Through this tightly
coupled collaboration, Cray was able to deliver a more refined
and administrator friendly version of both the CLE and the
SMW management tools because of the exposure of this product
to a customer in the field. More often than not, the developer’s
implementation on an internal system in a controlled
environment is not always adaptable to the customer managing a
Cray machine at a site. Because of the close relationship with
Cray, the LANL administrators had a rapid feedback cycle. The
early use of CLE 6.0 at LANL uncovered a variety of bugs and
design issues, as well as producing several new ideas which
improved the eventual deployment on Trinity. This collaboration



also provided invaluable experience to the system administrators
at LANL, who would eventually support Trinity in production.

B.  Early Experience with Rhine/Redwood

Trinity is the first Cray system to deploy the new CLE
6.0/SMW 8.0 system management software. This release pair is
a complete redesign and modernization of the software stack,
positioning Cray closer to industry standards than ever before.
However, this new design brings new challenges. At the heart of
Rhine/Redwood is an advanced ‘configurator’ which, paired with
the Ansible configuration management utility, handles the
complete prescription of all system components - from SMW to
compute and even external login nodes. The ACES systems team
has worked extensively with Cray to refine and guide the
development of CLE 6.0/SMW 8.0 (6.0/8.0) codenamed
Rhine/Redwood (R/R) so that it is functional, scalable, and its
system management is automatable. The ACES team has also
strived to see that the new release would be a more robust
product for the larger Cray administrator community. The work
in this section describes the administrative decisions made by the
ACES team and how our implementation provides system
stability and consistency, reducing downtime and improving the
user experience.

1) Pre-Release Evaluation and Preparation

The ACES team received a beta release of 6.0/8.0 in early
June 2015 and installed it on a Test and Development System
(TDS). Our experience with the initial install itself was difficult
for a variety of reasons. The system management philosophy is
radically different under 6.0/8.0 than with previous versions,
making the learning curve for this new release difficult. A
significant amount of time is required to perform the first install
of Rhine/Redwood on a system that has never before seen the
stack, even on a small TDS like ours. This is due to the fact that
there is no upgrade process from the previous 5.x/7.x version to
6.0/8.0. The SMW and boot RAID are required to be reformatted
and reconfigured for the new version. Once the base install of the
SMW is completed, the new system must be defined using the
configurator’s “question and answer” text-based interface. This is
a tedious process in which the administrator must specify, by
hand, many of the details of the system’s configuration, such as
its entire network profile. The ACES team provided significant
feedback to Cray on the issues that were encountered and feature
requests to be included in future releases many of which were
already in the process of being implemented in Cray’s
development release.

With subsequent releases of 6.0/8.0, new features were
added such as worksheets. Worksheets allow the administrator to
pre-configure the system’s detail and then import those
configurations into the configurator tool. These worksheets can
then be used moving forward if the SMW would ever need to be
reinstalled. Worksheets provide a mechanism to prepare for an
initial install of a system as well. If its worksheets are fully
populated, then most of the system will be prescribed on import,
greatly simplifying the initial install process. However, we have
learned there is still extensive work to be done after the initial
install and boot of the system. Even so, the ACES team could
quickly see the value in Rhine/Redwood’s new philosophy and
the flexibility that it provided. The removal of the shared root
space, the advent of customizable images, and the use of Ansible
plays to prescribe each node allow for much more flexibility and
scalability than the functionality that was previously provided in
5.x/7.x.

2) Configuration Management

The ensuing work, post-install, was to learn how to effect
change onto the system. The administration team was faced with
the challenge of implementing its own configuration management
strategy or to somehow make use of Cray’s Ansible system to
apply changes. At first it was decided to try to supplement Cray’s
Ansible infrastructure to fully prescribe the machine. This initial
strategy proved to be the wrong path for a few reasons. First, if
there was an issue with any defined Ansible play it most likely
caused a failure in the boot process. The symptoms of these
errors would typically mislead the administrator into searching
for a system problem that had no association to the real Ansible
failure.  Secondly, the administrators realized that adding
ancillary plays to Cray’s Ansible playbooks increased the overall
node boot time due to the additional burden of processing those
plays. Therefore, it was decided to restrict the number of plays to
be as few as necessary. Third, Cray’s Ansible framework is truly
intended to be run only once at boot time of the node. Execution
of the full playbook is a lengthy process and resource-intensive.
Therefore, a small subset of plays is selected to be run at a
specified interval to maintain the configuration of a node
throughout its lifecycle. Compute nodes are of even more
concern because, while it is desirable to keep them updated, the
overhead of running Ansible while jobs are executing is too high.
It is a widely accepted fact that OS and network jitter can have a
large impact on job performance. To mitigate this problem, the
ACES team decided to implement a lightweight, disjoint Ansible
play that would run in TORQUE’s epilogue after a job was
completed to update the node.

All of the challenges and issues with using the new CLE 6.0
software required a considerable amount of time and effort to
overcome. Initially there was very little documentation so
learning the new software consisted of trial and error, trying new
things to see what would break. Another pain point was that
Cray’s Ansible infrastructure would take control of certain
configuration files that are traditionally handled by the site’s own
configuration management strategy. The difficulty arises when
more than one player is found playing in the same sandbox. One
example of this is the management of the sshd service. Cray’s
Ansible play needs to configure the daemon at install time in
order to have a functional system. However, conflicts may
surface once the site decides to extend the customization of the
configuration that Cray prescribes. At what priority should site
plays be run when they conflict with vendor plays? How should
configuration incompatibilities between site and vendor be
handled? What about those configuration files whose content is
only partially prescribed and the site needs to extend the
prescription? Overcoming these issues is still an ongoing work
for the most part. Workarounds have been implemented to solve
many of these issues, but a better long-term strategy from Cray is
required.

3) External Login Nodes

Another new feature of the CLE 6.0 stack is the replacement
of the Bright Cluster Manager software used to provision the
esLogin nodes.  Cray has deployed OpenStack on the
provisioning node, which is named the Cray System Management
Software (CSMS) system. The key feature of this change is that
the newly-named eLogin nodes are built from the same images
that the internal systems are built from. This allows for a
commonality between the system software and package versions
found in all image types. The programming environment (PE) is
also shared between the internal system and eLogin nodes.
Unfortunately, the security model of OpenStack, by default, is
not solid enough to meet the rigorous standards of the



Department Of Energy. Cray and ACES have worked closely to
resolve these issues and help steer the CSMS product to have a
better security posture.

C. Integrating New Technologies

Along with the new CLE 6.0 / SMW 8.0 software stack,
Trinity is also deployed with some new hardware technologies.
One such is the Sonexion 2000, which is a Lustre appliance.
This Lustre deployment has been split into two equally sized
39PB file systems. One of the new features of the Lustre server
on the system is DNE[11] which allows for multiple metadata
targets (MDT) to distribute metadata performance across
multiple servers. The current implementation of this feature,
however, requires the manual placement of directories onto a
specific MDT, forcing decisions to be made a priori by the user
to take advantage of this feature. However, the ACES team has
not enabled user control over the placement of directories on a
specific MDT. This configuration will be controlled
administratively upon request since it is important to maintain an
even distribution of users across the platform.

Another new technology deployed on Trinity is Cray’s
DataWarp burst buffer solution. These SSD-endowed nodes
allow for an intermediary scratch file system to interpose
between the compute resource and parallel file system.
Integration of this technology into the machine has been another
one of the more difficult problems the administrators have faced.
The interaction between the workload manager, Moab, and the
DataWarp API has been an ongoing effort. Users need an on-
demand allocation of the DataWarp file system on a per-job
basis, along with a definition of the granularity and striping
across multiple burst buffer nodes to achieve maximum
performance. The complexities in scheduling these resources
and the multitude of DataWarp failure modes have caused a
variety of error scenarios that are difficult to recover from. The
administrators have encountered orphaned allocations from dead
jobs, and burst buffer nodes in a failed state. When these
problems arise, their solution is not always intuitive and the
recovery procedure is only now being documented to restore
functionality to the system. As the DataWarp project matures
however, and the Moab code improves to handle the scheduling
of these resources, the administrators expect many of these
failures to be handled more gracefully by the system. This will
eventually make the recovery and restoration of the DataWarp
service less burdensome.

D. Current Challenges

The current challenges that face the ACES administrative
team are reliable boots, DataWarp at scale, and monitoring.
Boot reliability is an ongoing issue, but is being actively
investigated by Cray engineers. Boot integrity is a source of
frustration for Cray administrators as well. All complete-system
boot failures carry a large opportunistic cost in valuable uptime
to users due to the necessity of the bounce, and route, which
accompanies each boot process. Other failure modes may occur
if the collection of Ansible plays malfunctions or is loath to run
at all. This can leave the end node in a state in which no remote
connectivity is possible. The only way to analyze such a failure
is to use xtcon to connect to the node and inspect its Ansible
logs. If a large set of nodes fail in this way, though, it is
extremely difficult to recover apart from a full system reboot.
Cray’s Scalable Services system affords a parallel boot process

by distributing configuration through various tiers, which are
ideally comprised of existing service nodes. There have been
obstacles with this composition in practice however, and
currently a small set of re-purposed compute nodes are required
to handle these duties. Cray has done extensive testing in this
area and found that there is a small set of frequently accessed
files that should be moved into the node’s RAM image to reduce
network load during boot. Compute nodes are being used for
this task because they have much more memory available for
Scalable Services to cache these distributed file systems. The
practice of stealing compute resources for this purpose is a
source of concern to the ACES team, but these issues are being
addressed and should be fixed soon.

Another challenge for the administrators has been deploying
and testing DataWarp at scale. There has been ongoing work
with Cray and Adaptive to fully deploy an end-to-end solution.
Many of the issues have arisen from the fact that ACES utilizes
an external host for the workload manager and does not run the
Moab server on the SDB. This has led to a number of
communication and timing faults with the scheduling and
management of DataWarp resources. Many of these issues are
exposed on the small TDS so much of the testing has not been
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attempted at full scale on Trinity — yet another concern for the
ACES administration team. There has not been enough
exposure time to DataWarp and the Moab scheduler to be
comfortable recovering from the failure modes that might arise.
This will only be compounded when the system is in the
classified network where debugging these issues becomes a
serious effort.

Monitoring is another area in which much has been done in
preparation for the sheer volume of log and performance data
that Trinity will generate on a daily basis. Estimates are that
about 4TB of uncompressed data will flow from the machine per
day. Resiliency and failure tracking are a few of the many areas
of interest in these logs. Features such as enhanced MCA
logging [12] and SSD drive telemetry data [13] allow ACES to
track failures and component health of the system. Collection
and analysis of this aggregation of information has required the
ACES team to develop an external monitoring cluster simply to
store and process this bulk of data throughout the life of the
machine.



E.  Continuing Collaboration

Cray and LANL both continue to collaborate on the security
and functionality issues that are encountered with this current
release version of CLE 6.0. The features and fixes provided in
CLE 6.0 UPO1 promise to be a great improvement over the
existing version and the ACES team is eager to begin testing it
out. This will also be the first public release of this product
which will expose it the entire Cray community, which will
invite more feedback and drive the product to maturity.
Software historically takes many revisions to improve in
functionality and reliability and the ACES team looks forward to
the continued development and improvements made to the Cray
software management stack.

This section will describe our experiences with this early
release software, recognizing that other Cray systems will not
see the same issues faced by Trinity.

V.  APPLICATION READINESS

A. Center of Excellence

The Trinity Center of Excellence (COE) provides a
collaborative long-term relationship between subject matter
experts (SME) from Cray and Intel, with ASC codes teams, to
support the transition of key scientific applications to Trinity.
Applications from all three nuclear weapons laboratories were
identified, to focus COE activities and limited resources. These
multiphysics applications often have millions of lines of code and
have additional complexity, such as having many third-party
software dependencies and supporting computational campaigns
that are long-running with performance profiles that can change
drastically throughout the lifetime of the run. Some
computational motifs/methods/approaches important to mission
include — hydrodynamics, deterministic Sn transport, Monte
Carlo ( is this giving too much information?)

Trinity provides codes with advanced high-performance
computing resources, however reaping the benefits by using them
effectively is not trivial and creates challenges to code teams.
Effective use of Trinity involves 1) enabling (or not hindering)
compiler vectorization with AVX-512 instructions, 2) increasing
parallelism to use the increased number of cores and threads, 3)
identifying data structures that will benefit from residing in high-
bandwidth memory, 4) using the burst buffer to reduce /O
overhead and enable new workflow capabilities within a
simulation run, and 5) scaling simulations to utilize the massive

scale of the system and identifying new workflow/simulation
capabilities to use the heterogeneous composition of Trinity with
two types of nodes.

Vendor SMEs in performance optimizations, tools, compilers,
and hardware work closely with code teams to address effective
use of Trinity resources. COE activities began well in advance of
receiving the system. COE activities include:

* SME integration into daily code team development
activities,

*  Application deep-dive using vendor tools,

*  Training & workshops to share best practices, and

*  Early access to hardware and software.
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