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Time Scales in Polymers

Hue Sun Chan and Ken Dill, Physics Today (1993)

Rouse relaxation ~ N2

Entanglement time ~ N3.3

ns mss
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Scales (biological)
Dror, Jensen, Borhani & Shaw, J. General Physiology 2012
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Research Directions in (Polymer) MD
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Modeling Epoxies

Limited in time and length scales

• Polymer models (in general)

– coarse-grained models to treat long time scales
• bead spring model

• random walk paradigm

• focus is on trends (not single quantities) & molecular mechanisms

– atomistic models
• available time scales typically too short

– time step = 1 fs ⟹ total time ~ 10-100 ns

• more appropriate for the liquid mixture interaction with surface

• force-fields available need to be improved

• Epoxies

– complex chemical structure  atomistic simulations 
unreasonable

– glass  weak strain rate dependence

– view as highly crosslinked polymer network
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Model Epoxy Simulations

About a decade ago we started modeling epoxies as a highly crosslinked polymer 
network.

Examined many aspects of the adhesion and fracture.
• effect of number of bonds at surface
• functionality of the crosslinker
• found very large failure strains

f = 6 4     3
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Failure Strain: Minimal Paths in Network

For each bond to the top surface 
there is a minimal path of length P
through the network to the bottom 
surface

•Failure strain is determined by 
maximum minimal path

– At the strain equivalent to the 
maximum P, all bonds in the 
paths connecting the two 
surfaces must be stressed 

•In the presence of defects, failure 
occurs at smaller strains, because of 
nonuniform strains.
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Tensile stress-strain curve: Molecular Mechanisms
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Model Epoxy
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Potentials

Lennard-Jones (LJ) potential (van der Waals)

• Energy unit: u

• Length unit: d

• Here all types equivalent

Bond potential

• FENE (non breakable) = -kR0 log(1-(r/R0)
2)

• breakable (smooth quartic)

No angle potential: full flexible chains
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Systems
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Tensile pull

Only left half of system is shown


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Tensile pull


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Tensile pull





Mark Stevens
msteve@sandia.gov

Tensile pull


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Stress-strain curves
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System Size Dependence

f

p

c
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Conclusions

Crack initiation at corners does occur within molecular simulation.

Failure strain is strongly system size dependent in these ‘small’ systems.

Stress is noticably concentrated at corners for small strain.

Shear stress in corner important because of lateral contraction at sides yields an 

acute angle of the polymer network surface in the corner.
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Ionomers

19

Ionomers are polymers that contain a small fraction of ions.
No solvent (melt). Focus here is on dry ionomers.

 2-10 ⇒ strong electrostatic interactions (~ 40 kT)

Conductivity low

• needed for Li-ion batteries: ≥ 10-3 S/cm

• ionomers: generally             < 10-5 S/cm

• ionic aggregates

p9AA –43%Li
Precise spacer 
length (p9, p15, p21)

Acrylic acid

Counterion type
Li+, Na+, Cs+, Zn2+

Neutralization level*

Ken Wagener synthesis (ADMET) of precisely spaced charges

Compare to experiment by
Karen Winey’s group
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Aggregates & Ionomer Peak

How do we know there are aggregates?
• low wavevector peak in scattering
• from inter-aggregate scattering
• ubiquitous

A. M. Castagna, et al. Macromolecules, 2011

amorphous
halo

Ionomer
Peak

q ~ 2/nm ⟹ d ~ 3 nm

Beers & Balsara. 2012

Spherical aggregates of ions
that form a liquid ordered structure.

Dynamics: Ions hop from one
cluster across low dielectric to another.

low 
polymer

Old Picture
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Ionomer Simulations

Atomistic model

• treat different counterions

• treat neutralization

• compare directly to experiment

• atomistic detail

• dynamics limited

Coarse-grained bead spring model

• simpler physics: 

focus on ionic interactions with 

polymeric constraints

•get to Fickian diffusion regime

•also with Electric field



Mark Stevens
msteve@sandia.gov

Atomistic Ionomer Simulations

• Variations in:

• cation type: M+ = Li+, Na+, Cs+, Zn2+

• neutralization level = % COO-M+ vs COOH

• spacing between acid groups (n = 9, 15, 21)

• All atom OPLS force-field

• 4 monomers per chain (4 acid groups)

• 200 chains for p9

• ~ 64 Å box, total of ~25,000 atoms

• T = 150 C (above Tg)

• 30 ns (400 ns in one case)

• replica & multiple starting states simulations to check

For comparison with 
Winey group data
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MD Simulations
p9AA-43%Li

All atom simulations

Radial distribution functions
cluster definitions

S(q) 
see ionomer peak
compare to experiment

Cluster analysis
structure of aggregates ….

Ionic aggregates (Li & O only) Cluster analysis
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Correlation functions: local ionic aggregation

O–-M+ – +
• very large peaks
• peak position ~ ion size
• height decreases for larger ions

M+-M+

• 1st peak at next-nearest neighbor distance
• secondary peaks visible (aggregate size)
• Zn++ is an exception

cluster analysis:
O-ion in same cluster if separation within 1st peak
carbonyl O (OH) in same cluster

Li

O
C

Zn

Li

Na
Cs

Zn

Li

Na

Cs
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H-bonds important

Clusters are stringy

Morphology: Effect of Neutralization
Coloring by cluster:
only show O & Li 

10% 43% 100%

p21AA-43%Li

p9AA-N%Li
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vary neutralization: p9AAN% Li

100%=N

75%

43%

25%
10%

0%

Total Structure Factors for Li-neutralized pAA

Spacing of aggregates changes with neutralization and spacer length.

vary spacer: pnAA43% Li

9=n

15

21

Ionomer Peak Amorphous Peak
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Morphology for Different Cations

Li+ Na+

Cs+ Zn2+

p9AA-43%M

Color by distinct aggregate

• Broad variety of morphologies
• Very different from spherical/

liquid-like order previously assumed
• Geometry not discernable from S(q)
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Stringy Aggregates

Li+

Zn2+

Cs+

p9AA-43%
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Direct Comparison

29
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• 120°C, same neutralization
• S(q) scaled to match 

amorphous halo height
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Ionomer Peak Positions

30

+/- 0.3nm
p9 
(p9AA, 43%Li, 33%Na, 24%Cs) 

p15
(p15AA, 45%Li, 34%Na, 31%Cs, 82%Zn)

p21
(p21AA, 56%Zn)

simulation vs. experiment

d*agg = 2/q*
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Coarse-grained Simulations

+

-

-

+

+ -

+

_

Ions in the polymer backbone: 
“ionenes”

backbone beads 
per repeat unit

-
Na+

Ions pendant to the backbone:
“pendants”

Nbb = 7 

Nbb = 3, 5, 7, 9 (11)
1 bead ~ 3 C atoms

800 polymers
100% neutralization
counterion size = ½
bulk dielectric constant = 4
Bjerrum length = 35.7
108 time steps
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Ionenes: percolated

Nbb = 9

εr = 4 

Small clusters Large clusters
Only charged beads shown

Pendants: not percolated

-

+ +-

Aggregate Morphology: Architecture Matters

Hall et al., Phys. Rev. Lett. (2011)
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Cluster Dynamics

periodic ionenes, Nbb=9
colored by octant

periodic pendants, Nbb=9
colored by cluster

[                                     ]
n

+

-

[                                     ]
n

+
-

Is there any? YES!
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• We can reach the Fickian regime.

• Counterions in Ionenes (percolated) are faster

• Smaller Nbb is faster (not shown)

Mean Squared Displacements
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n
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- [                                     ]
n
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Ion Trajectories

periodic pendants Nbb=9

ions move by cluster 
rearrangment/collision

2 separate clusters
Follow one counterion

Clusters collide

Ion has moved to other cluster.
Diffuses relatively fast within cluster.
NEVER separated from a cluster.

Clusters reform with ion moved
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The New Picture

 Aggregates are stringy
 + – + – ordering
 polymer backbone constraints

 Counterion influences structure 
 Na+, Li+: medium-sized, stringy aggregates
 Cs+: Percolated network
 Zn2+: small, isolated clusters
 Small ion-O– clusters are bridged by -OH and =O groups

 Neutralization level influences structure
 Percolated structures tend to occur for high %N

 molecular architecture important
 pendant vs ionene
 isolated aggregates for pendants or large spacing
 percolation for ionenes or short spacing

 ion motion by aggregate rearrangment (distinct aggregates)
 ions diffuse faster in percolated morphologies



Mark Stevens
msteve@sandia.gov

Exascale

Need faster computers to treat the atomistic dynamics of polymer systems
- adhesives & ionomers

Will need to use better and more expensive force-fields that commonly used now.
- polarizable

Interfaces are common in problems AND
they typically involve distinct types of materials with distinct treatments (e.g. FF)
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Useful Info

Need to know:

• morphology

• relation between molecular architecture & morphology

• effects of morphology on ion transport 

• understanding of ion transport mechanisms

Advice to experimentalist/engineer:

• morphology depends on counterion, neutralization, molecular architecture

• Li is independently ion of choice

• Cs, Zn are not good substitute probes

• maximize conductivity

• percolated morphology preferred

• maximize neutralization

• ion in backbone better than pendant
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Summary of Atomistic Simulations
Simulations resolve the ionomer peak.

Morphology:

• stringy (except maybe Zn)

• not spherical as previously assumed

• varies with neutralization

• varies with anion type

• percolation occurs at large enough neutralization

• not well resolved in scattering

• ionomer peak due to interaggregate scattering

• but can be isolated or percolated aggregates!

Trends

• larger aggregates as neutralization increases

• shorter aggregates as spacer length increases

Hydrogen bonding important in partially neutralized systems

Simulations match experimental S(q) well


