
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

High-Performance Containerization Challenges

Colin Stapleton
ctstapl@sandia.gov 

SAND2016-3564C



Overview

 Microservices intro

 Docker intro

 Kubernetes intro

 Containerization difficulties
 Distributed architecture

 Cloud environment



Microservice Software Design

 Independent processes
 Swap out easily

 Can be developed by different groups

 Single failure doesn’t break entire system

 Can use different technology for each service

 Easier for developers – less complicated components

 Language-agnostic messaging between services

 Distribute load across cluster of machines
 Easier to scale both services and hardware

 Network connection between services adds complexity

 Large number of applications adds complexity

Service

Service

Service

User

Service



Use of Docker Containers

 Docker is like a “mini” virtual machine
 Separate file system
 Separate process space
 Same kernel

 Put each service in separate container
 Combine application with dependencies
 Container images can be versioned and layered
 Images can be shared with other groups

Linux Kernel

Docker Engine

Application

Libraries

Docker Container

Application

Libraries

Docker Container



Use of Kubernetes

 Schedules Docker containers on cluster of machines
 Pick machine with correct hardware

 Load-balancing

 Monitors and restarts containers

 Groups containers into logical “pods”

Scheduler

Kubernetes 
Master Node

Docker
Container

Kubernetes 
Worker Node

Kubernetes 
Worker Node

Kubernetes 
Worker Node



Potential Difficulties

 Development workflow

 Debugging Inside Containers

 Separating applications from machines

 Application configuration

 Service discovery

 Avoiding race conditions

 Coordination between teams

 Logging

 Container deployment

 High-speed container startup



Development Workflow

Better to develop inside containers. However…

 Building container image can take seconds

 Starting containers can take seconds

 How can we make this process fast enough?

Modify
Code

Build
Code

Run
Application

Traditional Workflow

Modify
Code

Build
Code

Build 
Container

Image

Container Workflow

Stop
Running

Containers

Restart
Containers

Developing and deploying in different environments is a bad idea



Docker Container

Development Workflow

Possible solution:

 Leave all containers running

 Mount development directory into container

 Rebuild and restart application inside container

 Applications auto-reconnect

Docker Container

Build Directory

Application

Docker Container

Application

Build Directory

Application

Mount



Debugging Inside Containers

 The containers start up… and don’t work. What do we do?
 Examine log files

 Examine configuration files

 Think hard

 Is there a better way to see what is actually going on?



Debugging Inside Containers

 Separate set of debug container images
 Compiled with debug symbols

 Contain debug tools

 Can easily swap out in Kubernetes config files

Deployment
ImageDeployment

ImageDeployment
Image

Debug
ImageDebug

ImageDebug
Image

DebuggingDeployment



Separating Applications From Machines

 Application starts on an arbitrary machine

 All machines have standard setup

 No expectation of permanent files on machines

 How to pass configuration to an application in a cluster?

 How to ensure machine has correct resources for the application?

Scheduler
Docker

Container

Kubernetes 
Worker Node

? Kubernetes 
Worker Node

Kubernetes 
Worker Node



Application Configuration

 Store configuration in distributed data store

 Dynamically load config into apps on startup

Cluster Machine

Cluster Machine

Data-Store Configuration

Load Config

Data-Store

Docker
Container

Docker
Container

Docker
Container



Service Discovery

How do applications find each other in the cluster?

 We don’t know which machine an application will start on

 Machines all have identical setup

 Machines can restart at any time

 Applications can restart at any time on any machine



Service Discovery

 Applications find their network address on startup
 Place address in distributed data-store

 Data-store is replicated across every machine

 Connecting application gets address from data-store

Cluster Machine

Cluster Machine

Data-Store

Data-Store

1. Register IP/port

3. Get IP/port

2. Replicated

4. Connect

Docker
Container

Docker
Container



Avoiding Race Conditions

How does system respond when a service dies?

 Startup of containers and pods not in order
 Containers must wait for incoming connections

 Services must auto-connect

New Container

Docker ContainerDocker Container

Dead Container

Data-Store

1. Container fails

2. New container starts

3. Register network address

4. Connect

5. Retrieve new container’s address

6. Connect



Coordinating Between Teams

How to organize multiple groups in a Kubernetes cluster?

 Running multiple instances on the same machines

 Avoiding resource conflicts

 Avoiding configuration conflicts

 Avoiding service discovery conflicts



Coordination Between Teams

 Separate pod file for each team
 Groups a team’s containers on the same machine

 Team’s containers can share resources like shared memory

 Separate Kubernetes namespace for each user
 Allows multiple instances of same pod without conflict

 Every developer can run full system on same machine cluster

User 1 Namespace

Docker Container

Team 1 Pod

Docker Container
Docker Container

Docker Container

Team 2 Pod

Docker Container
Docker Container

User 2 Namespace

Docker Container

Team 1 Pod

Docker Container
Docker Container

Docker Container

Team 2 Pod

Docker Container
Docker Container



Coordination Between Teams

 Avoiding resource conflicts
 Resources tied to pods (e.g. Kubernetes emptydir)

 Each instance runs in separate pod

 Avoiding configuration conflicts
 Separate root “username” in distributed data-store

 Avoiding service discovery conflicts
 Separate root “username” in distributed data-store

 Top-level startup sequence establishes root “usernames”



Logging

How to store and view logs from distributed applications?

 Retain logs if host VM is deleted

 View logs if you don’t have access to the host machine

 Collect and centralize logs



Logging

Possible solutions:
 Use NFS to make log files accessible from any VM
 Collect log files into central location
 Collect stdout into central location

Store logs in NFS directory

Aggregate logs using Splunk

NFS

Docker Container

NFS

Docker Container

NFS

Docker Container

User

Docker Container Docker ContainerDocker Container

Splunk

Log
File
Log
File
Log
File

Log
File
Log
File
Log
File

Log
File
Log
File
Log
File



Container Deployment

How are container images stored and distributed?

 Who builds the images?

 How does Kubernetes access the images?

 How are the images versioned?



Container Deployment

 Use Jenkins to compile and build images automatically

 Store versioned images in Artifactory

 Pull images to scheduled machines via Kubernetes

Compiled
Code

Docker
Image

Source
Code

GitHub

1. Commit

Jenkins

2. Pull

3. Build

4. Create

KubernetesArtifactory

5. Store

6. Pull

Docker
Container

7. Start

Cluster Machine



High-Speed Container Startup

How to start containers fast enough for dynamic processing?

 Docker startup takes ~100ms

 Kubernetes pod startup takes ~5s



High-Speed Container Startup

One possibility:
 Create pool of idle containers
 Assign a task to a pod
 Kubernetes automatically replaces the pod

Docker Container

Idle Pod

Docker Container
Docker Container

Docker Container

Idle Pod

Docker Container
Docker Container

Docker Container

Idle Pod

Docker Container
Docker Container

Tasker

Kubernetes 
Master Node

Docker Container

Idle Pod

Docker Container
Docker Container1. Retrieve

2. Task

Replication
Controller

3. Replace



Conclusion

 Moving to Docker microservices is complicated

 Standardizing development and deployment is crucial

 High-speed/real-time activities can be tricky

 Workflow is different – there is a learning curve for developers


