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Overview

 Microservices intro

 Docker intro

 Kubernetes intro

 Containerization difficulties
 Distributed architecture

 Cloud environment



Microservice Software Design

 Independent processes
 Swap out easily

 Can be developed by different groups

 Single failure doesn’t break entire system

 Can use different technology for each service

 Easier for developers – less complicated components

 Language-agnostic messaging between services

 Distribute load across cluster of machines
 Easier to scale both services and hardware

 Network connection between services adds complexity

 Large number of applications adds complexity
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Use of Docker Containers

 Docker is like a “mini” virtual machine
 Separate file system
 Separate process space
 Same kernel

 Put each service in separate container
 Combine application with dependencies
 Container images can be versioned and layered
 Images can be shared with other groups
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Use of Kubernetes

 Schedules Docker containers on cluster of machines
 Pick machine with correct hardware

 Load-balancing

 Monitors and restarts containers

 Groups containers into logical “pods”
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Potential Difficulties

 Development workflow

 Debugging Inside Containers

 Separating applications from machines

 Application configuration

 Service discovery

 Avoiding race conditions

 Coordination between teams

 Logging

 Container deployment

 High-speed container startup



Development Workflow

Better to develop inside containers. However…

 Building container image can take seconds

 Starting containers can take seconds

 How can we make this process fast enough?
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Docker Container

Development Workflow

Possible solution:

 Leave all containers running

 Mount development directory into container

 Rebuild and restart application inside container

 Applications auto-reconnect
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Debugging Inside Containers

 The containers start up… and don’t work. What do we do?
 Examine log files

 Examine configuration files

 Think hard

 Is there a better way to see what is actually going on?



Debugging Inside Containers

 Separate set of debug container images
 Compiled with debug symbols

 Contain debug tools

 Can easily swap out in Kubernetes config files
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Separating Applications From Machines

 Application starts on an arbitrary machine

 All machines have standard setup

 No expectation of permanent files on machines

 How to pass configuration to an application in a cluster?

 How to ensure machine has correct resources for the application?
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Application Configuration

 Store configuration in distributed data store

 Dynamically load config into apps on startup
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Service Discovery

How do applications find each other in the cluster?

 We don’t know which machine an application will start on

 Machines all have identical setup

 Machines can restart at any time

 Applications can restart at any time on any machine



Service Discovery

 Applications find their network address on startup
 Place address in distributed data-store

 Data-store is replicated across every machine

 Connecting application gets address from data-store
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Avoiding Race Conditions

How does system respond when a service dies?

 Startup of containers and pods not in order
 Containers must wait for incoming connections

 Services must auto-connect
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Coordinating Between Teams

How to organize multiple groups in a Kubernetes cluster?

 Running multiple instances on the same machines

 Avoiding resource conflicts

 Avoiding configuration conflicts

 Avoiding service discovery conflicts



Coordination Between Teams

 Separate pod file for each team
 Groups a team’s containers on the same machine

 Team’s containers can share resources like shared memory

 Separate Kubernetes namespace for each user
 Allows multiple instances of same pod without conflict

 Every developer can run full system on same machine cluster
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Coordination Between Teams

 Avoiding resource conflicts
 Resources tied to pods (e.g. Kubernetes emptydir)

 Each instance runs in separate pod

 Avoiding configuration conflicts
 Separate root “username” in distributed data-store

 Avoiding service discovery conflicts
 Separate root “username” in distributed data-store

 Top-level startup sequence establishes root “usernames”



Logging

How to store and view logs from distributed applications?

 Retain logs if host VM is deleted

 View logs if you don’t have access to the host machine

 Collect and centralize logs



Logging

Possible solutions:
 Use NFS to make log files accessible from any VM
 Collect log files into central location
 Collect stdout into central location

Store logs in NFS directory

Aggregate logs using Splunk
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Container Deployment

How are container images stored and distributed?

 Who builds the images?

 How does Kubernetes access the images?

 How are the images versioned?



Container Deployment

 Use Jenkins to compile and build images automatically

 Store versioned images in Artifactory

 Pull images to scheduled machines via Kubernetes
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High-Speed Container Startup

How to start containers fast enough for dynamic processing?

 Docker startup takes ~100ms

 Kubernetes pod startup takes ~5s



High-Speed Container Startup

One possibility:
 Create pool of idle containers
 Assign a task to a pod
 Kubernetes automatically replaces the pod
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Conclusion

 Moving to Docker microservices is complicated

 Standardizing development and deployment is crucial

 High-speed/real-time activities can be tricky

 Workflow is different – there is a learning curve for developers


