SAND2016- 3390C

Sandia

Exceptional service in the national interest @ National
Laboratories

cobalt{I1) oxida

Metal Oxides with lonic-Electronic Conductivity for

Thermochemical Energy Storage
Eric N. Coker, Sean M. Babiniec, Andrea Ambrosini, James E. Miller

Powered by

ECI CO, Summit Il: Technologies and Opportunities
Lsunsbeoj( Santa Ana Pueblo, NM. April 10-14, 2016

DEPARTMENT OF YR T =375
NERGY ﬂ' A' m‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Hational Nustear Security Administraion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Storage is critical for market penetration of
solar energy into the grid

Laboratories

=  Without storage, solar electricity is generated when least needed

= Shifting solar electricity generation to period of peak demand would have
large implications on grid integration

= Decrease Levelized Cost of Electricity (LCOE) through better sizing/usage of
power block

Credit: California Independent System Operator Corporation
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Storage: Why thermal? ) i,

= Mechanical
= Flywheels, compressed air, hydrostatic
v" High capacities (large scale)
% Typically suffer from low efficiencies
= Electronic
= Li-ion batteries
v" High efficiencies
x Expensive materials, limited charge/discharge rates
= Supercapacitors

v" Fast charge/discharge rates
% Low energy densities

= Thermal
v" High efficiency
x Temperatures high to support new power cycles (~1200 °C)

«* Materials development crucial to feasibility of thermal storage at such
temperatures
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Concentrating solar power (CSP) has unique
ability to harness thermal storage

= Solar energy used to heat storage media, drive
thermal engine

Sandia
r.h National
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= Current molten-salt storage systems are
limited
= Sensible-only storage, low energy storage densities

Solar Receiver
Reduction
Reactor

= Salt decomposition limits turbine operating
temperatures (~ 600 °C, max.)

= Redox particle-based systems offer advantages

= High storage densities via (sensible + reaction)
Hot Reduced Particle
enthalpy 3 ' Storage '

= Thermochemical energy storage (TCES)

= Cycle not limited by low decomposition temperatures

E
= Direct irradiation of thermal storage media
= Re-oxidation reaction directly off compressor outlet, | "
favorably shifting thermodynamics
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Materials requirements driven by Air-Brayton s
operating parameters

Laboratories

= High-efficiency Air-Brayton turbines are designed to
operate at ~1200 °C

= Such temperatures are problematic for existing oxide
TCES materials

= State-of-the-art cobalt oxide redox couple:
2C030,+ A ¢ 6C00 + 0,5 AHyporetica = 844 kl/kg Co;0,

= High theoretical AH occurring at one discrete transition
= Reduction/oxidation in air occurs near 885 °C
= Kinetics are slow at low temperatures

= Cobaltis expensive
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Cobalt oxide vs. Perovskites (ABO,)

* Energetic phase change

« No O? transport

» Oxidation exotherm typically recovered
at lower temperature than reduction

/ AH, 0 + Co(Thiah = Tiow) \
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Perovskites offer a solution to increasing
turbine inlet temperatures to > 1200 °C
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= Continuous reduction behavior as opposed to discrete reaction
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= Perovskites need to be engineered to increase capacity (mass
loss) and reaction enthalpy
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. o, 0 Sandia
Perovskite compositions ) fo,

= ABO;+H <> ABO;3 5+ 5/2 OZ(g)
= Gas species dominates entropy term (largest # degrees-of-freedom)

= At equilibrium (onset of reduction) AG, 4, =0= AH_—T AS

= A change in reduction enthalpy necessitates a change in reduction
temperature

" Previous studies focused on La,Sr; ,Co, M, O35, with M = Fe,Mn

= High redox capacity (6), but at low temperature (low reaction enthalpy)

red’

= New materials aim to improve cost, reaction enthalpy:
= Cost-effective, lightweight cations desired
= A-site: Ca, B-site: Mn, Ti, Al
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Synthesis and phase characterization ) s

= Materials synthesized using an aqueous (Pechini) method

= X-ray diffraction used for phase identification

CAM28 (CaAl, ,Mn; 505 )

= Compositions: -
« CTM28  (CaTiy,Mn,:0,)
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Thermogravimetric data acquired over range e
of temperatures and oxygen partial pressures
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Equilibrium data taken from TGA experiments @),
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Equilibrium TGA data used to estimate

thermodynamic parameters

= Thermodynamic parameters extracted by van’t Hoff approach:

1
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Enthalpies from van’t Hoff are given for a ) i,
specific oxygen non-stoichiometry

Laboratories

= Describe energy to remove a mole of O, at a specific &

450

Material Reduction Maximum &  Enthalpy at
400 onset (°C) Ormax (KJ/KQ)
350 LSCM3791 352 0.461 2402
— CTM28 901 0.293 390°
m
6 300 CAM28 759 0.322 370"
< 250 2 S.M. Babiniec, et al., Solar Energy, 118, 451-9, (2015).
g b S.M. Babiniec, et al., Int. J. Energy Res., 40, 280-4, (2016).
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Heat capacity as a function of temperature is ) s

National _
needed to calculate sensible heat
= Einstein heat capacity model used to fit data for CAM28,
converted to polynomial fit for ease of integration

= CTM28 expected to be similar due to same structure and similar molecular
weight 0.90
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p=as*T>+a,*T*+a3*T> +a,*T>+a,*T + qg

a1l a | a | _a | _a | _a |
JXPFMl 8.066E-18  -7.169E-14  2.455E-10  -4.070E-7  3.346E-4  7.329E-1

AHgens = [, Cp(T)dT =871 k}/kg between 200 and 1250 °C
AHiorqr = AHgenst AHpegetion = 871 + 370 = 1241 kJ /kg

% Sunshot
Department of Energy

u.s.



. . . Sandia
Discussion/Conclusions ) e

= CAM28 shows high storage enthalpy
= Sensible + reaction enthalpy is over 1000 kJ/kg

= |ncrease in reduction temperature results in larger reaction enthalpy

= CTM28 and CAM28 show an increase in reaction enthalpy of over 60%
compared to the previously studied La, 5Sr,,Co,oMng ;056

= The use of calcium in the A-site instead of lanthanum and strontium wiill
result in significant cost savings

.

Powered by
/i SunShot
artment o rgy’

U.S. Departm f Enel



Sandia
Acknowledgements )t

= We are grateful Dr. Peter Loutzenhiser (Georgia Institute of Technology) and
Dr. Ellen Stechel (Arizona State University) for technical discussions.

= Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

= This work was supported by the U.S. Department of Energy SunShot initiative
under award number DE-FOA-0000805.

Powered by

Shot

U.S. Department of Energy

16

%) Sunshot

U.S. Department of Energy




