
Resistive Memory Device Requirements for a

Neural Algorithm Accelerator
Sapan Agarwal, Steven J. Plimpton, David R. Hughart, Alexander H. Hsia, Isaac Richter

*
, Jonathan A Cox,

Conrad D. James, Matthew J. Marinella

Sandia National Laboratories, Albuquerque, NM, USA

Abstract— Resistive memories enable dramatic energy

reductions for neural algorithms. We propose a general

purpose neural architecture that can accelerate many different

algorithms and determine the device properties that will be

needed to run backpropagation on the neural architecture. To

maintain high accuracy, the read noise standard deviation

should be less than 5% of the weight range. The write noise

standard deviation should be less than 0.4% of the weight

range and up to 300% of a characteristic update (for the

datasets tested). Asymmetric nonlinearities in the change in

conductance vs pulse cause weight decay and significantly

reduce the accuracy, while moderate symmetric nonlinearities

do not have an effect. In order to allow for parallel reads and

writes the write current should be less than 100 nA as well.

Keywords— resistive memory, memristor, backpropagation,

neural networks, noise, neuromorphic computing

I. INTRODUCTION

Resistive memory crossbars can dramatically reduce the
energy required to perform computations in neural
algorithms by at least six orders of magnitude when
compared to a conventional CPU[2]. For data intensive
applications, the computational energy is dominated by
moving data between the processor, SRAM (static random
access memory), and DRAM (dynamic random access
memory)[3]. New approaches based on memristor or
resistive memory [4-7] crossbars can enable the processing
of large amounts of data by significantly reducing data
movement, taking advantage of analog operations [8-12],
and fitting more memory on a single chip.

Resistive memories are essentially programmable two
terminal resistors. If a write voltage is applied to the device,
the resistance will increase or decrease based on the sign of
the voltage, allowing the resistance to be programmed. At
lower voltages, the state does not change. Consequently,
these devices can be used to model a neural synapse wherein
the resistance acts like a weight that modulates the voltage
applied to it. This has resulted in a large interest in
developing neuromorphic systems based on such devices [8-
11]. Ideally, the resistive memories would have a perfectly
linear and controllable response allowing them to be
programmed to any arbitrary analog value. Unfortunately,
realistic devices have three key non-idealities: 1) read noise

which causes the value read from the resistive memory to be
different than the true value, 2) write noise which causes the
value written to be different from the intended value, and 3)
write nonlinearities which means that the change in
conductance due to a write pulse will be different depending
on the device’s current state. This is true for most resistive
memory devices, including metal oxide ReRAM, CBRAM,
PCM and others. In this paper, we model the resilience of
neural algorithms based on machine learning in the presence
of device based noise and variability.

The key contribution of this paper is to determine an
acceptable range of device operating parameters in order to
guide the development of new resistive memory device
technologies. Consequently, we only focus on the three
aforementioned non-idealities introduced by individual
resistive memory devices themselves, excluding other non-
idealities that would be present in a full system. Other
studies have examined some device non-idealities, but none
have systematically analyzed all three effects [13-15].
Analyzing all the non-idealities in a full neuromorphic
system will be the subject of future work.

In the next sections, we describe a general purpose neural
architecture that can be used to accelerate many neural
algorithms. Backpropagation was chosen for this study as it
is a computation-intensive algorithm that underlies the

This work was supported by Sandia National Laboratories’ Laboratory
Directed Research and Development (LDRD) Program under the Hardware
Acceleration of Adaptive Neural Algorithms (HAANA) Grand Challenge.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U. S. Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94AL85000
*Isaac Richter is presently with the University of Rochester, Rochester, NY

Fig. 1. (a) Analog resistive memories can be used to reduce the energy of

a vector-matrix multiply. The conductance of each resistive memory
device represents a matrix element or weight. Analog input vector values

are represented by the input voltages or input pulse lengths, and output

vector values are represented by currents. This allows all the read
operations, multiplication operations and sum operations to occur in a

single step. A conventional architecture must perform these operations

sequentially for each weight resulting in a higher energy and delay. A
matrix-vector multiply can also be performed by driving the columns and

reading the currents on the rows. (b) A parallel write is illustrated.

Weight Wij is updated by xi×yj. In order to achieve a multiplicative effect
the xi are encoded in time while the yj are encoded in the height of a

voltage pulse. The resistive memory will only train when xi is nonzero.

The height of yj determines the strength of training when xi is nonzero.

The column inputs yj can also be encoded in time as in [1]

w11

w21

w31

w41

w12

w22

w32

w42

w13

w23

w33

w43

w14

w24

w34

w44

V1=x1

+-

+-

+-

+-

V2=x2

V3=x3

V4=x4 x4=1
V t

x3=0.66
V t

x2=0.33

V t

x1=0
V t

y1=0.25

V V V V

tt t t

y2=0.5 y3=0.75 y4=1

w11

w21

w31

w41

w12

w22

w32

w42

w13

w23

w33

w43

w14

w24

w34

w44

(a) (b)i ijiwx jiij yxw 

SAND2016-3371C

successful application of neural networks in software and
hardware, and has been thoroughly benchmarked in previous
work[16, 17]. We use a numerical simulation, written in
Python, to model how backpropagation performance is
impacted by the three hardware non-idealities for different
data sets, and determine device properties required to
maintain high learning accuracy.

II. GENERAL PURPOSE NEURAL ARCHITECTURE

The key design considerations for an effective neural
algorithm accelerator is that it should both reduce the
computation energy by orders of magnitude, and it should be
flexible enough that it can run many different neural
algorithms. In [12] it is shown that a resistive memory
crossbar can accelerate two key operations: 1) a parallel read,
or vector matrix multiply, and 2) a parallel write or rank one

outer product update, as illustrated in Fig. 1. Many neural
algorithms such as sparse coding, restricted Boltzmann
machines, and backpropagation rely heavily on these two
operations. The difference in the implementation of these
algorithms is how the inputs and outputs of a crossbar are
processed. An NxN crossbar accelerates O(N

2
) operations,

while it has O(N) inputs or outputs. This means that the
energy to process an input or output can cost O(N) times
more than the energy to read or write a single resistive
memory element without significantly increasing the system
energy. This key insight allows us to optimize the tradeoff
between energy efficiency and system flexibility. A crossbar
based neural core should be used to perform the parallel
vector matrix multiply and outer product update, while a
more general purpose digital core can be used to process the
inputs and outputs of the crossbar. This is illustrated in Fig.
2. The neural core is illustrated in Fig. 3.

To represent both positive and negative matrix values
with a resistive device, a reference weight is subtracted in
analog following [18]. Alternatively, it is possible to take the
difference between two resistive memory elements, but this
requires twice as many devices [13]. The inputs and outputs
to the neural cores are digital and so analog to digital (A/D)
and digital to analog (D/A) converters will be needed. This is
energetically expensive, but they are O(N) operations and

Fig. 2. A general purpose neural architecture is shown. The neural cores

only perform parallel vector matrix multiplication, matrix vector
multiplication and parallel rank 1 outerproduct updates. For a NxN

crossbar the neural core performs O(N2) operations. The general purpose

digital cores process the O(N) inputs/outputs to the neural cores and use
the routing network to route data between cores. The flexibility of the

digital cores allow for many different algorithms to be implemented, while

still taking advantage of the neural cores to accelerate O(N2) operations.

The digital cores can also use digital on-chip resistive memory instruction

caches to store slowly changing data while reserving expensive SRAM

caches only for the data being processed.

R RR BusBus

R RR Bus Bus

R RR Bus Bus

Neural

Core

Digital

Core

Neural

Core

Digital

Core

Neural

Core

Digital

Core

Neural

Core

Digital

Core

Router

Fig. 3. A neural core is illustrated. A bias row and column are added to

the crossbar to allow for negative weights [17]. The rows and columns are
driven by either variable length or variable height pulses. The output

currents are integrated and then converted to digital using an A/D.

Subtract bias

in analog

- + - + - +

-

+

-
+

-
+

-
+

- +

Fixed

Bias

w11

w21

w31

w12

w22

w32

w31

w32

w33

Subtract

bias

D/A

D/A

D/A

D/A D/A D/A

A/D A/D A/D

A/D

A/D

A/D

Fig. 4. A mapping of backpropogation to the neural architecture is shown.

(a) A simple network (b) In a forward evaluation of a neural network, the
vector matrix multiply is done in a neural core and the digital core is used

to compute the sigmoid neuron function. (c) The steps required to update

the middle layer weights, wij are shown. The red wij crossbar is shown
twice to illustrate the two operations that need to be performed.

yi
 

i

ijij wyz

O(N2)

Operationsout

j

k

w11

w21

w31

w12

w22

w32

w31

w32

w33

in

i

Digital Core

jzj
e

y





1

1

yj

O(N)

Operations

(a) (b)

Forward Propagation

yi

Digital Core

jjj z
dz

dy
)(

 
i

ijij wyz

O(N2) Read

Operations

O(N)

Operations

kerror

k

k

jkj w 

j j

yi

iy

O(N2) Write

Operations

w11

w21

w31

w12

w22

w32

w31

w32

w33

w11

w21

w31

w12

w22

w32

w31

w32

w33

w11

w21

w31

w12

w22

w32

w31

w32

w33

jz

Back Propagation

(c)

Learning rate

Sigmoid

derivative

Total Error = E

jj

jj

kk

yE

zE

zE











can therefore be the same order of magnitude as the energy
needed to drive the crossbar [12]. If desired, additional
energy efficiency can be traded off against algorithmic
flexibility by performing analog neuron operations in the
neural core, as in [10]. The implementation of
backpropagation on the general purpose neural architecture
is illustrated in Fig. 4. The crossbars process O(N

2
)

operations while the digital cores handle O(N) operations.

Data communication between cores should be built on an
address event representation (AER) based spiking
communication model [19, 20]. This limits data to only be
sent when needed and allows a shared communication bus to
be used. Using a routing network also allows arbitrary
connections between the cores. We note the brain has an
extremely dense connectivity where individual neurons in
the cerebral cortex can receive roughly 10,000 input
synapses from other neurons[21]. To achieve this, the brain
takes full advantage of its 3D structure to minimize
connection lengths. Currently, high performance CMOS is
2D or at most 2.5D and so it is impossible to hardwire the
same number of connections. Consequently, a shared bus is
needed to emulate the same connection density.

Overall, to obtain maximum energy efficiency, this type
of a system assumes that a neural network has dense local
connections that can be mapped to a crossbar and fewer
global connections that need to be sent over the routing
network. Computation is localized to the maximum extent
possible, which minimizes the amount of high energy cost,
longer range communications that are required. A dense
local and sparse global connectivity is similar to how the
brain is organized. If this is not the case for a given
algorithm, a single column of a crossbar can be used in a
specific read or write step to allow for maximum flexibility
at higher energy cost.

III. IDEAL WEIGHT RANGES AND LEARNING RATE

To efficiently map a backpropagation network to
hardware several algorithmic parameters need to be set. For a
given dataset, we need the learning rate, number of epochs to
train for, random weight initialization, sigmoid slope, and
network size. Physical resistive memories also have a min
and a max conductance. This means that the network has a
min and max weight it can store. Choosing the weight range
correctly is important to maximize the usage of the resistive
memory’s dynamic range.

In this paper we analyze three different data sets as
summarized in Table I. First we consider a small image
version (8x8 pixels) of handwritten digits from the “Optical
Recognition of Handwritten Digits” dataset from [22]. Next
we use MNIST, a large image version (28x28 pixels) of
handwritten digits [23]. Finally, we use a Sandia file
classification dataset in [24] (256 byte-pair statistical
attributes to classify 9 file types). We use a simple two-layer
network (one hidden layer) for each dataset with the network
size indicated in Table I. For simplicity, we consider a single
network configuration; more generally there may be a
optimizable tradeoff between network size and noise.

We arbitrarily chose to use sigmoid neurons with a unity
slope. Through the learning process the weights will be
scaled up or down to match the sigmoid slope. The initial
random weight range and learning rate need to be correctly
chosen to enable optimal training. Following [25], the
weights should be initialized to a uniform distribution of
Uniform [-r , r] where:

)/(64 outfaninfanr   

The fan-in is the number of inputs to a layer and fan-out is
the number of outputs (For the first layer of MNIST the
fan-in=784 and fan-out=300 from Table I).

This sets an initial scale for the weights. Next we
determine the learning rate and number of epochs needed to
train. These could be dataset dependent, so we test several
different learning rates for each dataset as illustrated in Fig.
5. (All the training plots in this paper are based on accuracy
for the test data set, after training on the training data set.)
For all three datasets, 100 epochs and a learning rate of 0.1
works well. These values are used in the rest of the paper.

 Next, we determine how to best map the weights to the
device’s conductance state. To do this we need to understand
what range the weights ideally take in a noise-free,

TABLE I. DATA SET PROPERTIES

Data set
Training

Examples

Test

Examples

Network

Size

UCI Small images [21] 3,823 1,797 64×36×10

File types [22] 4,501 900 256×512×9

MNIST large images [23] 60,000 10,000 784×300×10

TABLE II. WEIGHT CLIPPING LIMITS

Data set
1st Layer

Weight σ

2nd

Layer

Weight σ

Normalized

Clipping

Range

UCI small images 0.87 1.93 1.5

File types 0.22 0.44 1.5

MNIST large images 0.22 1.05 1.5

A
c
c
u

ra
c

y
 (

%
)

Epoch Epoch

Small Images Large Images

Epoch

File Types

(a) (b)

(c)

A
c
c
u

ra
c

y
 (

%
)

A
c
c
u

ra
c

y
 (

%
)

Fig. 5: The error on the test set vs epoch as a function of learning rate, α, is

plotted for the different data sets.

unbounded model, and what happens if we limit the possible
weight range. Fig. 6(a) shows how the standard deviation of
the weights grow vs epoch and Fig. 6(b) plots a histogram of
the weights for different epochs. The weights rapidly grow in
the first few epochs and then start to saturate. The weight
range is also different for each layer. The standard deviation
of the weights in each layer after training indicates a natural
weight range. This is summarized in Table II.

Since the physical devices have a limited conductance
range, a limited algorithmic weight range is required. We
want the smallest possible range that will not decrease the
accuracy. A smaller weight range allows more of the
resistive memory’s dynamic range to be used, minimizing
the impact of noise. The impact of training a neural network
with a limited weight range is plotted in Fig. 7. This plot
indicates that the weights can be clipped to around 1.5×σ
without losing significant final accuracy. As seen in Fig. 8,
clipping the weights causes the larger weights to saturate at
the limits. The more aggressive clip range of 1.5 allows some
weights to saturate, and maximizes the use of the numerical
dynamic range. This minimizes the impact of noise caused
by a real device and maximizes the information stored in a
particular device. When the ideal weight range is not known
a priori a larger range may be used, at the cost of increased
impact from noise.

With a reasonable algorithmic weight range, we can map
the ranges from Table II to physical conductance. Consider a
normalized conductance scale where the maximum
conductance is 1. The minimum normalized conductance
will be given by 1/(on-off ratio)=GOFF/GON. If GON/GOFF=10,
the minimum normalized conductance will be 0.1. This
normalized 0.1 to 1 range needs to be mapped to the weight
range required by the algorithm. Physically, a fixed bias of

0.55 is subtracted from each weight as illustrated in Fig. 3.
This gives weights in the range of [-0.45, 0.45]. Next, this is
scaled up or down to match the algorithmic weight scale. In
the digital cores in Fig. 2, the digitized results from the
neural core can be multiplied by an appropriate scale factor.
In the rest of this paper, when possible, we define the device
models relative to the total weight range so that all the
results are independent of the scaling. For example, we
define noise parameters as a percentage of the total weight
range.

IV. READ NOISE

When reading a resistive memory there are three kinds
of read noise that can change the current: thermal noise, 1/f
noise and random telegraph noise (RTN) [26-32]. RTN, the
noise from a single trap filling/emptying, is typically the
dominant form of noise. It can depend on a few particular
traps causing the current to oscillate between two states.
Nevertheless, between write cycles, the distribution of the
relevant traps will change and the conductance change due to
those traps follows a Gaussian[26]. Consequently, we
consider two models, 1) a RTN model where the
conductance randomly toggles between one of two states,
and 2) a simple Gaussian noise distribution. The Gaussian
model is a more generic model that can also approximate the
effects of thermal noise and 1/f noise. For both models, the
impact of the noise, averaged over an entire read cycle, can
simply be modelled as a perturbation to the device’s
conductance during each read. For the RTN model with a
standard deviation, σ, we randomly add + σ or – σ to the
conductance where σ is defined relative to the total
conductance range:

 rangeRNo GGG   ,  

where G is the conductance after applying read noise, Go is
the actual conductance stored in the device, σ is the standard
deviation, and σRN is the dimensionless standard deviation of
the noise normalized to the range of the conductance, Grange.

For the Gaussian model, the noise is defined by:

   rangeRNo GNGG   ,  

where N is a normal distribution with standard deviation σ.

The classification accuracy of the two models is
compared in Fig. 9. The two models give nearly identical
results. This is because the noise from many resistive
memories is added together during a vector matrix multiply.

Fig. 6: (a) The standard deviation of the weights vs the training epoch is
plotted. After an initial increase, the weights start to saturate. (b)

Histograms of the weights in the second layer for large images are plotted

vs epoch.

Large Images Layer 1

Small Images Layer 1

Large Images Layer 2

Small Images Layer 2
50 Epochs

100 Epochs

0 Epochs

Large Images

Fig. 7: The final accuracy after 100 epochs vs the normalized clipping

range for the three different data sets. The clipping range for each layer is

normalized to the standard deviation of the unclipped weights given in
Table II.

File Types

Small Images
Large Images

Fig. 8: A histogram of the weight distributions for different normalized
clipping ranges is shown for the small image dataset. As clipping range

decreases, more weights saturate at the limit.

Clip = 1

Clip = 1.5

Clip = 2

Unclipped

Small Images, First Layer

Normalized Weights

W
e
ig

h
t
P

ro
b
a
b
ili

ty
 D

e
n
s
it
y

By the central limit theorem, the noise sources will add
together to form identical Gaussian distributions so long as
the variance of the noise is the same. Consequently, for the
following simulations it is sufficient to model RTN with Eq.
(3) the Gaussian noise distribution.

In some situations σ can be a function of the device’s
current state, Go. For instance in [26], σ is a constant for
currents >1µA and then decreases as the current decreases
below 1µA. Therefore, we also consider a proportional
Gaussian model where σ is also directly proportional to the
current state, Go:

   oRNo GNGG   ,  

Here γ is a normalization constant. If we choose γ so that
both models have the same variance, they give nearly
identical results, as illustrated in Figs. 10 & 11. This means
that Eq. (3) is sufficient. In general, we propose Eq. (3) can
be used to approximate any read noise distribution if the
standard deviation in Eq. (3) is calibrated to give the same
variance as a more complicated noise model.

To find γ we can approximate the clipped weight
distribution as a uniform distribution over the weight range,
and compare the variance between Eq. (3) and (4):

   
max

min

max

min

22 G

G
ooRN

G

G
oRN dGGdG   

Solving for γ gives:


3

min

3

maxminmax

13

GGGG 



  

As seen from Fig. 8, a uniform weight distribution is a
reasonable approximation to first order. Using Gmax=1 and
Gmin =0.1 gives γ = 1.8.

In Fig. 10, we show how the read noise affects
classification accuracy using a set of pre-trained weights
(noise was not present during training). The accuracy starts
to drop off after σRN = 5% of the weight range. In Fig. 11(a),
we show a similar accuracy if we also apply the read noise
during training. Now each data point corresponds to the final
test set accuracy after a full training run of 100 epochs. In
this case, the noise causes a significant variability in the final
accuracy between runs which vary only in the initial random
number seed. Training a network three times and taking the
best result reduces the variability as shown in Fig. 11(b).
Using a fixed random number seed for both the weight
initialization and the noise also eliminates the variability.

V. WRITE NOISE

Write noise occurs every time the state of a resistive
memory changes [13, 33, 34]. The relative magnitude of this
write noise is typically greater than that of read noise.
Writing a resistive memory involves moving atoms around,
which is inherently a stochastic process. The exact nature of
the noise will be strongly dependent on the type of resistive
memory and whether it is filamentary or non-filamentary. In
general, the statistics of this type of noise are not well
characterized. One of the most relevant measurements is
reported in [13], where a write pulse is applied to a phase
change memory at a given conductance and the change in
conductance, ΔG, is measured multiple times to obtain a
distribution. This work indicates that the noise increases as
both ΔG increases and as the initial state, Go, increases.

Since write noise is not well characterized
experimentally, we consider the impact of two different
models. First consider a write noise that is independent of the
intended state change, ΔG. Since the noise is independent of
ΔG, long and short write pulses will have the same noise
distribution. Consequently, noise of this type would still have
the same distribution after multiple write pulses. This means
that the noise only affects the value that is read, and not the

Normalized Sigma (σRN)

A
c
c
u

ra
c
y
 (

%
)

A
c
c
u

ra
c
y
 (

%
)

Normalized Sigma (σRN)

Training with Read Noise

Single Run Best of 3

(a) (b)

File Types

Small Images

Large Images

Proportional

Independent

Proportional

Independent
Large Images

Small Images

File Types

Fig. 11: (a) The classification accuracy on test data vs read noise is shown.

The weights are trained with read noise resulting in a more variability
between runs due to the noise. (b) The best accuracy out of three runs is

shown, eliminating much of the variability. (solid lines = independent

noise model Eq. (3), dotted lines = proportional noise model, Eq. (4)).
Classification with Read Noise

File Types
Small Images

Large Images

Proportional

Independent

Normalized Sigma (σRN)

A
c
c
u

ra
c
y
 (

%
)

Fig. 10: The classification accuracy vs read noise is shown for the

independent Gaussian noise model, Eq. (3), (solid lines) and the
proportional Gaussian noise model, Eq. (4) (dotted lines). Using a

normalization factor γ = 1.8 gives similar results for the two models. The

small differences are due to the fact that the weights do not follow a
perfectly uniform distribution. The weights are pre-trained with no noise

and noise is only added during classification.

File TypesSmall Images

Large Images

RTN

Gaussian

Classification with Read Noise

Normalized Sigma (σRN)

A
c
c
u

ra
c
y
 (

%
)

Fig. 9: Classification accuracy vs read noise for the RTN (Eq. 2) and

Gaussian (Eq. 3) models give nearly identical results. The weights are pre-

trained with no noise and read noise is added during classification of the

test set. The noise is applied to both the weights and the fixed biases.

internal state. If the internal state has changed, the noise
would compound for each step and would depend on ΔG.
Effectively, this can be modelled as a read noise and a
separate write noise model is not needed. Since
backpropagation alternates read and write cycles and the
noise is summed over many devices during a vector matrix
multiply, the read noise model in the previous section is
sufficient to model this type of noise.

Next, consider noise that depends on the size of the
update. Here, we make an important simplifying assumption
that if we use one pulse or two pulses to change the
conductance from one state to another, the noise will be the
same as long as the average initial and final states are the
same. This implies that one longer or higher voltage pulse
will cause the same physical change as two sequential pulses
that end at the same average conductance. Implicitly, we are
assuming that the resistive memory can be modeled with a
single internal state variable so that it does not matter how
we end up at a given conductance state, which is typical for
these devices [35-37]. Certain devices under particular
operating conditions require two internal state variables to be
modelled; this is beyond the scope of this work[38].

Since the noise is the same for a given ΔG regardless of
the number of pulses required to get a given ΔG, ΔG must be
proportional to the variance of the noise, σ

2
. After multiple

pulses, the variance of the noise in each pulse is additive.

Therefore, G . We also assume that the write noise

follows a Gaussian distribution as it is the result of the
collective motion of many atoms so that the state after an
update is given by:

)(NGGG o   

Like the read noise, it is possible that σ depends on the
initial state, Go, (and/or the final state. For simplicity, we
consider smaller updates so that we only need to consider the
initial or only the final state dependence). To understand the

impact of the initial state dependence, we consider three
possible models. First, σ is independent of Go:


WNrangeGG    

Here we add the conductance range, Grange, so that a
dimensionless standard deviation, σWN, can be defined. Next
we consider a σ that is proportional to Go.


WN

range

o
range

G

G
GG    

As with the read noise, γ is chosen so that both models have
the same variance. Therefore, γ is given by Eq. 6 and is 1.8
for a uniform weight distribution with Gmax=1 and Gmin =0.1.
Lastly, we consider σ inversely proportional to Go:


WN

o

range

range
G

G
GG    

Once again γ is chosen so that all models have the same
variance. For uniform weight distribution with Gmax=1 and
Gmin =0.1, γ is 0.35.

The effect of the three different models of write noise is
plotted in Fig. 12. Again the final accuracy after training for
100 epochs is plotted. We see that the particular Go
dependence does not have a significant effect on the write
noise for the small and large images, but matters somewhat
for the cyber dataset. To first order, the simplest model
independent of Go, Eq. 8, gives a reasonable intuition of how
the system responds when the exact Go dependence is not
known. The key is that the noise model should have the
correct noise variance.

In order to compare the magnitude of updates with the
corresponding write noise, we plot the probability density of
the updates without noise and the corresponding noise sigma
in Fig. 13 for small images. We choose a safe noise sigma,
σWN, of 0.1 that does not affect the accuracy as shown in
Fig. 12. (Only the second layer of the network is shown for
simplicity, but results are nearly identical for the first layer.)
The updates are on the order of 0.01% to 0.5% of the weight
range. We can define a characteristic update size as a
weighted average of the update size, weighted by the update
size itself. This captures the fact that it requires ten 0.1%

P
ro

b
a
b
ili

ty

D
e
n
s
it
y
 F

u
n
c
ti
o
n

o
f

Id
e
a
l
U

p
d
a
te

Normalized Ideal Weight Update

Normalized Ideal Weight Update

(a)

(b)

Fig. 13: (a) The probability density of the ideal updates without noise is
plotted for the first epoch and second layer of the small image dataset. The

update size (x-axis) is normalized to the weight range. (b) The ratio of the
standard deviation of the write noise to the update size is plotted. This

noise is 2-20X larger than the ideal update itself. This relatively large level

of noise does not decrease the training accuracy of backpropogation. The

independent guassian noise model, Eq. (8), with a σWN of 0.1 is used.

Small Images Large Images

File Types

(a) (b)

(c)
Normalized Sigma (σWN)

A
c
c
u
ra

c
y
 (

%
)

Normalized Sigma (σWN)

A
c
c
u
ra

c
y
 (

%
)

Normalized Sigma (σWN)
A

c
c
u
ra

c
y
 (

%
)

Training with Write Noise

Fig. 12: The accuracy on the test data after training with the three different

write noise models is plotted for the different datasets.

updates to train as much as a single 1% update. The
characteristic update sizes are 0.07%, 0.18%, and 0.17% for
the small image, large image and file type datasets
respectively. For the characteristic update and σWN = 0.1, the
noise is 0.3% to 0.4% of the total range. Surprisingly, this
safe noise level is 2.4X to 3.8X larger than the characteristic
update itself! For smaller updates, the noise can be more than
20X the size of the update, indicating that smaller updates
likely do not contribute as much to the overall learning.

VI. WRITE NONLINEARITY

A. Asymmetric Nonlinearity

In addition to write noise between cycles, the physics of
resistance change in resistive memories typically causes the
conductance change to depend on the resistive memory’s
current state [14]. Often this nonlinearity is asymmetric with
regard to the direction of the pulse. For example, near the
maximum conductance a given pulse will not significantly
increase the conductance, but it can significantly decrease
the conductance. This is particularly true for filamentary
devices, due to a thermal-runaway effect. In order to
maximize efficiency, a parallel open loop write scheme must
be used, and therefore we do not know each individual
resistive memory’s current state between training examples.
This means that the same sized pulse must be applied
regardless of the device’s state and the nonlinear response
thus introduces an additional “error” in the write. Following
[14], the conductance, G, as a function of the normalized
pulse number, p, for increasing pulses is modeled by:

   min1 1 GeGG P  
 

 where





e

GG
G

1

minmax
1  

Gmin is the minimum conductance, Gmax is the maximum
conductance and ν is a parameter characterizing the
nonlinearity. When ν=0, the response is perfectly linear.
Experimental devices have been demonstrated with ν ≈ 2 - 5
[14]. If we have a target update, ΔGtarget, using Eq. (11) we
can solve for the actual update:

    eGGGG 1min1  

where the normalized target update is given by:

  minmaxtarget GGG   

For decreasing pulses, the conductance is given by:

  )1(

1max 1 PeGGG  
 

and the actual update given the target update is:

   eGGGG  1max1  

The asymmetric nonlinearity model, Eqs. (11) and (15)
are plotted in Fig. 14. A strong asymmetric nonlinearity
causes the conductance to decay towards a center value after
alternating pulses as illustrated in Fig. 15. A small amount of
weight decay can be beneficial to prevent overfitting, but
typically the decay will be too large, degrading the ability of
devices to “learn” the weights needed for the
backpropagation algorithm, reducing its final accuracy. This
is illustrated in Fig. 16. The accuracy (after 100 epochs) vs
nonlinearity is plotted for the three different data sets.

B. Symmetric Nonlinearity

Some devices exhibit a symmetric nonlinearity. This is
demonstrated in [39] for a Ag/GeSe/Pt CBRAM cell, and the
data is replotted on a conductance axis in Fig. 17. Resistive
memories that have a non-filamentary switching mechanism
are also expected to behave with a symmetric switching
response, although this has not yet been explicitly
demonstrated in the literature at this time. The symmetry is
more likely because the conductance modulation is
dependent on the motion of many atoms, rather than a few
critical atoms in a filament. To understand the impact of a
symmetric non-linearity, we consider a simple sigmoid based
model illustrated in Fig. 18. We assume that after a sufficient

File Types

Small Images

Asymmetric Nonlinearity

Nonlinearity (ν)

Pulse Number

W
e

ig
h

t

Positive Pulses Alternating Pulses

Fig. 15: Applying identical alternating positive and negative pulses causes

the weight to decay towards a center value when it should remain

constant. When the weight is near the maximum, a positive pulse does not
change the weight much, but a negative pulse significantly decreases it.

The opposite holds for weights near the minimum weight.

Fig. 16: The impact of the asymmetric write nonlinearity on learning is
illustrated for all three datasets.

Gmin

Gmax

C
o
n

d
u

c
ta

n
c
e

(W
e

ig
h

t)

Normalized Pulse Number

Positive Pulses Negative Pulses

0 0.5 1 0.5 0

Asymmetric Nonlinearity

Fig. 14: Asymmetric write nonlinearity is illustrated. As the nonlinearity,

α, increases the amount written depends strongly on the current state. The
conductance rapidly changes at low conductance and then saturates at

higher conductance for positive pulses; the converse occurs for negative

pulses. The x axis is normalized by the number of pulses needed to go

from the minimum to the maximum conductance.

number of pulses the device will saturate at a maximum or
minimum conductance. (The pulsing measurement in Fig. 17
was likely stopped before the conductance started to
saturate). The conductance, G, as a function of the
normalized pulse number, p is given by:

 B
e

AG
p





)5.0(21

1


 

where:


1

1
)(minmax










e

e
GGA  


1

)(minmax
min






e

GG
GB  

Gmin is the minimum conductance, Gmax is the maximum
conductance and ν is a parameter characterizing the
nonlinearity. ν is defined such that the symmetric and
asymmetric models have the same slope at the center
conductance: (Gmin+ Gmax)/2. the actual update given the
target update is:
































  Bw

Bw

A
eAG 11 2

 

where δ is defined by Eq. (14). A symmetric nonlinearity
model does not suffer from the same weight decay problem
as the asymmetric nonlinearity. Consequently, a much larger
nonlinearity can be tolerated without decreasing the accuracy
as illustrated in Fig. 19 as compared to Fig. 16.

VII. COMBINED NON-IDEALITIES

Finally, we compare the impact of all the non-idealities
operating at the same time. In Fig. 20 we show the effect of
read and write noise with different nonlinearities for the
small images. Figs. 21 and 22 show the same for large
images and file types respectively. Each colored “pixel” in
each sub-figure represents a final accuracy after training for
100 epochs. The largest data set (MNIST) required 2-3 days
of CPU time on a single core to train with all three non-
idealities enabled for a single set of parameters. Because
pixels represent independent runs, we used up to 1024 cores
of a parallel cluster to scan multiple parameters and produce
the data for Figs 20-22.

For the read noise we used a Gaussian noise model with a
fixed sigma, Eq. (3). For the write noise, we used the
simplest model, with noise independent of the current state,
Eq. (8). As seen from the figures, adding an asymmetric
nonlinearity response rapidly reduces the overall accuracy.
Moderate symmetric nonlinearities do not impact the
accuracy. For small images, Fig. 20d, the symmetric non-
linearity actually increases the accuracy at higher levels of
noise. We believe this is because the weights are nudged
towards the max or min values, reducing the impact of noise.

VIII. DEVICE RESISTANCE

The last key device requirement to consider is the
resistance required for use in a crossbar. Scaled wires at a
10nm half pitch can only handle 10 µA before
electromigration becomes an issue[40]. Higher currents also
cause unacceptable parasitic voltage drops [41]. In order to
support a 1000x1000 crossbar with a fully parallel read or
write, each device can have no more than a maximum
switching current of 10nA. If we only read/write a smaller
100x100 crossbar in parallel, each device can have a
switching current of 100nA. At 1V that corresponds to a
resistance of 10 MΩ.

High resistance devices have been demonstrated [42, 43],
but devices have not yet been demonstrated with both a high
resistance and low variability, symmetric analog switching
characteristics. The need for high on-state resistance and
good analog characteristics means that filamentary resistive
memories may not work as well as non-filamentary devices.
A resistance higher than a quantum of conductance, 13 kΩ,
requires current to tunnel through barrier. This presents a
fundamental problem for a filamentary device: a single atom

File Types

Small Images

Large Images

Symmetric Nonlinearity

Nonlinearity (ν)

Fig. 19: The accuracy does not significantly degrade with moderate

symmetric nonlinearity.

Gmin

Gmax

C
o
n

d
u

c
ta

n
c
e

 (
W

e
ig

h
t)

Normalized Pulse Number

Positive Pulses Negative Pulses

0 0.5 1 0.5 0

Symmetric Nonlinearity

C
o

n
d

u
c
ta

n
c
e

 (
m

S
)

Pulse Number

Positive Pulses Negative Pulses

Fig. 17: The conductance vs pulse response for a Ag-GeSe cell if plotted
from [39]. This device shows a nearly symmetric response when switching

from positive to negative pulses.

Fig. 18: The symmetric write nonlinearity model is illustrated. The x-axis
is normalized by the number of pulses needed to go from the minimum to

the maximum weight. In contrast to Fig. 14, the response is reversible for

positive versus negative pulses

can halve that tunneling barrier, resulting in huge variability
and poor analog characteristics.

IX. CONCLUSION

We have introduced a general purpose neural architecture
that can solve many different problems. This architecture can
be used effectively to implement backpropagation with
resistive memory crossbars that have the properties
summarized in Table III. Our numerical modeling of 2D
crossbars (matrices) of devices on three different datasets has
shown that training or classifying with resistive memories
with a read noise sigma up to 5% of the total conductance
range does not significantly degrade the accuracy (~1%).
Neural networks are also robust to write noise that is up to
0.4% of the total range and 300% of a characteristic update.
This will vary slightly depending on the dataset and the

neural network architecture. Both read and write noise can
be modelled with reasonable accuracy using a simple
Gaussian noise model. The simpler noise models generally
match more complex models so long as the models have the
same noise variance averaged over the weight distribution.
The read and write noise models are physically inspired, but
refined to empirically fit the available data. Asymmetric
nonlinearities with ν>0.1 degrades the classification accuracy
as it causes weight decay, while moderate symmetric
nonlinearities with ν up to 5 do not harm the classification
accuracy. The asymmetric nonlinearity model is empirically
derived from device data, while the symmetric nonlinearity
model is more speculative. To work in an energy efficient
crossbar, resistive memories must also have a high on-state
resistance of 10 MΩ or higher. Promising devices have been
demonstrated experimentally, but more resistive memory
development is needed to create a device that meets all of
these requirements simultaneously.

X. ACKNOWLEDGEMENTS

The authors would like to thank Geoff Burr, Kevin R.
Dixon, Tarek Taha, Dhireesha Kudithipudi, Shimeng Yu,
Hugh Barnaby, and David J. Mountain for helpful
discussions.

REFERENCES

[1] D. Kadetotad, X. Zihan, A. Mohanty, et al., "Parallel Architecture

With Resistive Crosspoint Array for Dictionary Learning

Acceleration," Emerging and Selected Topics in Circuits and Systems,
IEEE Journal on, vol. 5, pp. 194-204, 2015.

0

90

98
Linear Asymmetric, ν = 1

Asymmetric, ν = 5 Symmetric, ν = 5

AccuracySmall Images

(a) (b)

(c) (d)Read Noise (σRN) Read Noise (σRN)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

0

90

98
Linear Asymmetric, ν = 1

Asymmetric, ν = 5 Symmetric, ν = 5

AccuracyLarge Images

(a) (b)

(c) (d)Read Noise (σRN) Read Noise (σRN)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

Fig. 20: The impact of read noise, write noise and nonlinearity is illustrated
for small images

Fig. 21: Same as Fig. 20 for large images

Fig. 22: Same as Fig. 20 for file types.

TABLE III. REQUIRED DEVICE PROPERTIES

Small

Images

Large

Images
File Types

Read Noise σ (% Range) 3% 5% 9%

Write Noise σ (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (ν) 0.1 0.1 0.1

Symmetric Nonlinearity (ν) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

0

90

98
Linear Asymmetric, ν = 1

Asymmetric, ν = 5 Symmetric, ν = 5

AccuracyFile Types

(a) (b)

(c) (d)Read Noise (σRN) Read Noise (σRN)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

W
ri

te
 N

o
is

e
 (
σ

W
N
)

[2] T. M. Taha, R. Hasan, C. Yakopcic, et al., "Exploring the design

space of specialized multicore neural processors," in Neural Networks
(IJCNN), The 2013 International Joint Conference on, 2013, pp. 1-8.

[3] P. Kogge, K. Bergman, S. Borkar, et al., "Exascale computing study:

Technology challenges in achieving exascale systems," 2008.
[4] D. B. Strukov, G. S. Snider, D. R. Stewart, et al., "The missing

memristor found," Nature, vol. 453, pp. 80-83, 2008.

[5] L. O. Chua, "Memristor-The missing circuit element," Circuit Theory,
IEEE Transactions on, vol. 18, pp. 507-519, 1971.

[6] R. Waser and M. Aono, "Nanoionics-based resistive switching

memories," Nat Mater, vol. 6, pp. 833-840, 2007.
[7] K.-H. Kim, S. Gaba, D. Wheeler, et al., "A Functional Hybrid

Memristor Crossbar-Array/CMOS System for Data Storage and

Neuromorphic Applications," Nano Letters, vol. 12, pp. 389-395,
2012/01/11 2012.

[8] S. H. Jo, T. Chang, I. Ebong, et al., "Nanoscale Memristor Device as

Synapse in Neuromorphic Systems," Nano Letters, vol. 10, pp. 1297-
1301, 2010/04/14 2010.

[9] C. Ting, Y. Yuchao, and L. Wei, "Building Neuromorphic Circuits

with Memristive Devices," Circuits and Systems Magazine, IEEE,
vol. 13, pp. 56-73, 2013.

[10] R. Hasan and T. M. Taha, "Enabling back propagation training of

memristor crossbar neuromorphic processors," in Neural Networks

(IJCNN), 2014 International Joint Conference on, 2014, pp. 21-28.

[11] Y. Kim, Y. Zhang, and P. Li, "A reconfigurable digital neuromorphic

processor with memristive synaptic crossbar for cognitive
computing," ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 11, p. 38, 2015.
[12] S. Agarwal, T.-T. Quach, O. Parekh, et al., "Energy Scaling

Advantages of Resistive Memory Crossbar Based Computation and

its Application to Sparse Coding," Frontiers in Neuroscience, vol. 9,
2016.

[13] G. W. Burr, R. M. Shelby, S. Sidler, et al., "Experimental

Demonstration and Tolerancing of a Large-Scale Neural Network
(165 000 Synapses) Using Phase-Change Memory as the Synaptic

Weight Element," Electron Devices, IEEE Transactions on, vol. 62,

pp. 3498-3507, 2015.
[14] P.-Y. Chen, B. Lin, I.-T. Wang, et al., "Mitigating Effects of Non-

ideal Synaptic Device Characteristics for On-chip Learning,"

presented at the Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, Austin, TX, USA, 2015.

[15] H. Miao, L. Hai, C. Yiran, et al., "Memristor Crossbar-Based

Neuromorphic Computing System: A Case Study," Neural Networks
and Learning Systems, IEEE Transactions on, vol. 25, pp. 1864-1878,

2014.

[16] M. Ueda, Y. Nishitani, Y. Kaneko, et al., "Back-Propagation
Operation for Analog Neural Network Hardware with Synapse

Components Having Hysteresis Characteristics," PLoS ONE, vol. 9,

p. e112659, 2014.
[17] S. K. Esser, R. Appuswamy, P. Merolla, et al., "Backpropagation for

Energy-Efficient Neuromorphic Computing," in Advances in Neural

Information Processing Systems, 2015, pp. 1117-1125.
[18] S. N. Truong and K.-S. Min, "New memristor-based crossbar array

architecture with 50-% area reduction and 48-% power saving for

matrix-vector multiplication of analog neuromorphic computing,"
Journal of semiconductor technology and science, vol. 14, pp. 356-

363, 2014.

[19] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., "A million
spiking-neuron integrated circuit with a scalable communication

network and interface," Science, vol. 345, pp. 668-673, August 8,

2014 2014.
[20] P. Jongkil, T. Yu, C. Maier, et al., "Live demonstration: Hierarchical

Address-Event Routing architecture for reconfigurable large scale

neuromorphic systems," in Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, 2012, pp. 707-711.

[21] A. Schüz and G. Palm, "Density of neurons and synapses in the

cerebral cortex of the mouse," The Journal of Comparative
Neurology, vol. 286, pp. 442-455, 1989.

[22] K. Bache and M. Lichman. UCI machine learning repository

[Online]. Available: http://archive.ics.uci.edu/ml/
[23] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of

handwritten digits [Online]. Available:

http://yann.lecun.com/exdb/mnist

[24] J. A. Cox, C. D. James, and J. B. Aimone, "A Signal Processing

Approach for Cyber Data Classification with Deep Neural Networks,"
Procedia Computer Science, vol. 61, pp. 349-354, // 2015.

[25] Y. Bengio, "Practical recommendations for gradient-based training of

deep architectures," in Neural Networks: Tricks of the Trade, ed:
Springer, 2012, pp. 437-478.

[26] D. Veksler, G. Bersuker, L. Vandelli, et al., "Random telegraph noise

(RTN) in scaled RRAM devices," in Reliability Physics Symposium
(IRPS), 2013 IEEE International, 2013, pp. MY.10.1-MY.10.4.

[27] S. Ambrogio, S. Balatti, V. McCaffrey, et al., "Noise-Induced

Resistance Broadening in Resistive Switching Memory Part II: Array
Statistics," Electron Devices, IEEE Transactions on, vol. 62, pp.

3812-3819, 2015.

[28] S. Ambrogio, S. Balatti, V. McCaffrey, et al., "Noise-Induced
Resistance Broadening in Resistive Switching Memory Part I:

Intrinsic Cell Behavior," Electron Devices, IEEE Transactions on,

vol. 62, pp. 3805-3811, 2015.
[29] Y. Shimeng, R. Jeyasingh, W. Yi, et al., "Understanding the

conduction and switching mechanism of metal oxide RRAM through

low frequency noise and AC conductance measurement and analysis,"
in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011,

pp. 12.1.1-12.1.4.

[30] Z. Fang, H. Y. Yu, W. J. Fan, et al., "Current Conduction Model for

Oxide-Based Resistive Random Access Memory Verified by Low-

Frequency Noise Analysis," Electron Devices, IEEE Transactions on,

vol. 60, pp. 1272-1275, 2013.
[31] N. Raghavan, R. Degraeve, A. Fantini, et al., "Microscopic origin of

random telegraph noise fluctuations in aggressively scaled RRAM
and its impact on read disturb variability," in Reliability Physics

Symposium (IRPS), 2013 IEEE International, 2013, pp. 5E.3.1-

5E.3.7.
[32] Y. H. Tseng, S. Wen Chao, H. Chia-En, et al., "Electron trapping

effect on the switching behavior of contact RRAM devices through

random telegraph noise analysis," in Electron Devices Meeting
(IEDM), 2010 IEEE International, 2010, pp. 28.5.1-28.5.4.

[33] X. Guan, Y. Shimeng, and H. S. P. Wong, "On the Switching

Parameter Variation of Metal-Oxide RRAM Part I: Physical
Modeling and Simulation Methodology," Electron Devices, IEEE

Transactions on, vol. 59, pp. 1172-1182, 2012.

[34] S. Kim, S. Choi, J. Lee, et al., "Tuning Resistive Switching
Characteristics of Tantalum Oxide Memristors through Si Doping,"

ACS Nano, vol. 8, pp. 10262-10269, 2014/10/28 2014.

[35] C. Yakopcic, T. M. Taha, G. Subramanyam, et al., "Generalized
Memristive Device SPICE Model and its Application in Circuit

Design," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 32, pp. 1201-1214, 2013.
[36] M. D. Pickett, D. B. Strukov, J. L. Borghetti, et al., "Switching

dynamics in titanium dioxide memristive devices," Journal of Applied

Physics, vol. 106, p. 074508, 2009.
[37] S. Kvatinsky, E. G. Friedman, A. Kolodny, et al., "TEAM: ThrEshold

Adaptive Memristor Model," Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 60, pp. 211-221, 2013.
[38] P. R. Mickel, A. J. Lohn, C. D. James, et al., "Isothermal Switching

and Detailed Filament Evolution in Memristive Systems," Advanced

Materials, vol. 26, pp. 4486-4490, 2014.
[39] D. Mahalanabis, H. J. Barnaby, Y. Gonzalez-Velo, et al.,

"Incremental resistance programming of programmable metallization

cells for use as electronic synapses," Solid-State Electronics, vol. 100,
pp. 39-44, 10// 2014.

[40] International Technology Roadmap for Semiconductors 2013 Edition.

Available: http://www.itrs2.net
[41] P.-Y. Chen, D. Kadetotad, Z. Xu, et al., "Technology-design co-

optimization of resistive cross-point array for accelerating learning

algorithms on chip," in Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, 2015, pp. 854-859.

[42] S. Gaba, C. Fuxi, Z. Jiantao, et al., "Ultralow Sub-1-nA Operating

Current Resistive Memory With Intrinsic Non-Linear
Characteristics," Electron Device Letters, IEEE, vol. 35, pp. 1239-

1241, 2014.

[43] C. H. Cheng, C. Y. Tsai, A. Chin, et al., "High performance ultra-low
energy RRAM with good retention and endurance," in Electron

Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 19.4.1-

19.4.4.

http://archive.ics.uci.edu/ml/
http://yann.lecun.com/exdb/mnist
http://www.itrs2.net/

