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Abstract— Resistive memories enable dramatic energy 

reductions for neural algorithms. We propose a general 

purpose neural architecture that can accelerate many different 

algorithms and determine the device properties that will be 

needed to run backpropagation on the neural architecture. To 

maintain high accuracy, the read noise standard deviation 

should be less than 5% of the weight range. The write noise 

standard deviation should be less than 0.4% of the weight 

range and up to 300% of a characteristic update (for the 

datasets tested). Asymmetric nonlinearities in the change in 

conductance vs pulse cause weight decay and significantly 

reduce the accuracy, while moderate symmetric nonlinearities 

do not have an effect. In order to allow for parallel reads and 

writes the write current should be less than 100 nA as well.  

Keywords— resistive memory, memristor, backpropagation, 

neural networks, noise, neuromorphic computing 

I. INTRODUCTION 

Resistive memory crossbars can dramatically reduce the 
energy required to perform computations in neural 
algorithms by at least six orders of magnitude when 
compared to a conventional CPU[2]. For data intensive 
applications, the computational energy is dominated by 
moving data between the processor, SRAM (static random 
access memory), and DRAM (dynamic random access 
memory)[3]. New approaches based on memristor or 
resistive memory [4-7] crossbars can enable the processing 
of large amounts of data by significantly reducing data 
movement, taking advantage of analog operations [8-12], 
and fitting more memory on a single chip. 

Resistive memories are essentially programmable two 
terminal resistors. If a write voltage is applied to the device, 
the resistance will increase or decrease based on the sign of 
the voltage, allowing the resistance to be programmed. At 
lower voltages, the state does not change. Consequently, 
these devices can be used to model a neural synapse wherein 
the resistance acts like a weight that modulates the voltage 
applied to it. This has resulted in a large interest in 
developing neuromorphic systems based on such devices [8-
11]. Ideally, the resistive memories would have a perfectly 
linear and controllable response allowing them to be 
programmed to any arbitrary analog value. Unfortunately, 
realistic devices have three key non-idealities: 1) read noise 

which causes the value read from the resistive memory to be 
different than the true value, 2) write noise which causes the 
value written to be different from the intended value, and 3) 
write nonlinearities which means that the change in 
conductance due to a write pulse will be different depending 
on the device’s current state. This is true for most resistive 
memory devices, including metal oxide ReRAM, CBRAM, 
PCM and others. In this paper, we model the resilience of 
neural algorithms based on machine learning in the presence 
of device based noise and variability. 

The key contribution of this paper is to determine an 
acceptable range of device operating parameters in order to 
guide the development of new resistive memory device 
technologies. Consequently, we only focus on the three 
aforementioned non-idealities introduced by individual 
resistive memory devices themselves, excluding other non-
idealities that would be present in a full system. Other 
studies have examined some device non-idealities, but none 
have systematically analyzed all three effects [13-15]. 
Analyzing all the non-idealities in a full neuromorphic 
system will be the subject of future work. 

In the next sections, we describe a general purpose neural 
architecture that can be used to accelerate many neural 
algorithms. Backpropagation was chosen for this study as it 
is a computation-intensive algorithm that underlies the 
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Fig. 1. (a) Analog resistive memories can be used to reduce the energy of 

a vector-matrix multiply. The conductance of each resistive memory 
device represents a matrix element or weight. Analog input vector values 

are represented by the input voltages or input pulse lengths, and output 

vector values are represented by currents. This allows all the read 
operations, multiplication operations and sum operations to occur in a 

single step. A conventional architecture must perform these operations 

sequentially for each weight resulting in a higher energy and delay. A 
matrix-vector multiply can also be performed by driving the columns and 

reading the currents on the rows. (b) A parallel write is illustrated. 

Weight Wij is updated by xi×yj. In order to achieve a multiplicative effect 
the xi are encoded in time while the yj are encoded in the height of a 

voltage pulse. The resistive memory will only train when xi is nonzero. 

The height of yj determines the strength of training when xi is nonzero. 

The column inputs yj can also be encoded in time as in [1] 
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successful application of neural networks in software and 
hardware, and has been thoroughly benchmarked in previous 
work[16, 17]. We use a numerical simulation, written in 
Python, to model how backpropagation performance is 
impacted by the three hardware non-idealities for different 
data sets, and determine device properties required to 
maintain high learning accuracy.  

II. GENERAL PURPOSE NEURAL ARCHITECTURE 

The key design considerations for an effective neural 
algorithm accelerator is that it should both reduce the 
computation energy by orders of magnitude, and it should be 
flexible enough that it can run many different neural 
algorithms. In [12] it is shown that a resistive memory 
crossbar can accelerate two key operations: 1) a parallel read, 
or vector matrix multiply, and 2) a parallel write or rank one 

outer product update, as illustrated in Fig. 1. Many neural 
algorithms such as sparse coding, restricted Boltzmann 
machines, and backpropagation rely heavily on these two 
operations. The difference in the implementation of these 
algorithms is how the inputs and outputs of a crossbar are 
processed. An NxN crossbar accelerates O(N

2
) operations, 

while it has O(N) inputs or outputs. This means that the 
energy to process an input or output can cost O(N) times 
more than the energy to read or write a single resistive 
memory element without significantly increasing the system 
energy. This key insight allows us to optimize the tradeoff 
between energy efficiency and system flexibility. A crossbar 
based neural core should be used to perform the parallel 
vector matrix multiply and outer product update, while a 
more general purpose digital core can be used to process the 
inputs and outputs of the crossbar. This is illustrated in Fig. 
2. The neural core is illustrated in Fig. 3.  

To represent both positive and negative matrix values 
with a resistive device, a reference weight is subtracted in 
analog following [18]. Alternatively, it is possible to take the 
difference between two resistive memory elements, but this 
requires twice as many devices [13]. The inputs and outputs 
to the neural cores are digital and so analog to digital (A/D) 
and digital to analog (D/A) converters will be needed. This is 
energetically expensive, but they are O(N) operations and 

Fig. 2. A general purpose neural architecture is shown. The neural cores 

only perform parallel vector matrix multiplication, matrix vector 
multiplication and parallel rank 1 outerproduct updates. For a NxN 

crossbar the neural core performs O(N2) operations. The general purpose 

digital cores process the O(N) inputs/outputs to the neural cores and use 
the routing network to route data between cores. The flexibility of the 

digital cores allow for many different algorithms to be implemented, while 

still taking advantage of the neural cores to accelerate O(N2) operations. 

The digital cores can also use digital on-chip resistive memory instruction 

caches to store slowly changing data while reserving expensive SRAM 

caches only for the data being processed. 
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Fig. 3. A neural core is illustrated. A bias row and column are added to 

the crossbar to allow for negative weights [17]. The rows and columns are 
driven by either variable length or variable height pulses. The output 

currents are integrated and then converted to digital using an A/D. 
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(a) A simple network (b) In a forward evaluation of a neural network, the 
vector matrix multiply is done in a neural core and the digital core is used 

to compute the sigmoid neuron function. (c) The steps required to update 

the middle layer weights, wij are shown. The red wij crossbar is shown 
twice to illustrate the two operations that need to be performed. 
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can therefore be the same order of magnitude as the energy 
needed to drive the crossbar [12]. If desired, additional 
energy efficiency can be traded off against algorithmic 
flexibility by performing analog neuron operations in the 
neural core, as in [10]. The implementation of 
backpropagation on the general purpose neural architecture 
is illustrated in Fig. 4. The crossbars process O(N

2
) 

operations while the digital cores handle O(N) operations. 

Data communication between cores should be built on an 
address event representation (AER) based spiking 
communication model [19, 20]. This limits data to only be 
sent when needed and allows a shared communication bus to 
be used. Using a routing network also allows arbitrary 
connections between the cores. We note the brain has an 
extremely dense connectivity where individual neurons in 
the cerebral cortex can receive roughly 10,000 input 
synapses from other neurons[21]. To achieve this, the brain 
takes full advantage of its 3D structure to minimize 
connection lengths. Currently, high performance CMOS is 
2D or at most 2.5D and so it is impossible to hardwire the 
same number of connections. Consequently, a shared bus is 
needed to emulate the same connection density.  

Overall, to obtain maximum energy efficiency, this type 
of a system assumes that a neural network has dense local 
connections that can be mapped to a crossbar and fewer 
global connections that need to be sent over the routing 
network. Computation is localized to the maximum extent 
possible, which minimizes the amount of high energy cost, 
longer range communications that are required. A dense 
local and sparse global connectivity is similar to how the 
brain is organized. If this is not the case for a given 
algorithm, a single column of a crossbar can be used in a 
specific read or write step to allow for maximum flexibility 
at higher energy cost. 

III. IDEAL WEIGHT RANGES AND LEARNING RATE 

To efficiently map a backpropagation network to 
hardware several algorithmic parameters need to be set. For a 
given dataset, we need the learning rate, number of epochs to 
train for, random weight initialization, sigmoid slope, and 
network size. Physical resistive memories also have a min 
and a max conductance. This means that the network has a 
min and max weight it can store. Choosing the weight range 
correctly is important to maximize the usage of the resistive 
memory’s dynamic range. 

In this paper we analyze three different data sets as 
summarized in Table I. First we consider a small image 
version (8x8 pixels) of handwritten digits from the “Optical 
Recognition of Handwritten Digits” dataset from [22]. Next 
we use MNIST, a large image version (28x28 pixels) of 
handwritten digits [23]. Finally, we use a Sandia file 
classification dataset in [24] (256 byte-pair statistical 
attributes to classify 9 file types). We use a simple two-layer 
network (one hidden layer) for each dataset with the network 
size indicated in Table I. For simplicity, we consider a single 
network configuration; more generally there may be a 
optimizable tradeoff between network size and noise. 

We arbitrarily chose to use sigmoid neurons with a unity 
slope. Through the learning process the weights will be 
scaled up or down to match the sigmoid slope. The initial 
random weight range and learning rate need to be correctly 
chosen to enable optimal training. Following [25], the 
weights should be initialized to a uniform distribution of 
Uniform [-r , r] where: 

 )/(64 outfaninfanr   

The fan-in is the number of inputs to a layer and fan-out is 
the number of outputs (For the first layer of MNIST the 
fan-in=784 and fan-out=300 from Table I). 

This sets an initial scale for the weights. Next we 
determine the learning rate and number of epochs needed to 
train. These could be dataset dependent, so we test several 
different learning rates for each dataset as illustrated in Fig. 
5. (All the training plots in this paper are based on accuracy 
for the test data set, after training on the training data set.) 
For all three datasets, 100 epochs and a learning rate of 0.1 
works well. These values are used in the rest of the paper. 

 Next, we determine how to best map the weights to the 
device’s conductance state. To do this we need to understand 
what range the weights ideally take in a noise-free, 

TABLE I. DATA SET PROPERTIES 

Data set 
# Training 

Examples 

# Test 

Examples 

Network 

Size 

UCI Small images [21] 3,823 1,797 64×36×10 

File types [22] 4,501 900 256×512×9 

MNIST large images [23] 60,000 10,000 784×300×10 

TABLE II. WEIGHT CLIPPING LIMITS 

Data set 
1st Layer 

Weight σ 

2nd 

Layer 

Weight σ 

Normalized 

Clipping 

Range 

UCI small images 0.87 1.93 1.5 

File types 0.22 0.44 1.5 

MNIST large images 0.22 1.05 1.5 
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Fig. 5: The error on the test set vs epoch as a function of learning rate, α, is 

plotted for the different data sets. 



unbounded model, and what happens if we limit the possible 
weight range. Fig. 6(a) shows how the standard deviation of 
the weights grow vs epoch and Fig. 6(b) plots a histogram of 
the weights for different epochs. The weights rapidly grow in 
the first few epochs and then start to saturate. The weight 
range is also different for each layer. The standard deviation 
of the weights in each layer after training indicates a natural 
weight range. This is summarized in Table II.  

Since the physical devices have a limited conductance 
range, a limited algorithmic weight range is required. We 
want the smallest possible range that will not decrease the 
accuracy. A smaller weight range allows more of the 
resistive memory’s dynamic range to be used, minimizing 
the impact of noise. The impact of training a neural network 
with a limited weight range is plotted in Fig. 7. This plot 
indicates that the weights can be clipped to around 1.5×σ 
without losing significant final accuracy. As seen in Fig. 8, 
clipping the weights causes the larger weights to saturate at 
the limits. The more aggressive clip range of 1.5 allows some 
weights to saturate, and maximizes the use of the numerical 
dynamic range. This minimizes the impact of noise caused 
by a real device and maximizes the information stored in a 
particular device. When the ideal weight range is not known 
a priori a larger range may be used, at the cost of increased 
impact from noise.  

With a reasonable algorithmic weight range, we can map 
the ranges from Table II to physical conductance. Consider a 
normalized conductance scale where the maximum 
conductance is 1. The minimum normalized conductance 
will be given by 1/(on-off ratio)=GOFF/GON. If GON/GOFF=10, 
the minimum normalized conductance will be 0.1. This 
normalized 0.1 to 1 range needs to be mapped to the weight 
range required by the algorithm. Physically, a fixed bias of 

0.55 is subtracted from each weight as illustrated in Fig. 3. 
This gives weights in the range of [-0.45, 0.45]. Next, this is 
scaled up or down to match the algorithmic weight scale. In 
the digital cores in Fig. 2, the digitized results from the 
neural core can be multiplied by an appropriate scale factor. 
In the rest of this paper, when possible, we define the device 
models relative to the total weight range so that all the 
results are independent of the scaling. For example, we 
define noise parameters as a percentage of the total weight 
range.  

IV. READ NOISE  

When reading a resistive memory there are three kinds 
of read noise that can change the current: thermal noise, 1/f 
noise and random telegraph noise (RTN) [26-32]. RTN, the 
noise from a single trap filling/emptying, is typically the 
dominant form of noise. It can depend on a few particular 
traps causing the current to oscillate between two states. 
Nevertheless, between write cycles, the distribution of the 
relevant traps will change and the conductance change due to 
those traps follows a Gaussian[26]. Consequently, we 
consider two models, 1) a RTN model where the 
conductance randomly toggles between one of two states, 
and 2) a simple Gaussian noise distribution. The Gaussian 
model is a more generic model that can also approximate the 
effects of thermal noise and 1/f noise. For both models, the 
impact of the noise, averaged over an entire read cycle, can 
simply be modelled as a perturbation to the device’s 
conductance during each read. For the RTN model with a 
standard deviation, σ, we randomly add + σ or – σ to the 
conductance where σ is defined relative to the total 
conductance range: 

 rangeRNo GGG   ,  

where G is the conductance after applying read noise, Go is 
the actual conductance stored in the device, σ is the standard 
deviation, and σRN is the dimensionless standard deviation of 
the noise normalized to the range of the conductance, Grange.  

For the Gaussian model, the noise is defined by: 

   rangeRNo GNGG   ,  

where N is a normal distribution with standard deviation σ. 

The classification accuracy of the two models is 
compared in Fig. 9. The two models give nearly identical 
results. This is because the noise from many resistive 
memories is added together during a vector matrix multiply. 

Fig. 6: (a) The standard deviation of the weights vs the training epoch is 
plotted. After an initial increase, the weights start to saturate. (b) 

Histograms of the weights in the second layer for large images are plotted 

vs epoch. 

Large Images Layer 1

Small Images Layer 1

Large Images Layer 2

Small Images Layer 2
50 Epochs

100 Epochs

0 Epochs

Large Images

Fig. 7: The final accuracy after 100 epochs vs the normalized clipping 

range for the three different data sets. The clipping range for each layer is 

normalized to the standard deviation of the unclipped weights given in 
Table II. 

 

File Types

Small Images
Large Images

Fig. 8: A histogram of the weight distributions for different normalized 
clipping ranges is shown for the small image dataset. As clipping range 

decreases, more weights saturate at the limit. 

 

Clip = 1

Clip = 1.5

Clip = 2

Unclipped

Small Images, First Layer

Normalized Weights

W
e
ig

h
t 
P

ro
b
a
b
ili

ty
 D

e
n
s
it
y



By the central limit theorem, the noise sources will add 
together to form identical Gaussian distributions so long as 
the variance of the noise is the same. Consequently, for the 
following simulations it is sufficient to model RTN with Eq. 
(3) the Gaussian noise distribution.  

In some situations σ can be a function of the device’s 
current state, Go. For instance in [26], σ is a constant for 
currents >1µA and then decreases as the current decreases 
below 1µA. Therefore, we also consider a proportional 
Gaussian model where σ is also directly proportional to the 
current state, Go: 

   oRNo GNGG   ,  

Here γ is a normalization constant. If we choose γ so that 
both models have the same variance, they give nearly 
identical results, as illustrated in Figs. 10 & 11. This means 
that Eq. (3) is sufficient. In general, we propose Eq. (3) can 
be used to approximate any read noise distribution if the 
standard deviation in Eq. (3) is calibrated to give the same 
variance as a more complicated noise model. 

To find γ we can approximate the clipped weight 
distribution as a uniform distribution over the weight range, 
and compare the variance between Eq. (3) and (4): 

   
max

min

max

min

22 G

G
ooRN

G

G
oRN dGGdG   

Solving for γ gives: 


3

min

3

maxminmax

13

GGGG 



  

As seen from Fig. 8, a uniform weight distribution is a 
reasonable approximation to first order. Using Gmax=1 and 
Gmin =0.1 gives γ = 1.8.  

In Fig. 10, we show how the read noise affects 
classification accuracy using a set of pre-trained weights 
(noise was not present during training). The accuracy starts 
to drop off after σRN = 5% of the weight range. In Fig. 11(a), 
we show a similar accuracy if we also apply the read noise 
during training. Now each data point corresponds to the final 
test set accuracy after a full training run of 100 epochs. In 
this case, the noise causes a significant variability in the final 
accuracy between runs which vary only in the initial random 
number seed. Training a network three times and taking the 
best result reduces the variability as shown in Fig. 11(b). 
Using a fixed random number seed for both the weight 
initialization and the noise also eliminates the variability. 

V. WRITE NOISE  

Write noise occurs every time the state of a resistive 
memory changes [13, 33, 34]. The relative magnitude of this 
write noise is typically greater than that of read noise. 
Writing a resistive memory involves moving atoms around, 
which is inherently a stochastic process. The exact nature of 
the noise will be strongly dependent on the type of resistive 
memory and whether it is filamentary or non-filamentary. In 
general, the statistics of this type of noise are not well 
characterized. One of the most relevant measurements is 
reported in [13], where a write pulse is applied to a phase 
change memory at a given conductance and the change in 
conductance, ΔG, is measured multiple times to obtain a 
distribution. This work indicates that the noise increases as 
both ΔG increases and as the initial state, Go, increases. 

Since write noise is not well characterized 
experimentally, we consider the impact of two different 
models. First consider a write noise that is independent of the 
intended state change, ΔG. Since the noise is independent of 
ΔG, long and short write pulses will have the same noise 
distribution. Consequently, noise of this type would still have 
the same distribution after multiple write pulses. This means 
that the noise only affects the value that is read, and not the 
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internal state. If the internal state has changed, the noise 
would compound for each step and would depend on ΔG. 
Effectively, this can be modelled as a read noise and a 
separate write noise model is not needed. Since 
backpropagation alternates read and write cycles and the 
noise is summed over many devices during a vector matrix 
multiply, the read noise model in the previous section is 
sufficient to model this type of noise.  

Next, consider noise that depends on the size of the 
update. Here, we make an important simplifying assumption 
that if we use one pulse or two pulses to change the 
conductance from one state to another, the noise will be the 
same as long as the average initial and final states are the 
same. This implies that one longer or higher voltage pulse 
will cause the same physical change as two sequential pulses 
that end at the same average conductance. Implicitly, we are 
assuming that the resistive memory can be modeled with a 
single internal state variable so that it does not matter how 
we end up at a given conductance state, which is typical for 
these devices [35-37]. Certain devices under particular 
operating conditions require two internal state variables to be 
modelled; this is beyond the scope of this work[38].  

Since the noise is the same for a given ΔG regardless of 
the number of pulses required to get a given ΔG, ΔG must be 
proportional to the variance of the noise, σ

2
. After multiple 

pulses, the variance of the noise in each pulse is additive. 

Therefore, G . We also assume that the write noise 

follows a Gaussian distribution as it is the result of the 
collective motion of many atoms so that the state after an 
update is given by: 

 )(NGGG o   

Like the read noise, it is possible that σ depends on the 
initial state, Go, (and/or the final state. For simplicity, we 
consider smaller updates so that we only need to consider the 
initial or only the final state dependence). To understand the 

impact of the initial state dependence, we consider three 
possible models. First, σ is independent of Go:  


WNrangeGG    

Here we add the conductance range, Grange, so that a 
dimensionless standard deviation, σWN, can be defined. Next 
we consider a σ that is proportional to Go.  


WN

range

o
range

G

G
GG    

As with the read noise, γ is chosen so that both models have 
the same variance. Therefore, γ is given by Eq. 6 and is 1.8 
for a uniform weight distribution with Gmax=1 and Gmin =0.1. 
Lastly, we consider σ inversely proportional to Go:  


WN

o

range

range
G

G
GG    

Once again γ is chosen so that all models have the same 
variance. For uniform weight distribution with Gmax=1 and 
Gmin =0.1, γ is 0.35.  

The effect of the three different models of write noise is 
plotted in Fig. 12. Again the final accuracy after training for 
100 epochs is plotted. We see that the particular Go 
dependence does not have a significant effect on the write 
noise for the small and large images, but matters somewhat 
for the cyber dataset. To first order, the simplest model 
independent of Go, Eq. 8, gives a reasonable intuition of how 
the system responds when the exact Go dependence is not 
known. The key is that the noise model should have the 
correct noise variance. 

In order to compare the magnitude of updates with the 
corresponding write noise, we plot the probability density of 
the updates without noise and the corresponding noise sigma 
in Fig. 13 for small images. We choose a safe noise sigma, 
σWN, of 0.1 that does not affect the accuracy as shown in 
Fig. 12. (Only the second layer of the network is shown for 
simplicity, but results are nearly identical for the first layer.) 
The updates are on the order of 0.01% to 0.5% of the weight 
range. We can define a characteristic update size as a 
weighted average of the update size, weighted by the update 
size itself. This captures the fact that it requires ten 0.1% 
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standard deviation of the write noise to the update size is plotted. This 

noise is 2-20X larger than the ideal update itself. This relatively large level 

of noise does not decrease the training accuracy of backpropogation. The 

independent guassian noise model, Eq. (8), with a σWN of 0.1 is used. 
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updates to train as much as a single 1% update. The 
characteristic update sizes are 0.07%, 0.18%, and 0.17% for 
the small image, large image and file type datasets 
respectively. For the characteristic update and σWN = 0.1, the 
noise is 0.3% to 0.4% of the total range. Surprisingly, this 
safe noise level is 2.4X to 3.8X larger than the characteristic 
update itself! For smaller updates, the noise can be more than 
20X the size of the update, indicating that smaller updates 
likely do not contribute as much to the overall learning. 

VI. WRITE NONLINEARITY  

A. Asymmetric Nonlinearity 

In addition to write noise between cycles, the physics of 
resistance change in resistive memories typically causes the 
conductance change to depend on the resistive memory’s 
current state [14]. Often this nonlinearity is asymmetric with 
regard to the direction of the pulse. For example, near the 
maximum conductance a given pulse will not significantly 
increase the conductance, but it can significantly decrease 
the conductance. This is particularly true for filamentary 
devices, due to a thermal-runaway effect. In order to 
maximize efficiency, a parallel open loop write scheme must 
be used, and therefore we do not know each individual 
resistive memory’s current state between training examples. 
This means that the same sized pulse must be applied 
regardless of the device’s state and the nonlinear response 
thus introduces an additional “error” in the write. Following 
[14], the conductance, G, as a function of the normalized 
pulse number, p, for increasing pulses is modeled by:  

   min1 1 GeGG P  
 

 where 





e

GG
G

1

minmax
1  

Gmin is the minimum conductance, Gmax is the maximum 
conductance and ν is a parameter characterizing the 
nonlinearity. When ν=0, the response is perfectly linear. 
Experimental devices have been demonstrated with ν ≈ 2 - 5 
[14]. If we have a target update, ΔGtarget, using Eq. (11) we 
can solve for the actual update: 

    eGGGG 1min1  

where the normalized target update is given by: 

  minmaxtarget GGG   

For decreasing pulses, the conductance is given by:  

  )1(

1max 1 PeGGG  
 

and the actual update given the target update is: 

   eGGGG  1max1  

The asymmetric nonlinearity model, Eqs. (11) and (15) 
are plotted in Fig. 14. A strong asymmetric nonlinearity 
causes the conductance to decay towards a center value after 
alternating pulses as illustrated in Fig. 15. A small amount of 
weight decay can be beneficial to prevent overfitting, but 
typically the decay will be too large, degrading the ability of 
devices to “learn” the weights needed for the 
backpropagation algorithm, reducing its final accuracy. This 
is illustrated in Fig. 16. The accuracy (after 100 epochs) vs 
nonlinearity is plotted for the three different data sets.  

B. Symmetric Nonlinearity 

Some devices exhibit a symmetric nonlinearity. This is 
demonstrated in [39] for a Ag/GeSe/Pt CBRAM cell, and the 
data is replotted on a conductance axis in Fig. 17. Resistive 
memories that have a non-filamentary switching mechanism 
are also expected to behave with a symmetric switching 
response, although this has not yet been explicitly 
demonstrated in the literature at this time. The symmetry is 
more likely because the conductance modulation is 
dependent on the motion of many atoms, rather than a few 
critical atoms in a filament. To understand the impact of a 
symmetric non-linearity, we consider a simple sigmoid based 
model illustrated in Fig. 18. We assume that after a sufficient 
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Fig. 16: The impact of the asymmetric write nonlinearity on learning is 
illustrated for all three datasets. 
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number of pulses the device will saturate at a maximum or 
minimum conductance. (The pulsing measurement in Fig. 17 
was likely stopped before the  conductance started to 
saturate). The conductance, G, as a function of the 
normalized pulse number, p is given by: 

 B
e

AG
p





 )5.0(21

1


 
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Gmin is the minimum conductance, Gmax is the maximum 
conductance and ν is a parameter characterizing the 
nonlinearity. ν is defined such that the symmetric and 
asymmetric models have the same slope at the center 
conductance: (Gmin+ Gmax)/2. the actual update given the 
target update is: 
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where δ is defined by Eq. (14). A symmetric nonlinearity 
model does not suffer from the same weight decay problem 
as the asymmetric nonlinearity. Consequently, a much larger 
nonlinearity can be tolerated without decreasing the accuracy 
as illustrated in Fig. 19 as compared to Fig. 16.  

VII. COMBINED NON-IDEALITIES 

Finally, we compare the impact of all the non-idealities 
operating at the same time. In Fig. 20 we show the effect of 
read and write noise with different nonlinearities for the 
small images. Figs. 21 and 22 show the same for large 
images and file types respectively. Each colored “pixel” in 
each sub-figure represents a final accuracy after training for 
100 epochs. The largest data set (MNIST) required 2-3 days 
of CPU time on a single core to train with all three non-
idealities enabled for a single set of parameters. Because 
pixels represent independent runs, we used up to 1024 cores 
of a parallel cluster to scan multiple parameters and produce 
the data for Figs 20-22.  

For the read noise we used a Gaussian noise model with a 
fixed sigma, Eq. (3). For the write noise, we used the 
simplest model, with noise independent of the current state, 
Eq. (8). As seen from the figures, adding an asymmetric 
nonlinearity response rapidly reduces the overall accuracy. 
Moderate symmetric nonlinearities do not impact the 
accuracy. For small images, Fig. 20d, the symmetric non-
linearity actually increases the accuracy at higher levels of 
noise. We believe this is because the weights are nudged 
towards the max or min values, reducing the impact of noise. 

VIII. DEVICE RESISTANCE 

The last key device requirement to consider is the 
resistance required for use in a crossbar. Scaled wires at a 
10nm half pitch can only handle 10 µA before 
electromigration becomes an issue[40]. Higher currents also 
cause unacceptable parasitic voltage drops [41]. In order to 
support a 1000x1000 crossbar with a fully parallel read or 
write, each device can have no more than a maximum 
switching current of 10nA. If we only read/write a smaller 
100x100 crossbar in parallel, each device can have a 
switching current of 100nA. At 1V that corresponds to a 
resistance of 10 MΩ. 

High resistance devices have been demonstrated [42, 43], 
but devices have not yet been demonstrated with both a high 
resistance and low variability, symmetric analog switching 
characteristics. The need for high on-state resistance and 
good analog characteristics means that filamentary resistive 
memories may not work as well as non-filamentary devices. 
A resistance higher than a quantum of conductance, 13 kΩ, 
requires current to tunnel through barrier. This presents a 
fundamental problem for a filamentary device: a single atom 
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Fig. 18: The symmetric write nonlinearity model is illustrated. The x-axis 
is normalized by the number of pulses needed to go from the minimum to 

the maximum weight. In contrast to Fig. 14, the response is reversible for 

positive versus negative pulses 
 



can halve that tunneling barrier, resulting in huge variability 
and poor analog characteristics. 

IX. CONCLUSION 

We have introduced a general purpose neural architecture 
that can solve many different problems. This architecture can 
be used effectively to implement backpropagation with 
resistive memory crossbars that have the properties 
summarized in Table III. Our numerical modeling of 2D 
crossbars (matrices) of devices on three different datasets has 
shown that training or classifying with resistive memories 
with a read noise sigma up to 5% of the total conductance 
range does not significantly degrade the accuracy (~1%). 
Neural networks are also robust to write noise that is up to 
0.4% of the total range and 300% of a characteristic update. 
This will vary slightly depending on the dataset and the 

neural network architecture.  Both read and write noise can 
be modelled with reasonable accuracy using a simple 
Gaussian noise model. The simpler noise models generally 
match more complex models so long as the models have the 
same noise variance averaged over the weight distribution. 
The read and write noise models are physically inspired, but 
refined to empirically fit the available data.  Asymmetric 
nonlinearities with ν>0.1 degrades the classification accuracy 
as it causes weight decay, while moderate symmetric 
nonlinearities with ν up to 5 do not harm the classification 
accuracy. The asymmetric nonlinearity model is empirically 
derived from device data, while the symmetric nonlinearity 
model is more speculative.  To work in an energy efficient 
crossbar, resistive memories must also have a high on-state 
resistance of 10 MΩ or higher. Promising devices have been 
demonstrated experimentally, but more resistive memory 
development is needed to create a device that meets all of 
these requirements simultaneously.  
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