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• Results at various 

temperatures 
 

 

   

The Issue: 

Material Response Variability in Stress-Strain 

Curves from replicate Tension Tests 

cylinder 

Tension-test 

specimen 
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run model 

with the 

various 

material 

curves 

variability of 

predicted response 

(e.g. displacement, 

stress, failure 

pressure) 

The Issue: 

Variability of Predicted Response 

due to Material Curve Variability 

samples of 

stress-strain 

curves from 

material testing 
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run model 

with the 

various 

material 

curves 

predicted variability 

of response 

The Issue: 

Error/Uncertainty of Inferred Population 

of Responses from propagating relatively few 

Material Curves 

uncertainty 

(figurative) of 

∞ population 

of responses 

inferred  

from 5 samples  

relatively few 

samples of 

stress-strain 

curves from 

material testing 

How do we get a handle on the epistemic 

uncertainty due to sparseness of sampling 

of the aleatory variability (the random  

inputs and outputs) of the system? 
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this 

• A view is taken that:  
 
– One should not try to do the impossible (accurate estimation of the 

PDF from which the sparse samples come) 
 

– Rather, a pragmatic goal is that the uncertainty representation 
should be conservative, e.g. bound the .025 – 0.975 percentile 
range of the PDF from which the samples come 
 

– An opposing goal (making this a difficult MiniMax problem) is that 
the uncertainty representation should not be overly conservative—
i.e., should minimally over-estimate the desired percentile range of 
the true PDF. 

 

Simplified UQ Objective 
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 5 methods 

assessed on  

21 test problems 

Related Problem previously studied: 

– Sparse Samples from popular PDF types, 

Assess Sparse-Data UQ Methods 

• 1000 trials of each method for fitting sample 

data from each of:  

– normal PDF 

– right-triangular PDF 

– uniform PDF 

– 4 different convolutions of these PDF types 

(figure at left) acting as three equally 

dominant sources of random uncertainty in a 

linear system. 

Answer question: does the presence of 

multiple sources of uncertainty smooth 

or mitigate the errors in representing the 

individual PDFs? 

 

• Fit the data for three sets of sample sizes: 

n = 2, 8, 32 for each PDF 
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A Comparison of Methods for Representing 

Sparsely Sampled Random Quantities 

– More Results 
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this 

• Tolerance Interval Approach 
 

– calculate the standard deviation σi of the data 

– multiply σi by appropriate factor f  from statistical tables 

– create interval bars of extent f σi about the mean µi of the data: µi ± f σi 
 

– 0.90/0.95 Tolerance Intervals — the factors f  here correspond to 

approximate 90% reliability or odds that the produced tolerance interval 

encompasses the central 95-percentile range between the 0.025 and 

0.975 percentiles of the true PDF 
 

 

 

 

 

 

 

 

 

 

 

• Very simple to use in practice 
 

Classical statistical Tolerance Intervals 

found to offer the best balance of ease 

and effectiveness  

 

 

# samples f0.9/0.95 

2 18.80  

4 4.94 

8 3.26 

12 2.86 

20 2.56 

30 2.41 

40 2.33 

∞ 1.96 
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run model 

with the 

various 

material 

curves 

predicted variability 

of response 

Current Question: 

How well do Tolerance Intervals work for 

highly nonlinear Solid Mechanics and  

4 input Stress-Strain curves from mtl. tests?  

relatively few 

samples of 

stress-strain 

curves from 

material testing 

Tolerance Interval 

on samples of output 

response from propagated 

material curves 
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Component Material Dimensions No. 

Elements 

No. thru 

thickness 

Ram Plate Rigid 1” wide x 0.1” tk 1200 2 

Wedge Rigid 1” wide x 0.1” tk 2400 2 

Lid 304L SSTL 3” dia x .062” tk 117264 4 

Can 304L SSTL 3” dia x 1” wide x .067” tk 74400 4 

Weld  304L SSTL 3” dia. x .03” wide x .062” tk 4800 2x4 

 

Can-Crush Model and Fixturing/Loading 

For present UQ 

study assign all 

parts the same steel 

material with 

synthetic σ-ϵ curves 
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Crushing-Ram Constant Advance Rate 
and Resulting Resistance from Can 

For various σ-ϵ 

curves used in 

model 

Mesh - Undeformed 

Mesh - Deformed 
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Displacement output locations 

Lid 

For various σ-ϵ 

curves used in 

model 
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Von Mises Stress output locations 

Weld 
Lid 
Can 

For various σ-ϵ 

curves used in 

model 
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Equivalent Plastic Strain (EQPS) 
Output Locations 

Weld 
Lid 
Can 

For various σ-ϵ 

curves used in 

model 
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Tensile EQPS output locations 

Weld 
Lid 
Can 

For various σ-ϵ 

curves used in 

model 

15 



Tearing Parameter output locations 

Weld 
Lid 
Can 

For various σ-ϵ 

curves used in 

model 
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Computational Experiments 
(PDFs of Response are Non-Standard 

and Unknown A-Priori) 

5) select four 

synthetic 

stress-strain 

curves at 

random 

7) create  
0.90/0.95 
Tol. Intvl.  
from model 
output results 

1) Generate 

1000 synthetic 

stress-strain 

curves from 

Bayesian UQ 

on 2-parameter 

power-law fits 

to 4 actual 

stress-strain 

curves from 

tests 

2) Run model 

for all 1000 

synthetic 

stress-strain 

curves 

3) Histogram of 

1000 results at 

time-fraction 0.5 

output  

Q.O.I. 

(1000 

realizations) 

4) 0.025 and 0.975 
“exact” percentiles 
of response  
from 1000 results 

6) run model 

with the four 

synthetic 

curves 

8) compare 
TI endpoints  
against exact 
percentiles  
 

9) do steps 5 – 8 many times (10,000 random trials) to establish reliability rate 

of TI success in encompassing true 0.025 - 0.975 percentile range 17 



• 18 output quantities 

• 4 time stations each 

• = 72 QOIs (quant. of int.) 
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• For each QOI the 1,000 results are 
characterized as a histogram 

 

• The 0.025 and 0.975 quantiles of the 
histogram are identified as reference 
“true” values (within small error, see 
last bullet) 

 

• TI success rate determined from 10K 
trials of 4 randomly selected input σ-ϵ 
curves and their QOI results & 
corresponding 0.9/0.95 TIs. How often 
do the constructed TIs cover “true” 
0.025 - 0.975 range? 

 

• Uncertainty on 95% coverage for 1,000 
instances comprising the ensemble 
determined with non-parametric 
interval estimates 

Tol. Intvl. Performance  

Characterization 

19 



Tolerance Interval Empirical Reliability 

(given four σ-ϵ material curves randomly 

selected) 

 

• Always less than the “advertised” 90% reliability or 
confidence that the TIs will successfully cover the  
0.025 – 0.975 range of response 

• 75% empirical average TI reliability for four σ-ϵ curves 
(averaged over ~70 highly nonlinear solid mechanics 
response quantities and >700,000 trials) 

• 70% - 85% successful coverage rate for most QOIs  
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0.9/0.95 TI Empirical Reliability 

vs. # of σ-ϵ curves 

• TI reliability of successfully covering 0.025 – 0.975 range of 
response decreases significantly with # of σ-ϵ curves—but 
magnitudes of shortfall errors ∆U  and ∆L decrease faster—
more curves are better on average.  

 

 

• >70% expected TI reliability in usual situation of ≤6 σ-ϵ 
curves 

∆U-i 

 ∆L-i 

exact percentile 
range from true 
PDF 

estimated 
percentile 
range 
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this 

• The proposed TI methodology is a simple way to manage risk of 
underestimating material behavior variability when only a small 
number of material characterization tests are available or 
affordable. 
 

• The methodology is relatively affordable even with 
computationally expensive models. 
 

• The Can-Crush study and results provide evidence that the TI 
methodology is reasonably reliable (>70% for ≤6 σ-ϵ curves) for 
providing conservative estimates of the true 0.025 – 0.975 range 
of response for a large variety of highly nonlinear solid 
mechanics QOI types, including:  
– Von Mises stresses 
– displacements and resisting load 
– material damage quantities EQPS, Tensile EQPS, and Tearing 

Parameter 

 
 

 

Conclusions 
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Next Steps: Assess Sparse-Data UQ Approaches for Multi-Material 

Solid Mechanics Problems, where only a few σ-ϵ curves exist for each 

material 

Can-crush simulation 

results with nominal mtl. 

hardening curves (half-

symmetry Presto model) 

2D  random-variable analogue of sparse 

random-function problem with all possible 

combinations of input realizations shown. 

Continuous-variable analogue problem 

helped determine a more efficient UQ 

approach than the all-combinations of stress-

strain curves approach previously taken. 

1 of 18 output quantities  

to be used to assess 

performance of sparse-data 

UQ method applied to can-

crush test problem 

Stress-strain curves 

generated from 4 original 

hardening curves from 

tension tests Simulated Annealing for 

Optimal Sampling Design 
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