

Assessment of a UQ Approach for Handling Sparse Samples of Discrete Random Functions (Material Stress-Strain Curves)¹

*Vicente Romero, Frank Dempsey, Ben Schroeder, John Lewis,
George Orient, Nicole Breivik, Bonnie Antoun, Justin Winokur*

Sandia National Laboratories*
Albuquerque, NM

* Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

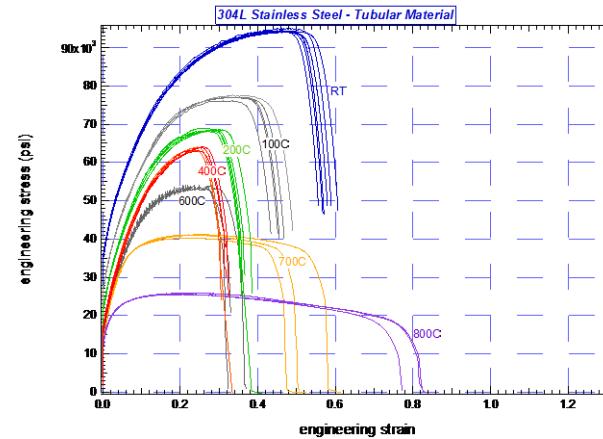
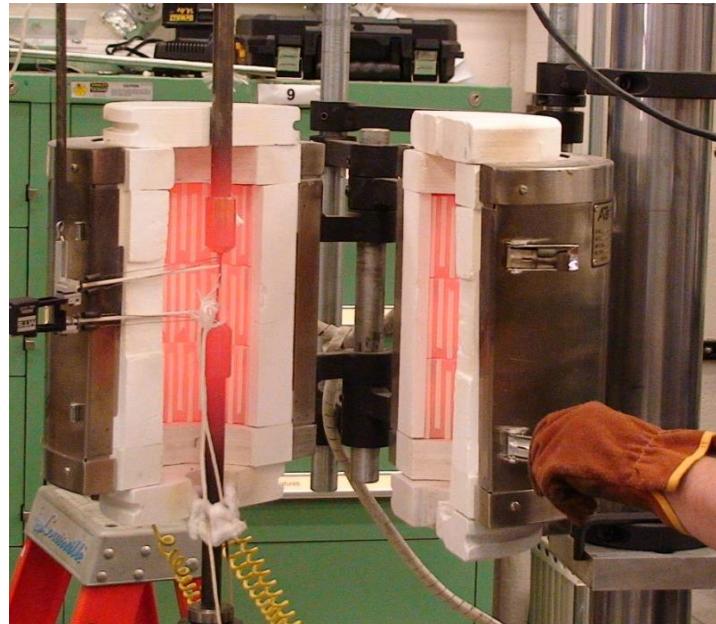
¹Sandia National Laboratories document SAND2016-YYYYC (unlimited release)

2016 SAE World Congress
April 12-14, Detroit

The Issue:

Material Response Variability in Stress-Strain Curves from replicate Tension Tests

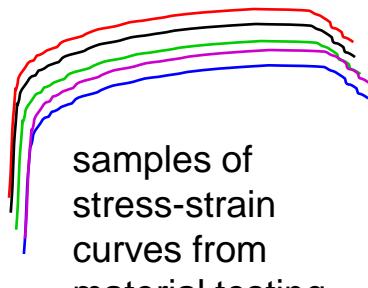
- Results at various temperatures



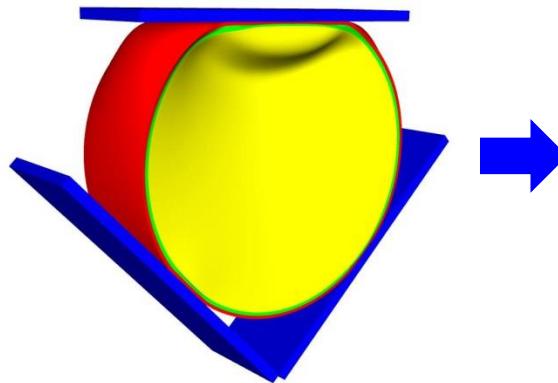
cylinder
Tension-test
specimen

The Issue:

Variability of Predicted Response due to Material Curve Variability



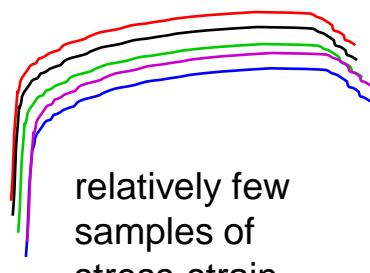
→
run model
with the
various
material
curves



variability of
predicted response
(e.g. displacement,
stress, failure
pressure)

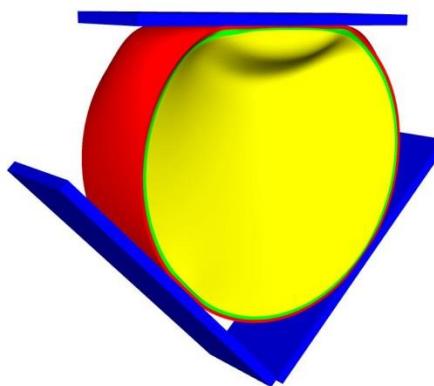
The Issue:

Error/Uncertainty of Inferred Population of Responses from propagating relatively few Material Curves

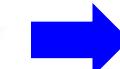
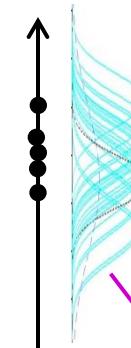


relatively few samples of stress-strain curves from material testing

run mode with the various material curves



predicted variability of response



uncertainty (figurative) of ∞ population of responses inferred from 5 samples

How do we get a handle on the epistemic uncertainty due to sparseness of sampling of the aleatory variability (the random inputs and outputs) of the system?

Simplified UQ Objective

- A view is taken that:
 - One should not try to do the impossible (accurate estimation of the PDF from which the sparse samples come)
 - Rather, a *pragmatic goal* is that the uncertainty representation should be **conservative**, e.g. bound the .025 – 0.975 percentile range of the PDF from which the samples come
 - An *opposing goal* (making this a difficult **Minimax problem**) is that the uncertainty representation should **not be overly conservative**—i.e., should minimally over-estimate the desired percentile range of the true PDF.

Related Problem previously studied:

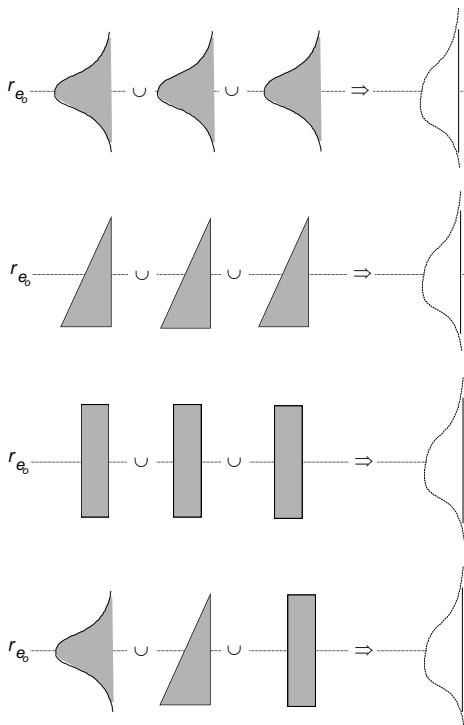
- Sparse Samples from popular PDF types,

Assess Sparse-Data UQ Methods

- 5 methods
assessed on
21 test problems

- 1000 trials of each method for fitting sample data from each of:

- normal PDF
- right-triangular PDF
- uniform PDF
- 4 different convolutions of these PDF types (figure at left) acting as *three equally dominant* sources of random uncertainty in a linear system.



➤ Answer question: does the presence of multiple sources of uncertainty smooth or mitigate the errors in representing the individual PDFs?

- Fit the data for three sets of sample sizes:
 $n = 2, 8, 32$ for each PDF

A Comparison of Methods for Representing Sparsely Sampled Random Quantities – More Results

Vicente Romero, Laura Swiler, Angel Urbina, Josh Mullins
Sandia National Laboratories*
Albuquerque, NM

Soc. Automotive Engineers 2013 World Congress
April 16-18, 2013, Detroit

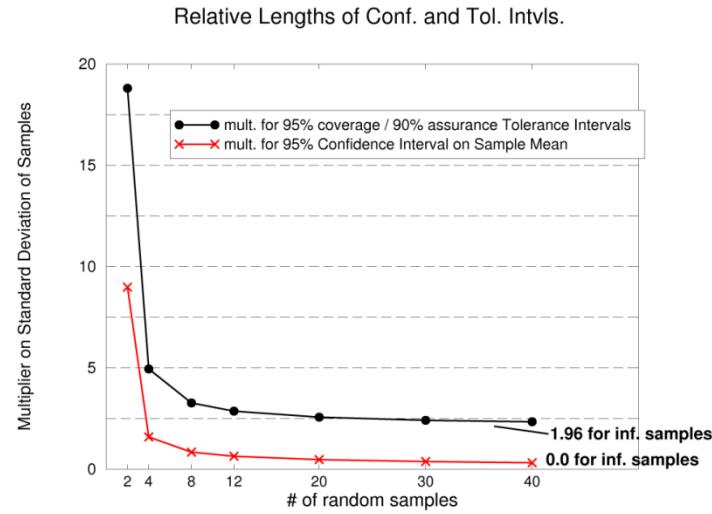
* Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Classical statistical Tolerance Intervals found to offer the best balance of ease and effectiveness

- **Tolerance Interval Approach**

- calculate the standard deviation σ_i of the data
- multiply σ_i by appropriate factor f from statistical tables
- create interval bars of extent $f\sigma_i$ about the mean μ_i of the data: $\mu_i \pm f\sigma_i$
- 0.90/0.95 Tolerance Intervals — the factors f here correspond to approximate 90% reliability or odds that the produced tolerance interval encompasses the central 95-percentile range between the 0.025 and 0.975 percentiles of the true PDF

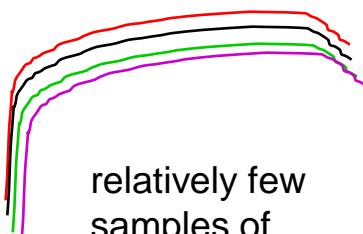
# samples	$f_{0.9/0.95}$
2	18.80
4	4.94
8	3.26
12	2.86
20	2.56
30	2.41
40	2.33
∞	1.96



- **Very simple to use in practice**

Current Question:

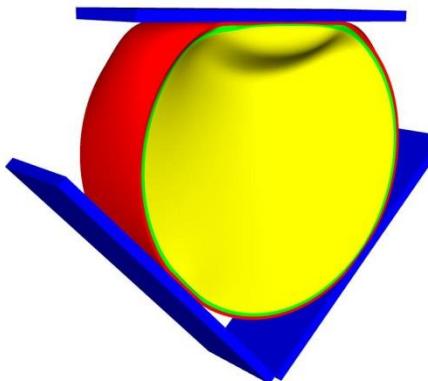
How well do Tolerance Intervals work for
highly nonlinear Solid Mechanics and
4 input Stress-Strain curves from mtl. tests?



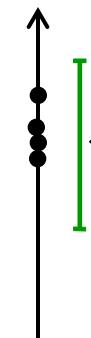
relatively few
samples of
stress-strain
curves from
material testing



run mode
with the
various
material
curves

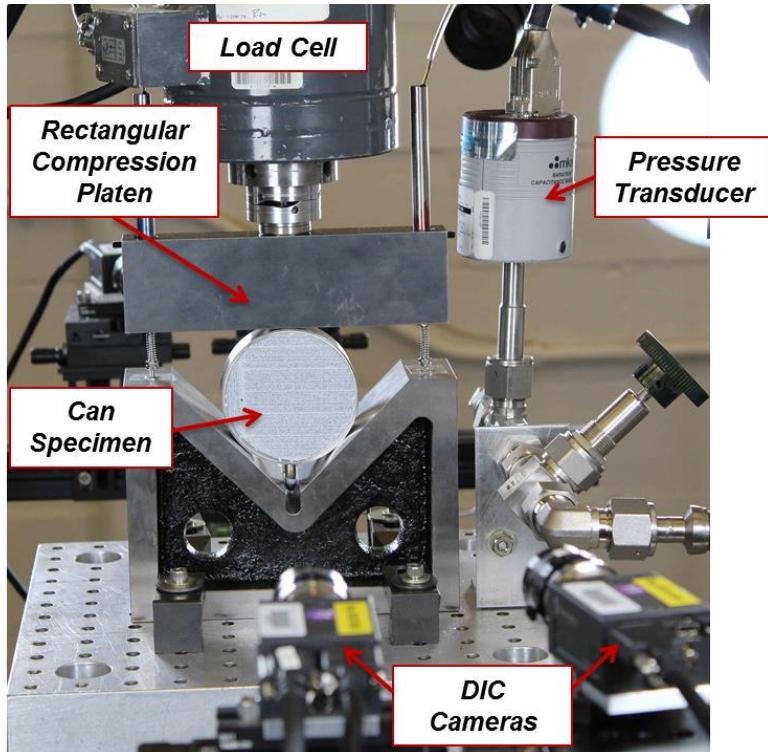


**predicted variability
of response**



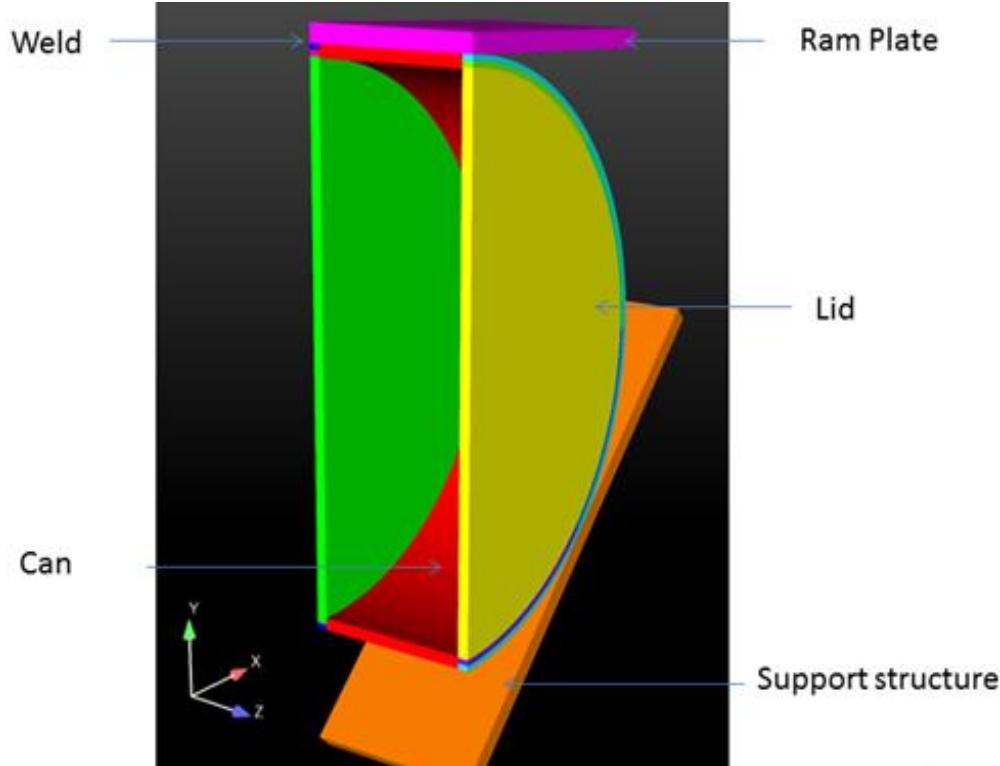
Tolerance Interval
on samples of output
response from propagated
material curves

Can-Crush Model and Fixturing/Loading



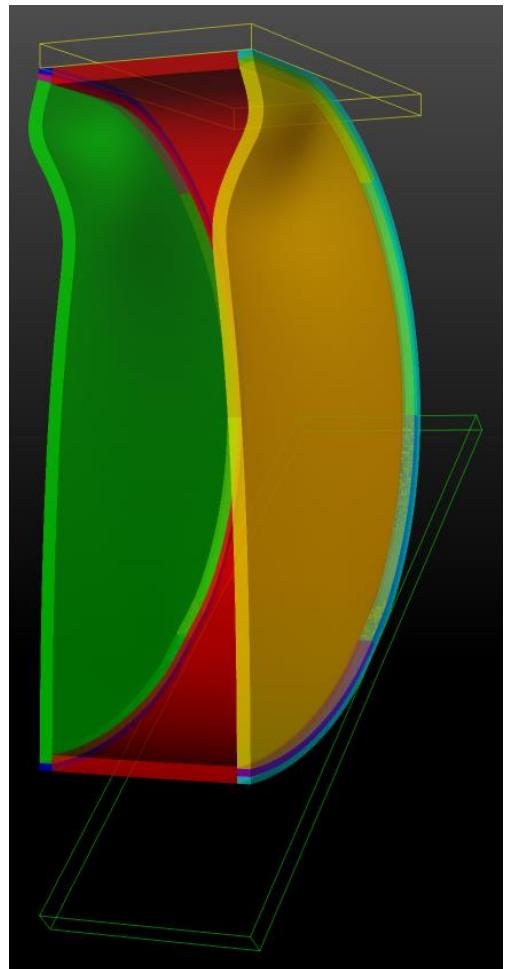
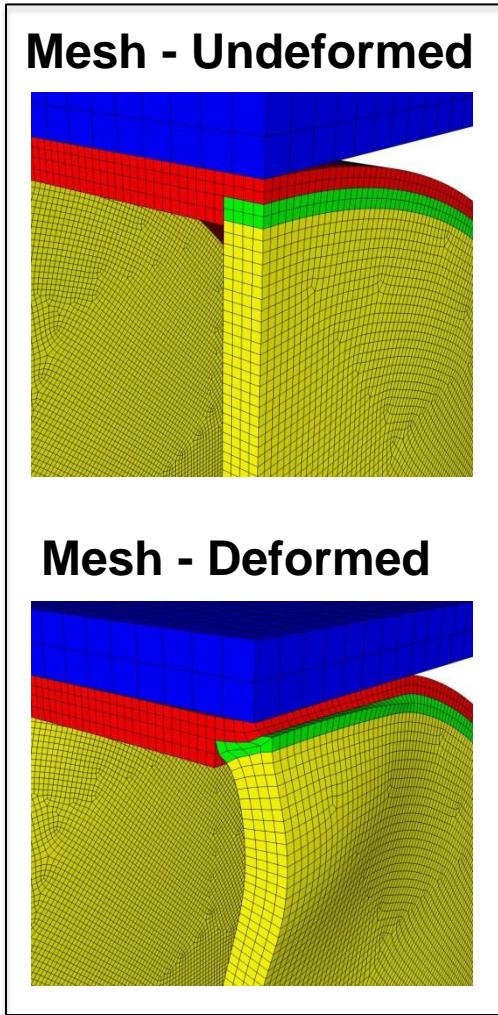
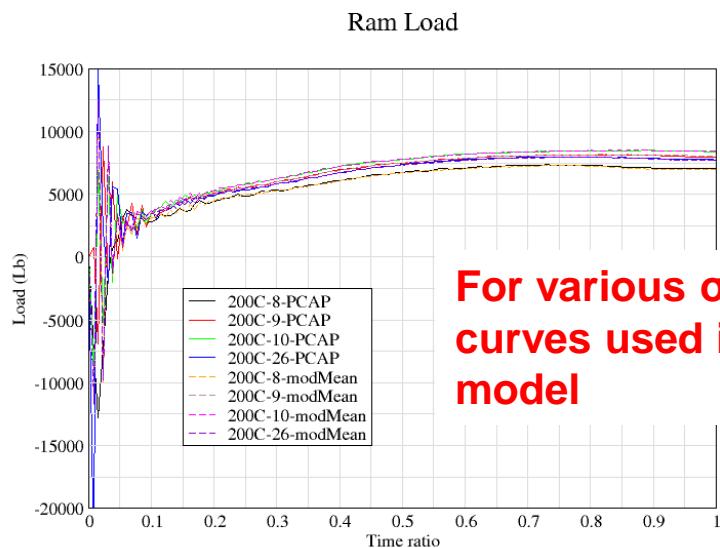
Modified Can Crush Test Setup

For present UQ study assign all parts the same steel material with synthetic σ - ϵ curves

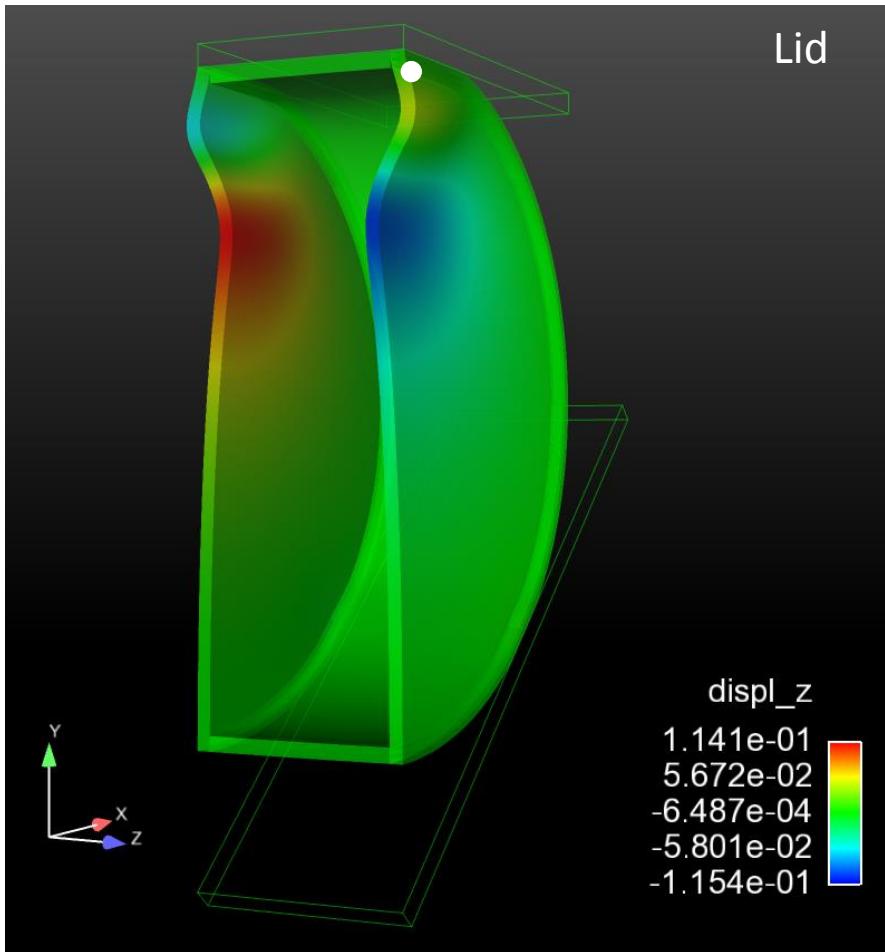
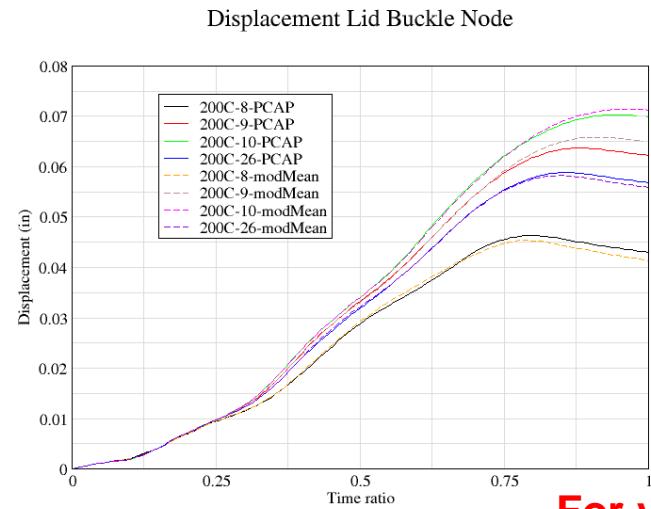


Component	Material	Dimensions	No. Elements	No. thru thickness
Ram Plate	Rigid	1" wide x 0.1" tk	1200	2
Wedge	Rigid	1" wide x 0.1" tk	2400	2
Lid	304L SSTL	3" dia x .062" tk	117264	4
Can	304L SSTL	3" dia x 1" wide x .067" tk	74400	4
Weld	304L SSTL	3" dia. x .03" wide x .062" tk	4800	2x4

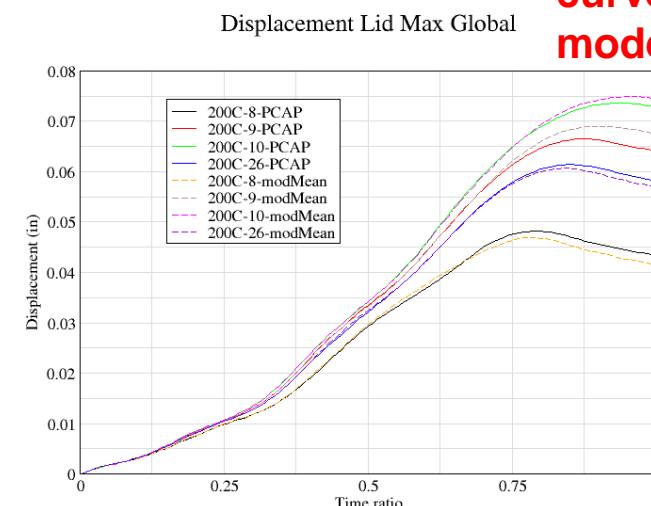
Crushing-Ram Constant Advance Rate and Resulting Resistance from Can



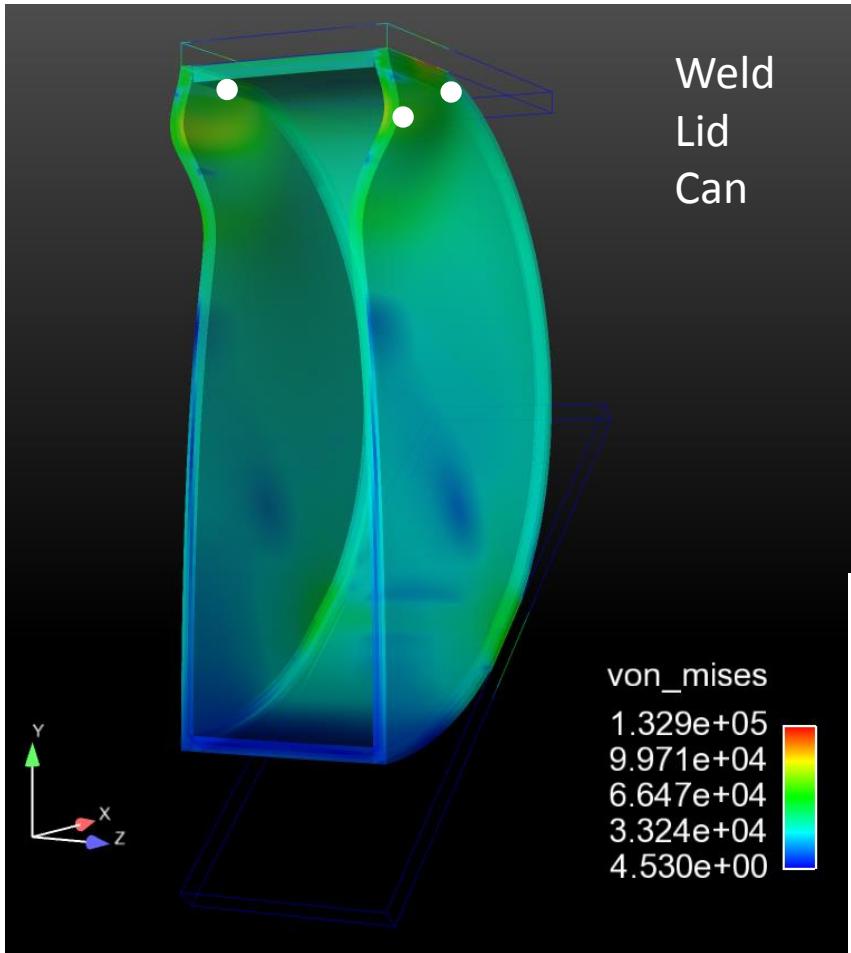
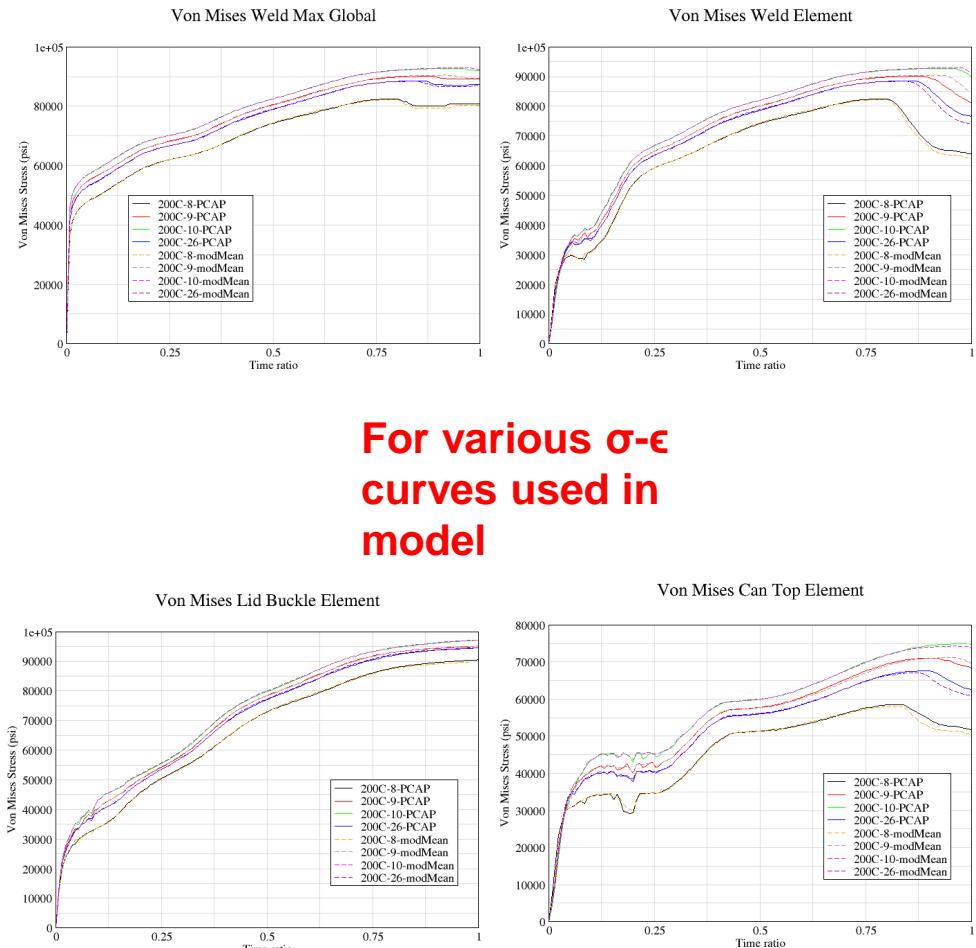
Displacement output locations



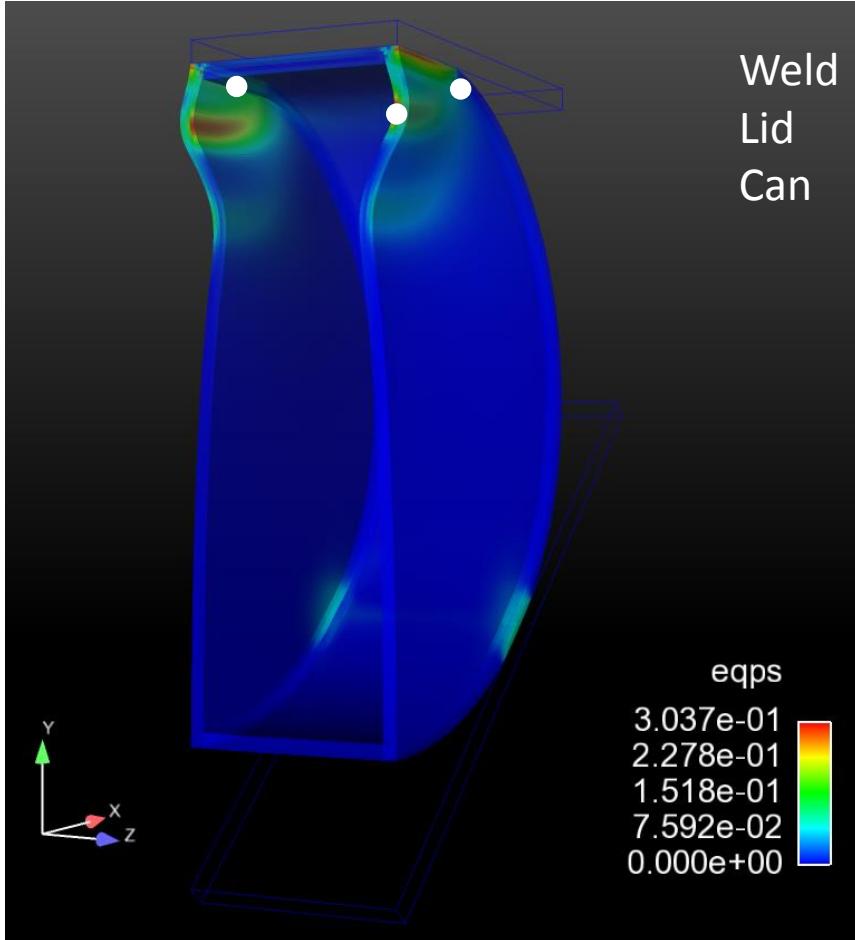
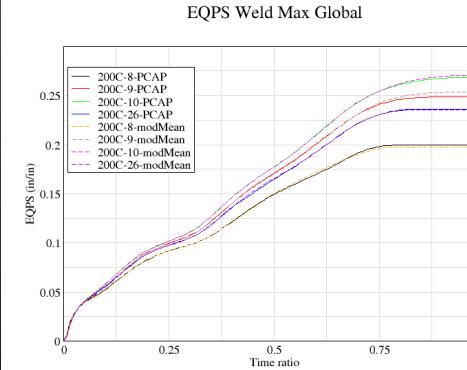
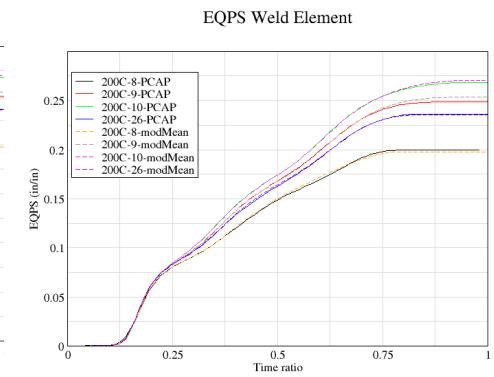
For various σ - ϵ curves used in model



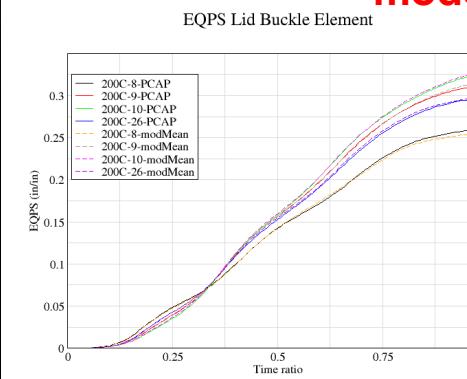
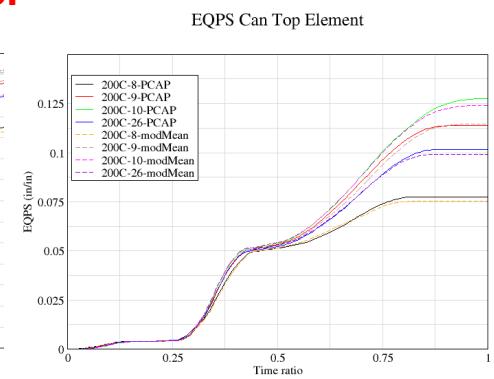
Von Mises Stress output locations



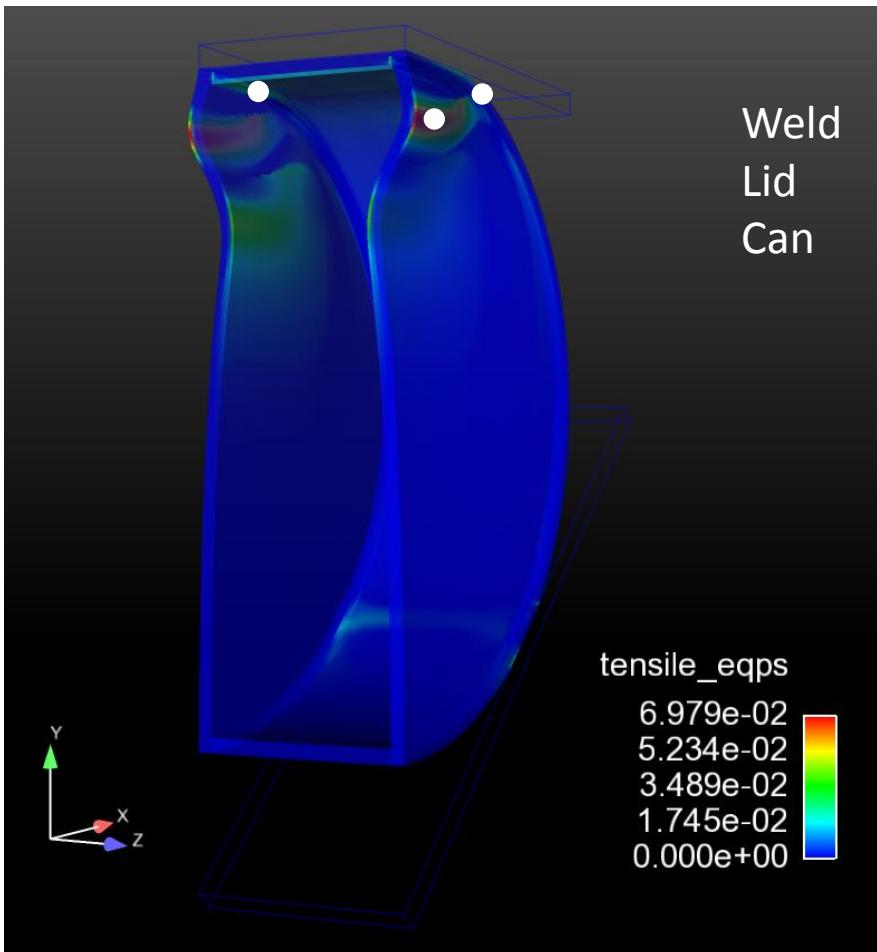
Equivalent Plastic Strain (EQPS) Output Locations



For various σ - ϵ
curves used in
model



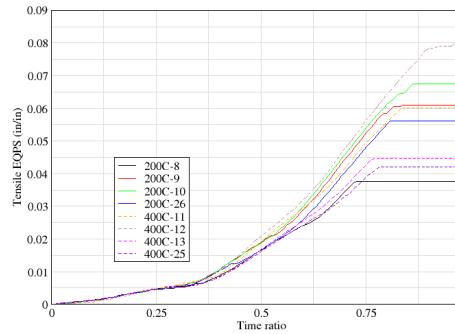
Tensile EQPS output locations



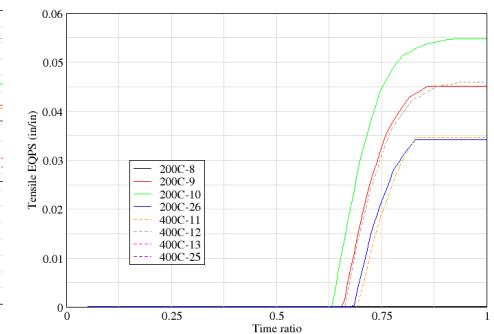
Weld
Lid
Can

tensile_eqps
6.979e-02
5.234e-02
3.489e-02
1.745e-02
0.000e+00

Tensile EQPS Weld Max Global

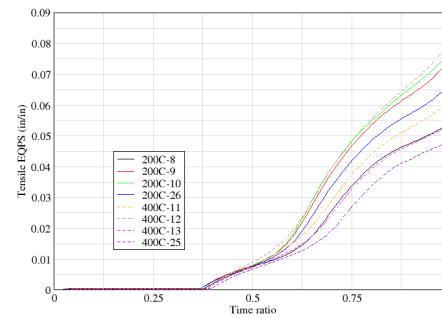


Tensile EQPS Weld Element

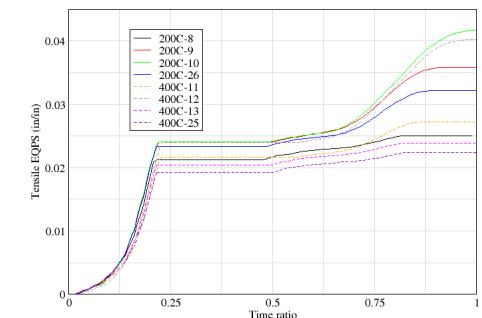


For various σ - ϵ
curves used in
model

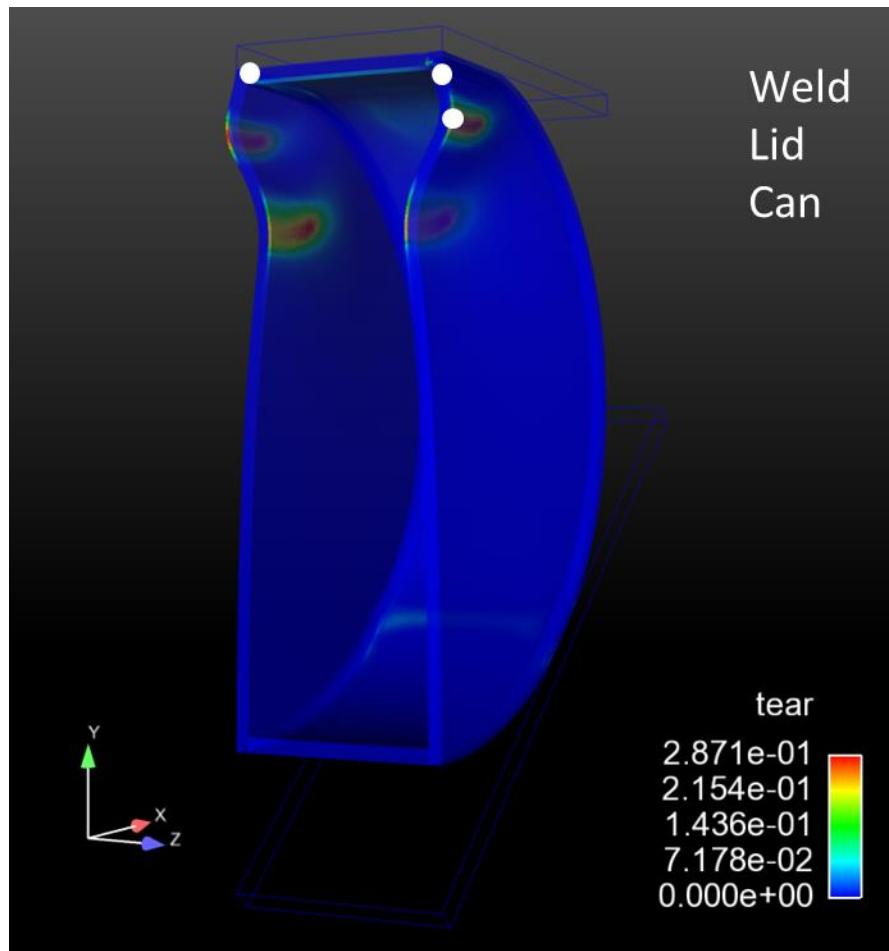
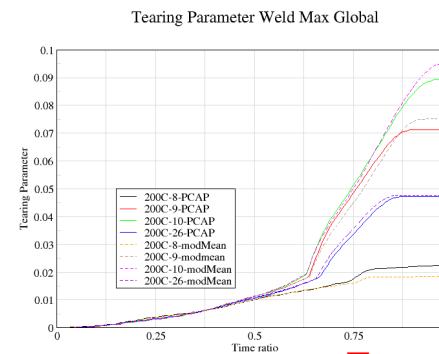
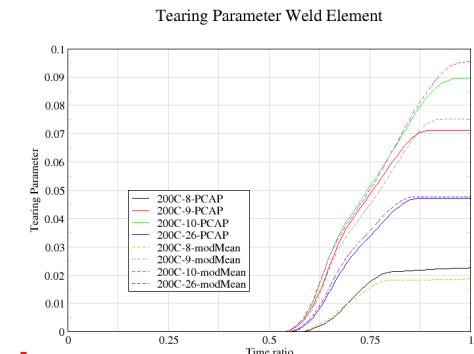
Tensile EQPS Lid Buckle Element



Tensile EQPS Can Top Element

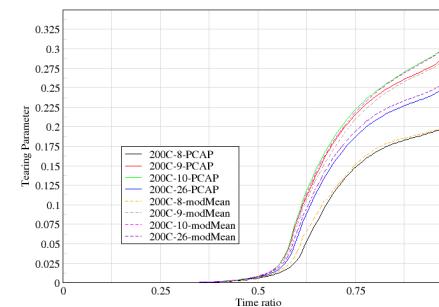


Tearing Parameter output locations

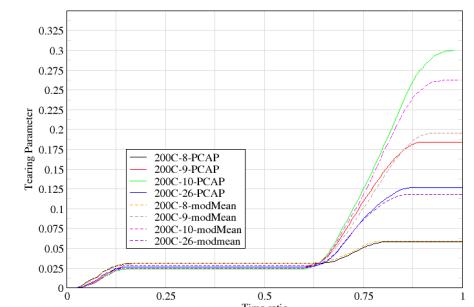


For various $\sigma\text{-}\epsilon$
curves used in
model

Tearing Parameter Lid Buckle Element



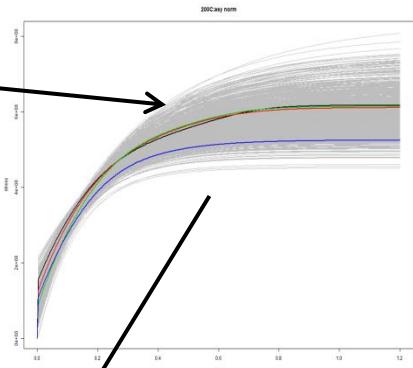
Tearing Parameter Top Element



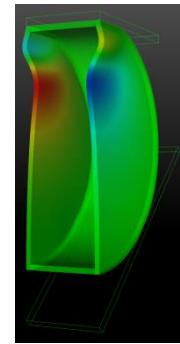
Computational Experiments

(PDFs of Response are Non-Standard and Unknown A-Priori)

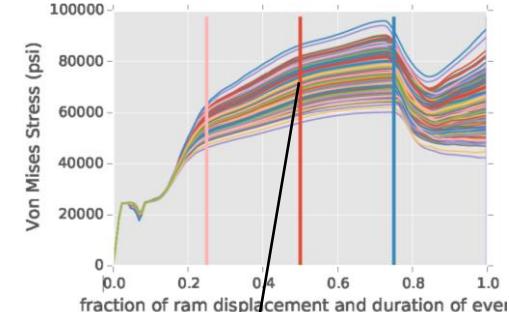
1) Generate 1000 synthetic stress-strain curves from Bayesian UQ on 2-parameter power-law fits to 4 actual stress-strain curves from tests



2) Run model for all 1000 synthetic stress-strain curves

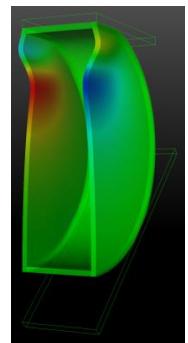


output Q.O.I. (1000 realizations)



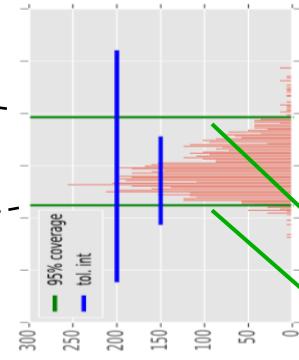
5) select four synthetic stress-strain curves at random

6) run model with the four synthetic curves



7) create 0.90/0.95 Tol. Intvl. from model output results

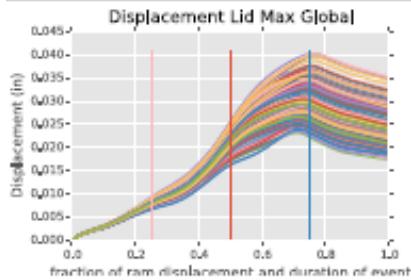
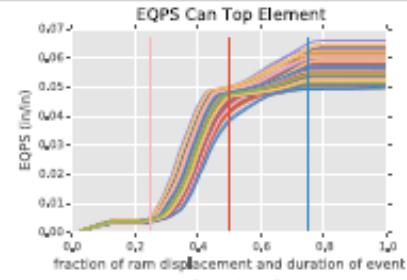
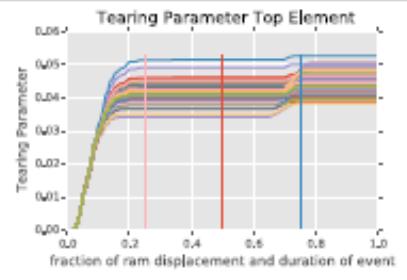
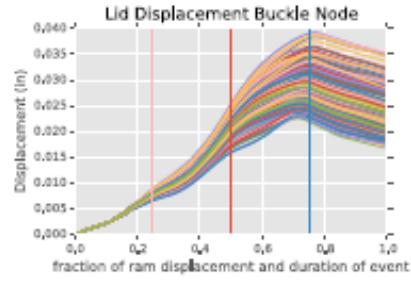
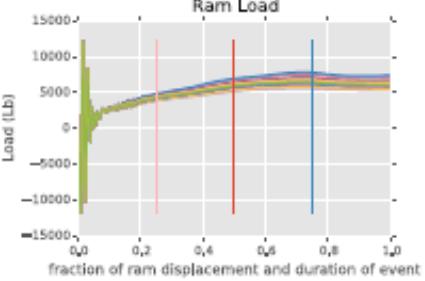
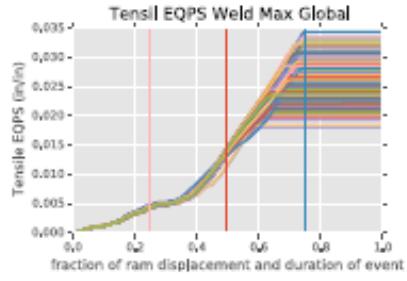
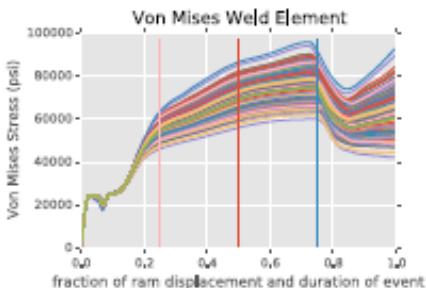
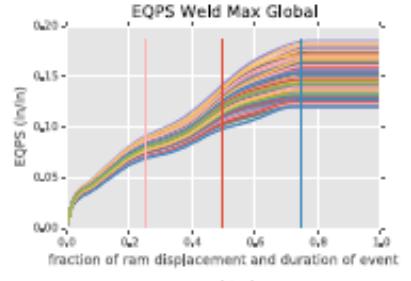
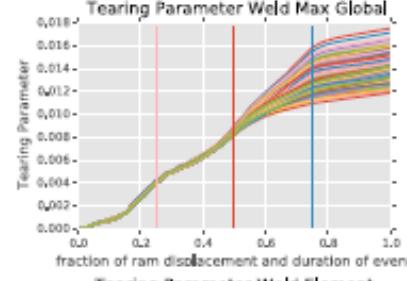
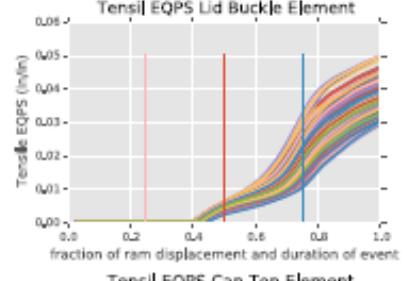
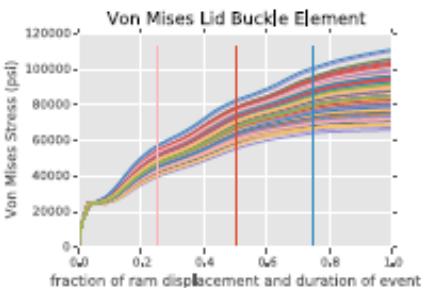
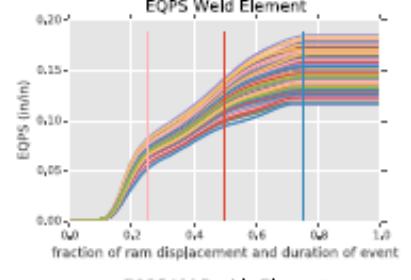
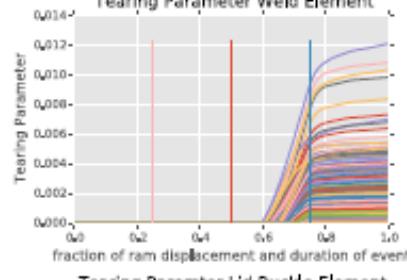
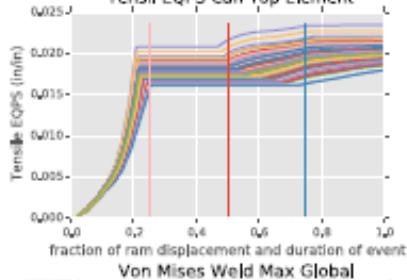
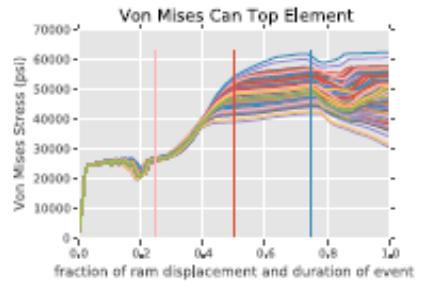
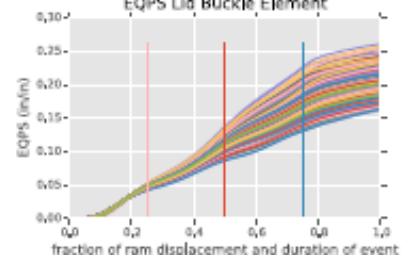
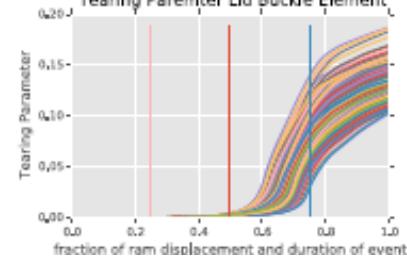
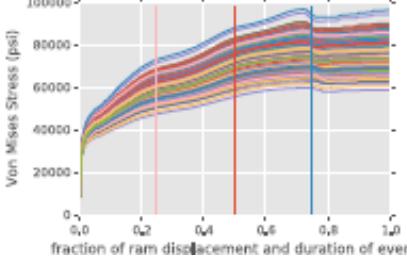
8) compare TI endpoints against exact percentiles



3) Histogram of 1000 results at time-fraction 0.5
4) 0.025 and 0.975 "exact" percentiles of response from 1000 results

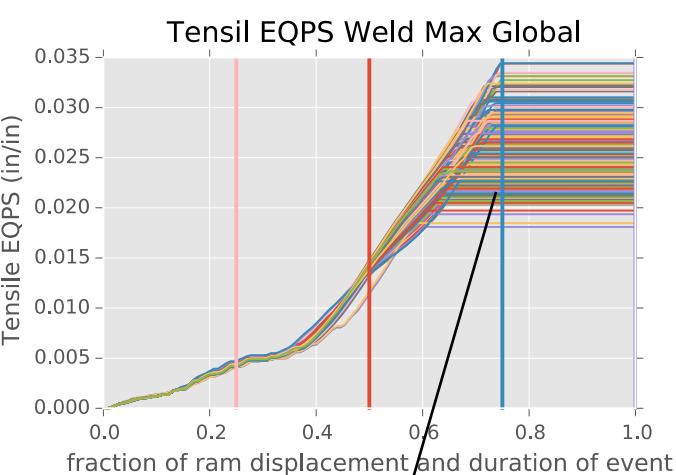
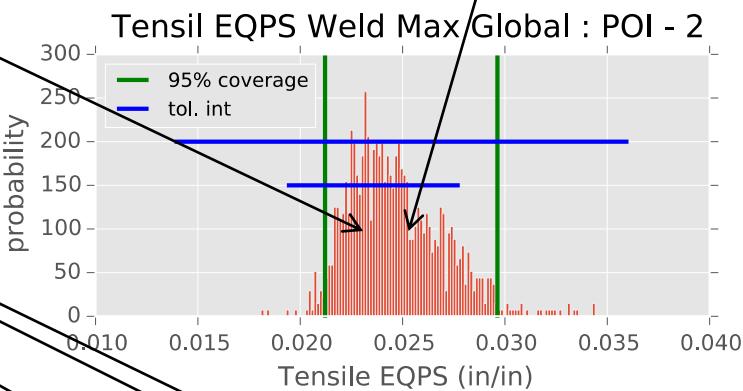
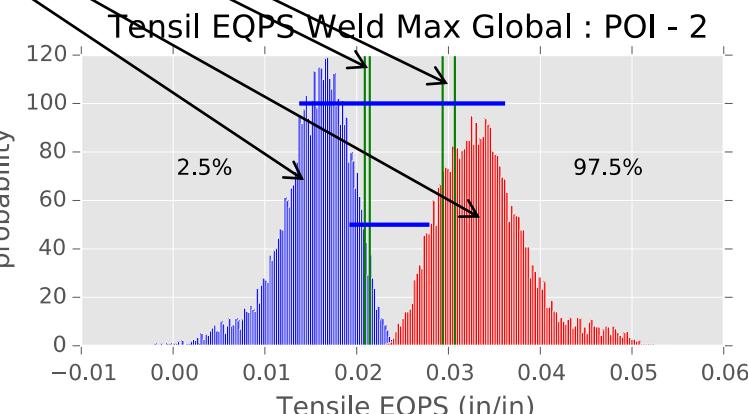
9) do steps 5 – 8 many times (10,000 random trials) to establish reliability rate of TI success in encompassing true 0.025 - 0.975 percentile range

- 18 output quantities
- 4 time stations each
- = 72 QOIs (quant. of int.)

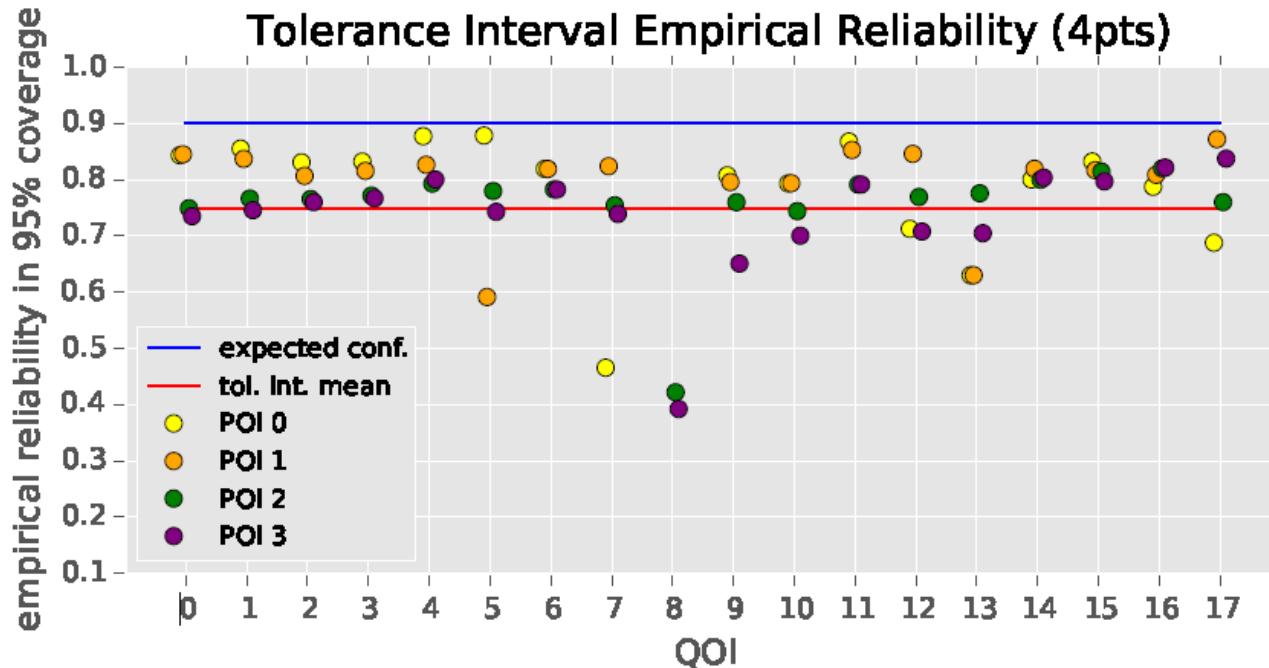


Tol. Intvl. Performance Characterization

- For each QOI the 1,000 results are characterized as a histogram
- The 0.025 and 0.975 quantiles of the histogram are identified as reference “true” values (within small error, see last bullet)
- TI success rate determined from 10K trials of 4 randomly selected input σ - ϵ curves and their QOI results & corresponding 0.9/0.95 TIs. How often do the constructed TIs cover “true” 0.025 - 0.975 range?
- Uncertainty on 95% coverage for 1,000 instances comprising the ensemble determined with non-parametric interval estimates $n p \pm z \sqrt{n p (1 - p)}$

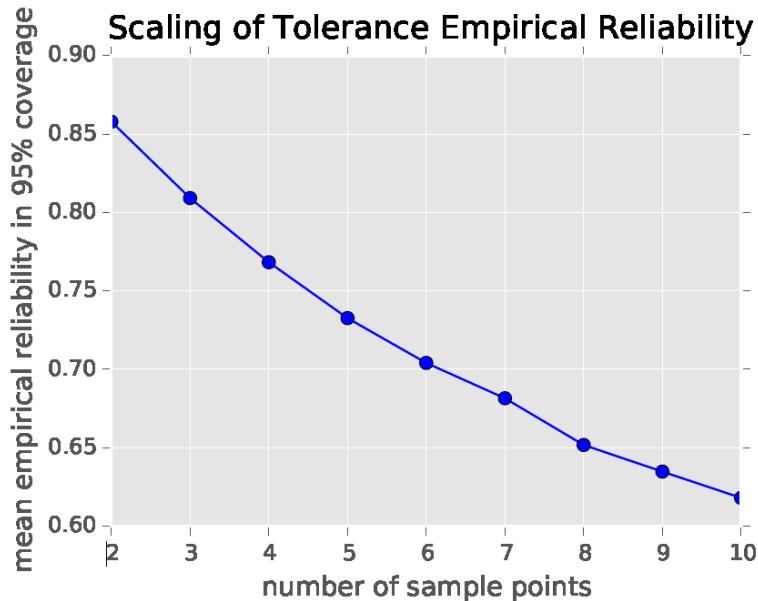


Tolerance Interval Empirical Reliability (given four σ - ϵ material curves randomly selected)



- Always less than the “advertised” 90% reliability or confidence that the TIs will successfully cover the 0.025 – 0.975 range of response
- 75% empirical average TI reliability for four σ - ϵ curves (averaged over ~70 highly nonlinear solid mechanics response quantities and >700,000 trials)
- 70% - 85% successful coverage rate for most QOIs

0.9/0.95 TI Empirical Reliability vs. # of σ - ϵ curves



- TI reliability of successfully covering 0.025 – 0.975 range of response decreases significantly with # of σ - ϵ curves—but magnitudes of shortfall errors Δ_U and Δ_L decrease faster—more curves are better on average.
- >70% expected TI reliability in usual situation of ≤ 6 σ - ϵ curves

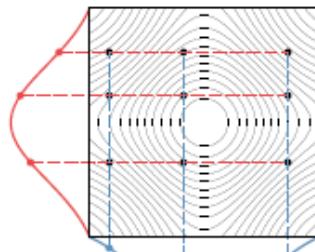
Conclusions

- The proposed TI methodology is a simple way to manage risk of underestimating material behavior variability when only a small number of material characterization tests are available or affordable.
- The methodology is relatively affordable even with computationally expensive models.
- The Can-Crush study and results provide evidence that the TI methodology is reasonably reliable (>70% for ≤ 6 σ - ϵ curves) for providing conservative estimates of the true 0.025 – 0.975 range of response for a large variety of highly nonlinear solid mechanics QOI types, including:
 - Von Mises stresses
 - displacements and resisting load
 - material damage quantities EQPS, Tensile EQPS, and Tearing Parameter

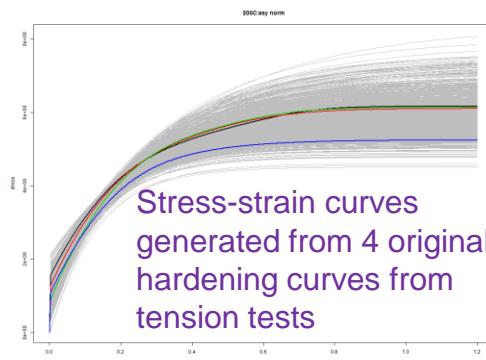
Next Steps: Assess Sparse-Data UQ Approaches for Multi-Material

Solid Mechanics Problems, where only a few σ - ϵ curves exist for each material

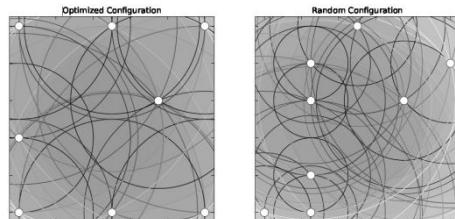
2D random-variable analogue of sparse random-function problem with all possible combinations of input realizations shown. Continuous-variable analogue problem helped determine a more efficient UQ approach than the all-combinations of stress-strain curves approach previously taken.



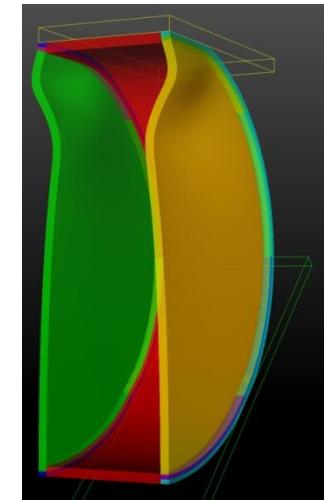
Simulated Annealing for Optimal Sampling Design



1 of 18 output quantities to be used to assess performance of sparse-data UQ method applied to can-crush test problem



Can-crush simulation results with nominal mtl. hardening curves (half-symmetry Presto model)



Tensile EQPS Can Top Element

