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The Issue:
Material Response Variability in Stress-Strain@ Sonda
Curves from replicate Tension Tests

Laboratories

« Results at various #
temperatures

angineering strass (psl)

engmneering stran

cylinder
Tension-test
specimen




The Issue:

Variability of Predicted Response @ﬁ:ﬁﬂﬁm
due to Material Curve Variability

Laboratories

variability of
predicted response
(e.g. displacement,

=)

run model :

) stress, failure
samples of with the pressure)
stress-strain various
curves from material
material testing curves




The Issue:

Error/Uncertainty of Inferred Population |
of Responses from propagating relatively few @F}Eﬁfﬂﬁes
Material Curves

predicted variability
of response

=)

run mode » |
| with the
relatively few Various e
samples of material 7 4
stress-strain 1
curves from CUrves 7\
material testing '~ uncertainty
(figurative) of
© population
of responses
How do we get a handle on the epistemic inferred
uncertainty due to sparseness of sampling  from 5 samples
of the aleatory variability (the random 4

inputs and outputs) of the system?
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Simplified UQ Objective @Sandia

A view is taken that:

— One should not try to do the impossible (accurate estimation of the
PDF from which the sparse samples come)

— Rather, a pragmatic goal is that the uncertainty representation
should be conservative, e.g. bound the .025 — 0.975 percentile
range of the PDF from which the samples come

— An opposing goal (making this a difficult MiniMax problem) is that
the uncertainty representation should not be overly conservative—
l.e., should minimally over-estimate the desired percentile range of
the true PDF.




Related Problem previously studied:

— Sparse Samples from popular PDF types, %/’7
Assess Sparse-Data UQ Methods

o“’-‘

44

-

Jpﬂ

1]
<4

U -

5 methods
assessed on
21 test problems

v

« 1000 trials of each method for fitting sample

data from each of:

— normal PDF

— right-triangular PDF
— uniform PDF

— 4 different convolutions of these PDF types
(figure at left) acting as three equally
dominant sources of random uncertainty in a
linear system.

»Answer guestion: does the presence of
multiple sources of uncertainty smooth
or mitigate the errors in representing the
individual PDFs?

» Fit the data for three sets of sample sizes:

n =2, 8, 32 for each PDF @ Sandia
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A Comparison of Methods for Representing
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Classical statistical Tolerance Intervals
found to offer the best balance of ease @ﬁgggﬁal
and effectiveness

Laboratories

* Tolerance Interval Approach

— calculate the standard deviation o; of the data
— multiply o; by appropriate factor £ from statistical tables
— create interval bars of extent fo; about the mean , of the data: ; + fo;

— 0.90/0.95 Tolerance Intervals — the factors £ here correspond to
approximate 90% reliability or odds that the produced tolerance interval
encompasses the central 95-percentile range between the 0.025 and

0975 perCent”eS Of the true PDF Relative Lengths of Conf. and Tol. Intvls.
# samples fo /0 05 ) ;
2 18.80 et o s Gomhace mor o S
4 4.94 s
8 3.26
12 2.86 2
20 2.56 5
30 2.41 -
40 2.33 . )
0 1.96 s ootormtdampien
- Very simple to use in practice T scionsmies
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Current Question:

How well do Tolerance Intervals work for |
highly nonlinear Solid Mechanics and @Lﬁggﬁgﬂm
4 input Stress-Strain curves from mtl. tests?

predicted variability
of response

N

=)

run mode »
relatively few W't_h the ; N

various
samples of otarial Tolerance Interval
stress-strain on samples of output
curves from curves

response from propagated
material curves

material testing



Can-Crush Model and Fixturing/Loading

&)
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Load Cell
UL g

0 . 3

Rectangular

Compression
Platen

Cameras

Modified Can Crush Test Setup

For present UQ
study assign all
parts the same steel
material with
synthetic o-€ curves

Pressure
Transducer

Weld Ram Plate
Lid
Can
— Support structure

Component | Material Dimensions No. No. thru

Elements | thickness
Ram Plate | Rigid 1” wide x 0.1” tk 1200 2
Wedge Rigid 1” wide x 0.1” tk 2400 2
Lid 304L SSTL | 3” dia x .062” tk 117264 | 4
Can 304L SSTL | 3” dia x 1” wide x .067” tk 74400 4
Weld 304L SSTL | 3” dia. x .03” wide x .062” tk | 4800 2x4
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te
Crushing-Ram Constant AdvanceCRz;
and Resulting Resistance from Ca

Ram Displacement

Mesh - Undeformed
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Load (Lb)
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displ_z
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-6.487e-04
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Displacement (in)
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Displacement output locations
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Von Mises Stress output locations
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Equivalent Plastic Strain (EQPS)
Output Locations
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Tensile EQPS output locations
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Tearing Parameter output locations
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\

Computational Experiments

(PDFs of Response are Non-Standard

and Unknown A-Priori)

Sandia
National _
Laboratories

&)

1000 synthetic
stress-strain
curves from

T

1) Generate

Bayesian UQ 2) Run model

on 2-parameter for all 2000

power-law fits synthetic

to 4 actual stress-strain
curves

stress-strain
curves from

N
tests
5) select
synthetic 7) create
stress-strain 6) run model 0.90/0.95
curves at with the four Tol. Intvl.
random synthetic from model

curves output results

100000

80000

60000

40000

=)

Von Mises Stress (psi)

20000- [ 'V

output
Q.O.L 0
(1000

realizations)

0.0 0.2 ofa
fraction of ram displgcement and duration of evei

3) Histogram of
1000 results at
time-fraction 0.5

-
-
-
-
-
-
-

8) compare £ 5

Tl endpoints _ I:;;l -

against exact 4) 0.025 and 0.975
percentiles “exact” percentiles

of response
’ from 1000 results

9) do steps 5 — 8 many times (10,(!)0 random trials) to establish reliability rate
of Tl success in encompassing true 0.025 - 0.975 percentile range
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Tensil EQPS Weld Max Global
0.035 - ! ! ! .

Tol. Intvl. Performance
Characterization

0.020 -

0.015-

Tensile EQPS (in/in)

For each QOI the 1,000 results are e
characterized as a histogram 0.000- ‘

The 0.025 and 0.975 quantiles of the
histogram are identified as reference
“true” values (within small error, see
last bullet)

= 95% coverage
= tol.int

probability
&
o

100
- Al \Huu
Tl success rate determined from 10K 0. | o ... 1. :
. . Q10 0.015 0. 020 0. 025 0. 030 0.035 0.040
trials of 4 randc_)mly selected input o-€ Tensile EQPS (in/in)
curves and their QOl results &
corresponding 0.9/0.95 TIs. How often LoJergil EQPSJ¥eld Max Global : POI -2

do the constructed Tls cover “true”
0.025 - 0.97/5 range?

100-

80 -
97.5%

60 -

probability

40 -

\M||‘M
Uncertainty on 95% coverage for 1,000

instances comprising the ensemble ) .|.u|uI|.||||||||\||‘||‘|”v ‘“HII l|||“” ””’”llﬂh||||l||r.u.m.u )
determined with non- parametrlc -0.01 0. 001 002 003 004 005 006
interval estimates np+ zy/np (1 —p) fenstie Qs finim 19
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Tolerance Interval Empirical Reliability

(given four 0-€ material curves randomly @ﬁ%ﬁﬂﬁm
se | ecte d ) Laboratories

% o Tolerance Interval Empirical Reliability (4pts)

£ 10- )

3 09- L 13

w [ @] 6 6 o ® . 6 ()] o @

BE 0.8 - 8 % ® @ @ o L ] ® @ & i‘ g -

9D 0.7- et s L L Tl R

< 0.6- o - + -

% 0.5- — expected conf. = -

LE' 0.4 - : :Ooll I;t. mean ‘ -

5_9 0.3- o POI1 )

© ® POIZ

;E 02 o PoI3 )

o 0-1_ 1 | | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 -

& b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

QOI
« Always less than the “advertised” 90% reliability or

confidence that the TlIs will successfully cover the
0.025 - 0.975 range of response

« 75% empirical average Tl reliability for four O-€ curves
(averaged over ~70 highly nonlinear solid mechanics
response quantities and >700,000 trials)

« 70% - 85% successful coverage rate for most QOls 20



0.9/0.95 TI Empirical Reliability
VS. # of O-€ curves

&)
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. Scaling of Tolerance Empirica! Religbility

o
©
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o

o |

o
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o
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b

o
&
&

3 4 5 6 7 8 9 10
number of sample points

mean empirical reliability in 95% coverage

~ -

Tl reliability of successfully covering 0.025 — 0.975 range of
response decreases significantly with # of 0-€ curves—but

magnitudes of shortfall errors 4, and A, decrease faster—
more Curves are better On average- exact percent“e

range from true

curves

PDF

.

« >70% expected Tl reliability in usual situation of <6 0-€

A,; estimated
—— percentile

range
AL

-i
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Conclusions @Sandia
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« The proposed Tl methodology is a simple way to manage risk of
underestimating material behavior variability when only a small
number of material characterization tests are available or
affordable.

« The methodology is relatively affordable even with
computationally expensive models.

« The Can-Crush study and results provide evidence that the Tl
methodology is reasonably reliable (>70% for <6 o-€ curves) for
providing conservative estimates of the true 0.025 — 0.975 range
of response for a large variety of highly nonlinear solid
mechanics QOIl types, including:

— Von Mises stresses
— displacements and resisting load
— material damage quantities EQPS, Tensile EQPS, and Tearing

Parameter
22



Next Steps: Assess Sparse-Data UQ Approaches for Multi-Material fh Natona

Laboratories

Solid Mechanics Problems, where only a few 0-€ curves exist for each
material

2D random-variable analogue of sparse
random-function problem with all possible
combinations of input realizations shown.
Continuous-variable analogue problem
helped determine a more efficient UQ
approach than the all-combinations of stress-
strain curves approach previously taken.

.

Can-crush simulation
results with nominal mtl.
hardening curves (half-
symmetry Presto model)

|
I
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Tensile EQPS Can Top Element

L

0.04 — 200C-8

Stress-strain curves

generated from 4 original 000t

hardening curves from
tension tests

\ /
Simulated Anneéling for
Optimal Sampling Design

b
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Tensile EQPS (in/in)

1 of 18 output quantities
to be used to assess »
performance of sparse-data

UQ method applied to can-
crush test problem - s 075 ! 23
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