
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Task and Data Parallelism Based Direct Solvers
and Preconditioners in Manycore Architectures:

Efforts in Trilinos/ShyLU

Project Head: Siva Rajamanickam
Joint Work: Mehmet Deveci, Kyungjoo Kim,

Andrew Bradley, Erik Boman
Collaborators: Clark Dohrmann, Heidi Thornquist

Joshua Dennis Booth
jdbooth@sandia.gov
SIAM-PP 2016 (MS36)

SAND2016-3315C

▪ Many/Muti-Core/Accelerator Nodes

▪ Intel Xeon Phi

▪ KNC 61 cores, x threads

▪ KNL > 61 cores

– Different memory models

Power8

▪ NVIDIA GPU O(1000) threads

Need for thread-scalable linear solvers

▪ Key Features (Good, Bad, and Ugly)

▪ Less memory per thread

▪ Hierarchy of memory

▪ Multiple NUMA regions

▪ Nested parallelism

▪ Multiple threads/core

▪ Thread teams

▪ UVM

Source: hpcwire.com/2016/02/10/nersc-getting-ready-knl Source: data from top500.org

▪ Many/Muti-Core/Accelerator Nodes
(Come back)

▪ Intel Xeon Phi

▪ KNC 61 cores, x threads

▪ KNL > 61 cores

– Different memory models

Power8

▪ NVIDIA GPU

Need for thread-scalable linear solvers

▪ Key Features (Good, Bad, and Ugly)

▪ Less memory per thread

▪ Hierarchy of memory

▪ Multiple NUMA regions

▪ Nested parallelism

▪ Multiple threads/core

▪ Thread teams

▪ UVM

Source: hpcwire.com/2016/02/10/nersc-getting-ready-knl Source: data from top500.org

So how do we deal?
Are our current methods enough:

Data-Parallelism and
Task-Parallelism

▪ MPI+X based subdomain solvers

▪ Decouple the notion of one MPI rank as one subdomain: Subdomains can span
multiple MPI ranks each with its own subdomain solver using X or MPI+X

▪ Subpackages of ShyLU (+X Part): Multiple Kokkos-based options for on-node
parallelism

▪ Basker : LU or ILU (t) factorization DATA-PARALLEL

▪ Tacho: Incomplete Cholesky - IC (k) TASK-PARALLEL

▪ Fast-ILU: Fast-ILU factorization for GPUs DATA-PARALLEL (Asynchronous)

▪ KokkosKernels (+X Part): Coloring based Gauss-Seidel (M. Deveci), Triangular Solves

▪ Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.

ShyLU Effort Overview

TachoTachoBaskerBasker

Amesos2
(Direct Solver Interface)

Amesos2
(Direct Solver Interface)

Ifpack2
(Precond. Interface)

Ifpack2
(Precond. Interface)

ShyLUShyLU

KokkosKernels –
SGS, Tri-Solve (HTS)

KokkosKernels –
SGS, Tri-Solve (HTS)

Fast-
ILU

Fast-
ILU

▪ Data-Parallelism

▪ Traditional par_for

▪ Fork-Join

▪ Multiple levels with thread-teams
needed for multi-threading

▪ Low startup cost

▪ OpenMP, Kokkos, …

Data and Task Parallelism

▪ Task-Parallelism

▪ Successful with irregular
problems

▪ Task/Futures

▪ Cost for task-queue

▪ Data-locality?

▪ Static or Dynamic (Cost?)

▪ Omps, OpenMP (4.0+), Kokkos, …

Shared Issue with Architecture Aware:

▪ Data layout – location

▪ Synchronizations / Data Sharing

▪ Specialized memory layouts

▪ Architecture aware data layouts

▪ Coalesced memory access

▪ Padding

▪ Array of Structures vs Structure of Arrays

▪ Kokkos based abstractions (H. C. Edwards and C. Trott)

▪ Two dimensional layouts for matrices

▪ Allows using 2D algorithms for solvers and kernels

▪ Bonus: Fewer synchronizations with 2D algorithms

▪ Cons : Much more harder to design correctly

▪ Better utilization of hierarchical memory like High Bandwidth Memory
(HBM) in Intel Xeon Phi or NVRAM

▪ Hybrid layouts

▪ Better for very heterogeneous problems

Themes for Architecture Aware Solvers and
Kernels : Data layouts

▪ Synchronizations are expensive

▪ 1D algorithms for factorizations and solvers, such as ND based solvers
have a huge synchronization bottleneck for the final separator\

▪ Impossible to do efficiently in certain architectures designed for massive
data parallelism (GPUs)

▪ This is true only for global synchronizations, fork/join style model.

▪ Fine grained synchronizations

▪ Between handful of threads (teams of threads)

▪ Point to Point Synchronizations instead of global synchronizations

▪ Joongsoo Park et al (SC14) showed this for triangular solve

▪ Thread Parallel reductions wherever possible

▪ Data Sharing

▪ Global accesses are expensive (NUMA)

▪ Atomics are cheap

▪ Only when used judiciously

Themes for Architecture Aware Solvers and
Kernels : Synchronization and Data Sharing

▪ Basker: Sparse (I)LU factorization (w/ Joshua Booth)

▪ Block Triangular form (BTF) based LU factorization,
Nested-Dissection on large BTF components

▪ 2D layout of coarse and fine grained blocks

▪ Previous work by Sherry Li, Rothberg, & Gupta

▪ Data-Parallel, Kokkos based implementation

▪ Fine-grained parallel algorithm with P2P
synchronizations

▪ Parallel version of Gilbert-Peirels’ algorithm (or KLU)

▪ Left-looking 2D algorithm requires careful
synchronization between the threads

▪ All reduce operations between threads to avoid
atomic updates

▪ See “Basker: A Threaded Sparse LU Factorization Utilizing
Hierarchical Parallelism and Data Layouts” (J. Booth, S.
Rajamanickam and H. Thornquist)

Basker : (I)LU factorization

Basker : Steps in a Left looking factorization

Bottom level of Dependency
tree

Walking from level 0, slvel is
separator level

Fine grain reduction needed
for level 1

Level 1 factorization
Finegrain reduction needed
for level 2

Level 2

▪ Different Colors show different threads

▪ Grey means not active at any particular step

▪ Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.
(Walking up the nested-dissection tree)

▪ Speedup 5.9x (CPU) and 7.4x (Xeon Phi)
over KLU (Geom-Mean) and up to 53x
(CPU) and 13x (Xeon Phi) over MKL

▪ Performance Profile for a matrix set with
a high-fill and low-fill matrices shown (16
threads on CPUs /32 threads on Xeon Phi)

▪ Low-fill matrices Basker is consistently the
better solver. High fill matrices MKL
Pardiso is consistently the better solver

Basker : Performance Results

Power0 rajat21 asic_680ks hvdc2 Freescale1 Xyce3

0

3

6

9

1
2
3
4
5

0

2

4

6

8

2.5

5.0

7.5

1

2

3

4

2

4

6

8

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
SandyBridge Cores

S
p
e
e
d
u
p

v
s.

K
L
U

Solver Basker PMKL

Power0 rajat21 asic_680ks hvdc2 Freescale1 Xyce3

0

3

6

9

1

2

3

4

0.0

2.5

5.0

7.5

2.5

5.0

7.5

5

10

15

0

20

40

60

1248 16 32 1248 16 32 1248 16 32 1248 16 32 1248 16 32 1248 16 32
Phi Cores

S
p
e
e
d
u
p
v
s.

K
L
U

Tacho : Task Based Cholesky factorization

▪ Fine-grained Task-basked, Right Looking Cholesky
Factorization (w/ K. Kim)

▪ 2D layout of blocks based on nested dissection
and fill pattern

▪ Task-Parallel, Kokkos based implementation

▪ Fine-grained parallel algorithm with
synchronizations represented as a task DAG

▪ Algorithm-by-blocks style algorithm

▪ Originally used for parallel out-of-core
factorizations (Quintana et al, Buttari et al)

▪ Block based algorithm rather than scalar
based algorithm

▪ See “Task Parallel Incomplete Cholesky Factorization
using 2D Partitioned-Block Layout” (K. Kim, S.
Rajamanickam, G. Stelle, H. C. Edwards, S. Olivier)
arXiv.

X X

11

10

9

8

6 X

7

X4

5

X

XXX

X

X

X

X X

X

X

3

2

X

X

1

0

0

1

2

3

4

0 1 2 3 4

MatrixView

CrsMatrixBase<MatrixView>

Matrix of blocks

Tacho : Steps in the factorization

Chol

Trsm

Herk

Chol

Herk

HerkGemmHerk

Herk Gemm

Herk

Trsm

Trsm Trsm

Chol

Chol

Chol

Trsm

Trsm

Task DAG

▪ Degree of Concurrency still depends on nested dissection ordering

▪ Parallelism is not tied to nested dissection ordering

Tacho : More realistic task DAG

▪ Complete Task DAG never formed. Shown here for demonstration of the degree of
concurrency.

▪ The concurrency is from fine-grained tasking and a 2D right looking algorithm

Tacho : Experimental Results

1 2 4 8 16
1
2

4

8

16

of threads

S
p

ee
d

-u
p

ecol ogy2

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
1
2

4

8

16

of threads

S
p

ee
d

-u
p

pwt k

Level 0 Level 1

Level 2 Level 4

1 4 12 28 56
1
4

12

28

56

of threads

S
p

ee
d

-u
p

ecol ogy2

Level 0 Level 1

Level 2 Level 4

1 4 12 28 56
1
4

12

28

56

of threads

S
p

ee
d

-u
p

pwt k

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
10− 2

10− 1

100

of threads

T
im

e
[s

ec
]

ecol ogy2: tacho

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
10− 2

10− 1

100

of mpi ranks

T
im

e
[s

ec
]

ecol ogy2: euclid

Level 0 Level 1

Level 2 Level 4

▪ Results shown for two matrices
with different levels of fill

▪ Euclid results shown for reference

▪ It is an MPI code, using RCM
ordering (best for Euclid)

▪ Speedup numbers are in
comparison with single threaded
Cholesky

▪ Small overhead for single
threaded Cholesky over
serial Cholesky

▪ Results are shown for both CPU
and Xeon Phi architectures

▪ The two matrices are chosen for
very different nnz/n.

Comparison of ILUK and ICK, Data/Tasking
Parallelism

▪ Detail account of this analysis to be presented at HIPS workshop IPDPS 2016 (Booth, Kim,
and Rajamanickam).

▪ Time_Tacho = Symbolic Time + Numeric Time Time_Basker = 2xNumeric Time

▪ On x86-Intel Sandy Bridge, similar observed performance

▪ On Intel Xeon Phi, Basker (ILUK) with data-parallelism and global accesses to find sparsity
pattern suffers

Time, Basker (ILUK) – Intel Xeon Phi Time, Tacho (ICK) – Intel Xeon Phi

Comparison of ILUK and ICK, Data/Tasking Parallelism
(Impact of Synchronization / Data Sharing)

▪ As number of threads increase,
so will the number of
synchronization in data-
parallelism case

▪ Global Access Overhead =
Time Global Access/ Total Time
x 100

▪ Any data sharing via a
synchronization or atomics cost
will grow

▪ The tasking overhead:

▪ Task generation

▪ Scheduling

▪ Context switching

▪ Synch and sharing time maybe >
tasking overhead for large
thread counts

Comparison of ILUK and ICK, Data/Tasking Parallelism
(Impact of Data Layout)

▪ Average number of nonzero each thread is working on

▪ Would like the “chunk of data” being worked on to fit into cache

▪ Trade-off, number of tasks generated (TP) and number of synchronizations (DP)

▪ Intel Xeon Phi / Power8 have segmented shared cache

▪ Task Parallelism breaking tasks into a uniform size fits the cache structure

▪ Data Parallelism breaking into pieces to fit number of threads and limit
synchronizations may fall out of shared cache structure on many-core systems

Asynchronous ILU factorizations

▪ The factorization is exact on the sparsity pattern (S)

▪ ILU methods were interpreted this way before the current “traditional” ILU
(Varga 1959, Oliphant 1961, Buleev 1960)

▪ Chow & Patel (2015) uses this property to compute ILU factorizations

Solve with the
constraints

▪ The equations are non-linear with more equations than the original !

▪ Equations can be solved in a fine-grained inexact manner with a good initial
guess

▪ Same idea can be applied to tri-solve

▪ Implemented for ShyLU/FAST-ILU by Patel, Rajamanickam, and Boman

Asynchronous ILU factorization + Tri Solves vs
Exact ILU factorization

0 1 2 3 4 5

thermal2 1312 869 692 635 630 626

af_shell3 * * * * * *

ecology2 1708 1082 832 761 738 723

apache2 967 541 326 299 293 294

offshore 334 * * * * *

G3_circuit 860 524 426 360 312 254

Parabolic_fem 334 271 255 249 263 292

0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440

af_shell3 1248 788 583 462 369 309

ecology2 1625 988 696 576 467 414

apache2 1294 619 394 289 235 188

offshore 485 * * * * *

G3_circuit 1414 757 546 421 341 303

Parabolic_fem 313 238 164 129 106 91

FastILU
10 sweeps,
RCM ordering
GPUs

Exact ILU

Stabilization Techniques

▪ FastILU Factorization

▪ A lot of concurrency in the GPUs

▪ Almost in the the nonlinear Jacobi regime than in the nonlinear Gauss
Seidel regime

▪ Triangular Solves are even bigger problem

▪ Common technique to stabilize convergence : damping or underelaxation

▪ Damping factor 0-1 allows controlling the effect of numerical overflow
and enormous concurrency

▪ Choosing the damping factor is much more trickier

Restart/Blocking Techniques

▪ Use a warm restart for ILU(k) k >0

▪ Instead of using A as the initial guess use few sweeps of ILU(k-1) as
the initial guess

▪ Continuation like method, recursively find initial guess with lower fill
levels

▪ Block Jacobi iteration instead of Jacobi iteration on the triangular solves
with small block sizes for each thread

▪ Need to be careful about performance vs convergence

▪ Assigning blocks to a warp / thread block balances both

▪ Kokkos allows teams of threads to do this naturally

▪ Another stabilization approach: Manteuffel shifting didn’t help these
methods

Asynchronous ILU factorization + Tri Solves vs
Exact ILU factorization

0 1 2 3 4 5

thermal2 1343 924 840 815 819 811

af_shell3 901 653 565 589 554 599

ecology2 1704 1103 925 910 893 922

apache2 1043 629 432 484 427 497

offshore 350 211 184 175 172 172

G3_circuit 904 607 512 471 431 410

Parabolic_fem 356 328 295 288 285 286

0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440

af_shell3 1248 788 583 462 369 309

ecology2 1625 988 696 576 467 414

apache2 1294 619 394 289 235 188

offshore 485 * * * * *

G3_circuit 1414 757 546 421 341 303

Parabolic_fem 313 238 164 129 106 91

FastILU
10 sweeps,
RCM ordering
GPUs, damping
Factor = 0.5

Exact ILU

Asynchronous ILU factorization + Tri Solves vs
Exact ILU factorization

0 1 2 3 4 5

thermal2 1343 904 727 646 623 608

af_shell3 902 666 569 534 547 424

ecology2 1704 1114 879 799 759 725

apache2 1043 592 370 291 267 267

offshore 350 205 178 178 282 274

G3_circuit 903 567 498 419 357 291

Parabolic_fem 358 296 253 246 251 256

0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440

af_shell3 1248 788 583 462 369 309

ecology2 1625 988 696 576 467 414

apache2 1294 619 394 289 235 188

offshore 485 * * * * *

G3_circuit 1414 757 546 421 341 303

Parabolic_fem 313 238 164 129 106 91

FastILU
10 sweeps,
RCM ordering
GPUs, damping
Factor = 0.5,
Continuation
guess

Exact ILU

▪ Hybrid Triangular Solves (A. Bradley)

▪ Algorithm is a combination of level-set triangular solve and recursive blocked
triangular solve

▪ Implementation based on P2P synchronizations similar to Park et al.

▪ Level-Set portion of the algorithm works on the low-fill portions of the problem

▪ Recursive blocked algorithm is used in the denser portions of the algorithm
(separators, supernodes)

▪ Scales well on CPU and Xeon Phi architectures

HTS Triangular Solve

• Switching
• Currentl

• Currently:

ybrid%

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Threads, KMP_AFFINITY=balanced

148 16 28 57 114

S
p
e
e
d
u
p
w
.r
.t
.
M
K
L
tr
is
o
lv
e
r

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Solve phase on Knights Corner
Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND

Hybrid solver

Level scheduling only

Recursive blocking only

mkl_cspblas_dcsrtrsv

11%

▪ ShyLU Efforts

▪ Trying many different directions in order to provide fast solver (Mostly successful with
a lot of algorithm and implementation tweaking)

▪ A collection of different methods and different backend all coded in a similar language
and library in order to aid fair comparison

▪ A real MPI+X future option
▪ Data Parallelism

▪ Can be useful if unique irregular structure exist that can be exploited
(Basker LU with BTF)

▪ Can have a much lower overhead than tasking for few threads and little work
(low fill-in Basker ILUK)

▪ Need light-weight synchronization P2P (Basker and HTS)

▪ Tasking Parallelism

▪ Flexible
▪ Can break task into cache friendly sizes

▪ Any tasking overhead can be amortized with increasing thread counts, ideal since we
have so many threads

▪ Asynchronous

▪ A real viable option on GPU

▪ More work in this section on this to come!

Summary

Questions ?

