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Need for thread-scalable linear solvers i)t

Laboratories
= Many/Muti-Core/Accelerator Nodes " Key Features (Good, Bad, and Ugly)
= Intel Xeon Phi = Less memory per thread
= KNC 61 cores, x threads * Hierarchy of memory
= KNL > 61 cores = Multiple NUMA regions
— Different memory models * Nested parallelism
Powers = Multiple threads/core
- NVIDIA GPU 0(1000) threads * Thread teams
= UVM
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So how do we deal?
Are our current methods enoug
Data-Parallelism and
Task-Parallelism .ads/core

Power8
= NVIDIA GPU
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ShyLU Effort Overview ) e,

Amesos2 Ifpack2
(Direct Solver Interface)  (Precond. Interface)

Compute
Node 1
Sub
domain1

MPI Procs ShyLU on the

with ~ Overlapped ShyLU

matrix

—

Fast-
ILU

Basker Tacho

| Compute
Node 2
Sub domain2

KokkosKernels —
SGS, Tri-Solve (HTS)

I

=  MPI+X based subdomain solvers

= Decouple the notion of one MPI rank as one subdomain: Subdomains can span
multiple MPI ranks each with its own subdomain solver using X or MPI+X

= Subpackages of ShyLU ( +X Part): Multiple Kokkos-based options for on-node

parallelism
= Basker: LU or ILU (t) factorization DATA-PARALLEL
= Tacho: Incomplete Cholesky - IC (k) TASK-PARALLEL
= Fast-ILU: Fast-ILU factorization for GPUs DATA-PARALLEL (Asynchronous)

= KokkosKernels (+X Part): Coloring based Gauss-Seidel (M. Deveci), Triangular Solves

= Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.
I EEEEEEEE—————————



Data and Task Parallelism i) e,
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= Data-Parallelism = Task-Parallelism
= Traditional par_for = Successful with irregular
=  Fork-Join problems
= Multiple levels with thread-teams » Task/Futures
needed for multi-threading = Cost for task-queue
= Low startup cost = Data-locality?
=  OpenMP, Kokkos, ... = Static or Dynamic (Cost?)

=  Omps, OpenMP (4.0+), Kokkos, ...

Shared Issue with Architecture Aware:
= Data layout — location
= Synchronizations / Data Sharing




Themes for Architecture Aware Solvers and i) detos
Kernels : Data layouts

= Specialized memory layouts
= Architecture aware data layouts
= Coalesced memory access
= Padding
= Array of Structures vs Structure of Arrays
= Kokkos based abstractions (H. C. Edwards and C. Trott)
= Two dimensional layouts for matrices
= Allows using 2D algorithms for solvers and kernels
= Bonus: Fewer synchronizations with 2D algorithms
= Cons : Much more harder to design correctly

= Better utilization of hierarchical memory like High Bandwidth Memory
(HBM) in Intel Xeon Phi or NVRAM

= Hybrid layouts
= Better for very heterogeneous problems




Themes for Architecture Aware Solvers and i) et
Kernels : Synchronization and Data Sharing

= Synchronizations are expensive

= 1D algorithms for factorizations and solvers, such as ND based solvers
have a huge synchronization bottleneck for the final separator\

= Impossible to do efficiently in certain architectures designed for massive
data parallelism (GPUs)

= This is true only for global synchronizations, fork/join style model.
= Fine grained synchronizations
= Between handful of threads (teams of threads)
= Point to Point Synchronizations instead of global synchronizations
= Joongsoo Park et al (SC14) showed this for triangular solve
= Thread Parallel reductions wherever possible
= Data Sharing
= Global accesses are expensive (NUMA)
= Atomics are cheap
=  Only when used judiciously




Basker : (I)LU factorization ) e,

= Basker: Sparse (l)LU factorization (w/ Joshua Booth)

= Block Triangular form (BTF) based LU factorization,
Nested-Dissection on large BTF components

= 2D layout of coarse and fine grained blocks

= Previous work by Sherry Li, Rothberg, & Gupta
= Data-Parallel, Kokkos based implementation

= Fine-grained parallel algorithm with P2P
synchronizations

= Parallel version of Gilbert-Peirels’ algorithm (or KLU)

= Left-looking 2D algorithm requires careful
synchronization between the threads

= All reduce operations between threads to avoid
atomic updates

See “Basker: A Threaded Sparse LU Factorization Utilizing
Hierarchical Parallelism and Data Layouts” (J. Booth, S.
Rajamanickam and H. Thornquist)




Basker : Steps in a Left looking factorization ) e
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Traditional Gilbert-Peierls . Upper Trisolve - BTF search SPMIV + Subtraction
GP_FULL (Line 6) h GP_UFPPER (Line 16) REDUCE_COL [Line 21)
I . — I I .
h §H . h treclevel
Gilbert-Peierls A
GPF_LOWER_UFPDATE 2
e . L L
¥ I I b . I b I I
I N I . I I D B I N B e
treelevel = -1, treelevel = 0, slevel=2 treelevel = 1, slevel =2
. . . . . 1
Bofttom level of Dependency  Walking fromlevel O, slvel is  Fine grain reduction needex
tree separator level for level 1
SPMV + Subtraction
Upper Trisolve - BTF search REDUCE_COL [Line 27) Traditional Gilbert-Peierls
L GP_UPPER (Line 23) GP_FULL_BLK [Line 29) Uy3.Uy7 U3, Uy Uyz, Uy Us3, Usy 0
h 4 A L M
I . I L3y, Ly Ly L7 Lgg Loy Lgs Les
‘ LUy LUy, LUy LUss -1
I .
I I D B treelevel = 2, slevel I N R
treelevel = 1, slevel=2 treelevel = 2, slevel =2
Level 1 factorization Fine grain reduction needed Level 2
for level 2

= Different Colors show different threads
= Grey means not active at any particular step

= Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.

(Walking up the nested-dissection tree)
I ———————




Basker : Performance Results
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Speedup 5.9x (CPU) and 7.4x (Xeon Phi)
over KLU (Geom-Mean) and up to 53x
(CPU) and 13x (Xeon Phi) over MKL

Performance Profile for a matrix set with
a high-fill and low-fill matrices shown (16
threads on CPUs /32 threads on Xeon Phi)

Low-fill matrices Basker is consistently the
better solver. High fill matrices MKL
Pardiso is consistently the better solver




Tacho : Task Based Cholesky factorization )
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Algorithm: A := CHOL_BLK(A)
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= Fine-grained Task-basked, Right Looking Cholesky
Factorization (w/ K. Kim)

= 2D layout of blocks based on nested dissection
and fill pattern

= Task-Parallel, Kokkos based implementation

= Fine-grained parallel algorithm with
synchronizations represented as a task DAG

= Algorithm-by-blocks style algorithm

= Originally used for parallel out-of-core
factorizations (Quintana et al, Buttari et al)

= Block based algorithm rather than scalar
based algorithm

= See “Task Parallel Incomplete Cholesky Factorization
using 2D Partitioned-Block Layout” (K. Kim, S.
Rajamanickam, G. Stelle, H. C. Edwards, S. Olivier)
arXiv.



Tacho : Steps in the factorization )
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= Degree of Concurrency still depends on nested dissection ordering

= Parallelism is not tied to nested dissection ordering




Tacho : More realistic task DAG

=)

=  Complete Task DAG never formed. Shown here for demonstration of the degree of

concurrency.

= The concurrency is from fine-grained tasking and a 2D right looking algorithm
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Tacho : Experimental Results

ecol ogy2: tacho
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Results shown for two matrices
with different levels of fill

Euclid results shown for reference

= |tis an MPI code, using RCM
ordering (best for Euclid)

Speedup numbers are in
comparison with single threaded

Cholesky
= Small overhead for single

threaded Cholesky over
serial Cholesky

Results are shown for both CPU
and Xeon Phi architectures

The two matrices are chosen for
very different nnz/n.



Comparison of ILUK and ICK, Data/Tasking
Parallelism
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= Detail account of this analysis to be presented at HIPS workshop IPDPS 2016 (Booth, Kim,
and Rajamanickam).

= Time_Tacho = Symbolic Time + Numeric Time Time_Basker = 2xNumeric Time
= On x86-Intel Sandy Bridge, similar observed performance

= On Intel Xeon Phi, Basker (ILUK) with data-parallelism and global accesses to find sparsity
pattern suffers



Comparison of ILUK and ICK, Data/Tasking Parallelism
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(Impact of Synchronization / Data Sharing) aborois
= As number of threads increase, ,x10* | | |
so will the number of e Theme
synchronization in data- I v s
parallelism case e 000 /

= Global Access Overhead =
Time Global Access/ Total Time

Number of Sync Points

x 100 05L
= Any data sharing via a
synchronization or atomics cost 0— A 5 15 5
will grow Number of Threads
= The tasking overhead:
o

= Task generation

-_——mm -

= Scheduling
-©-sandyBridge, G3 Circuit

-e-SandyBridge, Thermal2
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-©-sandyBridge, Pwtk

Phi, G3 Circuit
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Phi, Pwtk
-87--Power8, G3 Circuit
-R7--Power8, Thermal2
-X7--Power8, Ecology?2
-R7--Power8, Pwtk

32

=  Context switching
10°}

= Synch and sharing time maybe >
tasking overhead for large

thread counts

Global Access Overhead (%)

Number of Threads




Comparison of ILUK and ICK, Data/Tasking Parallelism

(Impact of Data Layout)
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= Average number of nonzero each thread is working on

=  Would like the “chunk of data” being worked on to fit into cache

= Trade-off, number of tasks generated (TP) and number of synchronizations (DP)
= Intel Xeon Phi / Power8 have segmented shared cache

= Task Parallelism breaking tasks into a uniform size fits the cache structure

= Data Parallelism breaking into pieces to fit number of threads and limit
synchronizations may fall out of shared cache structure on many-core systems
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Sandia
Asynchronous ILU factorizations ) e

(LU)ij = aij, (3,5) €S

= The factorization is exact on the sparsity pattern (S)

= |[LU methods were interpreted this way before the current “traditional” ILU
(Varga 1959, Oliphant 1961, Buleev 1960)

= Chow & Patel (2015) uses this property to compute ILU factorizations
i, >3, B,4)€eS . min(i,j)
Solve R <J.’ (.’J.) g with the likuk; = aij,  (1,7) € 5.
Uij, 1>, (W) €. constraints k=1
= The equations are non-linear with more equations than the original !

= Equations can be solved in a fine-grained inexact manner with a good initial
guess

= Same idea can be applied to tri-solve
= Implemented for ShyLU/FAST-ILU by Patel, Rajamanickam, and Boman



Asynchronous ILU factorization + Tri Solves vs
Exact ILU factorization

FastiLU

10 sweeps,
RCM ordering
GPUs

Exact ILU

0 1 2 3 4 5

thermal2 | 1312 869 | 692 635 | 630 626
af_shell3 * * * * * *
ecology2 [ 1708 1082 832 761 738 723
apache2 967 541 326 299 | 293 294
offshore 334 * * * * *
G3_circuit 860 524 | 426 360 | 312 254
Parabolic_fem 334 271 255 249 | 263 292
0 1 2 3 4 5

thermal2 | 1934 | 1225 | 856 637 | 507 440

af shell3 | 1248 788 | 583 462 | 369 309
ecology2 [ 1625 988 696 576 | 467 414
apache2 | 1294 619 | 394 289 | 235 188
offshore 485 * * * * *
G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 | 164 129 | 106 91
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Sandia
Stabilization Techniques L

FastlLU Factorization
= A lot of concurrency in the GPUs

= Almost in the the nonlinear Jacobi regime than in the nonlinear Gauss
Seidel regime

= Triangular Solves are even bigger problem

= Common technique to stabilize convergence : damping or underelaxation
2D = (1 — w)z® + wG (™).

= Damping factor 0-1 allows controlling the effect of numerical overflow
and enormous concurrency

= Choosing the damping factor is much more trickier
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Restart/Blocking Techniques ) i,

= Use awarm restart for ILU(k) k >0

= |nstead of using A as the initial guess use few sweeps of ILU(k-1) as
the initial guess

= Continuation like method, recursively find initial guess with lower fill
levels

= Block Jacobi iteration instead of Jacobi iteration on the triangular solves
with small block sizes for each thread

= Need to be careful about performance vs convergence
= Assigning blocks to a warp / thread block balances both

= Kokkos allows teams of threads to do this naturally

= Another stabilization approach: Manteuffel shifting didn’t help these
methods




Asynchronous ILU factorization + Tri Solves vs ) e,
Exact ILU factorization

Laboratories

thermal2 | 1343 924 | 840 815 | 819 811
af_shell3 901 653 | 565 589 | 554 599
ecology2 | 1704 | 1103 | 925 910 | 893 922

':SSS:[\IAII‘:GIOS’ apache2 | 1043 629 | 432 484 | 427 | 497
RCM ordering offshore | 350 211 | 184 175 | 172 | 172
GPUs, damping G3_circuit | 904 607 | 512 471 | 431 410
Factor= 0.5 Parabolic_ fem | 356 328 | 295 288 | 285| 286
0 1 2 3 4 5

thermal2 | 1934 | 1225| 856 637 | 507 | 440

af shell3| 1248 | 788 | 583 462 | 369 | 309

Exact ILU ecology? | 1625 988 | 696 576 | 467 | 414
apache2 | 1294 | 619 | 394 289 | 235| 188

offshore 485 * * * * *

G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 164 129 | 106 91




Asynchronous ILU factorization + Tri Solves vs ) e,
Exact ILU factorization

Laboratories

thermal2 | 1343 904 727 646 | 623 608
af_shell3 902 666 569 534 | 547 424
ecology2 | 1704 | 1114 879 799 | 759 725

I’I:SSSt\II\Il_eUepS, apache2 1043 592 370 291 267 267

RCM orderin g offshore 350 205 178 178 | 282 274

GPUs, damping G3_circuit | 903 | 567 | 498 | 419| 357 | 291

Factor = 0.5, Parabolic fem | 358 | 296 | 253 246 | 251 | 256
Continuation

guess 0 1 2 3 4 5

thermal2 | 1934 1225 856 637 | 507 440

af shell3 | 1248 788 583 462 | 369 309

Exact ILU ecology? | 1625 988 | 696 576 | 467 | 414

apache2 | 1294 619 394 289 | 235 188

offshore 485 * * * * *

G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 164 129 | 106 91




HTS Triangular Solve fh lﬁggd,:t'

Solve phase on Knights Corner
Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND

:
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= Hybrid Triangular Solves (A. Bradley)

= Algorithm is a combination of level-set triangular solve and recursive blocked
triangular solve

= Implementation based on P2P synchronizations similar to Park et al.
= Level-Set portion of the algorithm works on the low-fill portions of the problem

= Recursive blocked algorithm is used in the denser portions of the algorithm
(separators, supernodes)

= Scales well on CPU and Xeon Phi architectures
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= ShyLU Efforts

= Trying many different directions in order to provide fast solver (Mostly successful with
a lot of algorithm and implementation tweaking)

= A collection of different methods and different backend all coded in a similar language
and library in order to aid fair comparison

= Areal MPI+X future option
= Data Parallelism

= Can be useful if unique irregular structure exist that can be exploited
(Basker LU with BTF)

= Can have a much lower overhead than tasking for few threads and little work
(low fill-in Basker ILUK)

=  Need light-weight synchronization P2P (Basker and HTS)
» Tasking Parallelism

= Flexible

= Can break task into cache friendly sizes

= Any tasking overhead can be amortized with increasing thread counts, ideal since we
have so many threads

= Asynchronous
= Areal viable option on GPU
=  More work in this section on this to come!
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Questions ?




