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High Performance Computing

Concentrated computational power solving a common problem 
N computers : 1 problem

Connected system solving disparate, independent problems

N computers : M problems

2



Background

 High Performance Computing is bottlenecked: 
 Bursty workloads

 Synchronous communication models

 Contention for shared resources, e.g. memory, networks

 Processes operating in private address space

 Community proposed improvements:
 Asynchronous many-task models

 Partitioned Global Address Space, Remote Direct Memory Accesses

 Efforts to further parallelize memory and communication

 Smaller diameter networks with higher connectivity
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Background (Overlap)

 Traditionally

 Effort to move towards
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TIMETIME

TIMETIME

Computation Synchronization Analytics/Other



Background (RDMA)

 Remote Direct Memory Access (RDMA)
 Bypass the CPU and access memory directly

 Facilitates overlap between communication and computation

 The only problem is that we are adding additional traffic on the 
memory subsystem



Primary Goal

Evaluate the impact of RDMA on modern systems

 Does this create Network-induced Memory Contention?

 What performance characteristics do we see on varying 
memory, CPU and network architectures?

 How does this impact different application workloads in the 
future?

 Given a performance degradation, can we identify solutions?
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Preliminary Evaluation

 Test the worst case scenario
1. Run memory intensive workload

2. From a separate node, use RDMA writes to push as much data as 
possible into the machine to further increase pressure.
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Preliminary Tests

 Experiments on small cluster of AMD Piledriver (4 cores)
 Theoretical Network bandwidth 4GBps

 Theoretical Memory Bandwidth 29.9 GBps

 STREAM benchmark (sustainable memory bandwidth)
 Observed 12.7 GBps sustainable memory bandwidth

 Modern CPU’s don’t fully utilize the theoretical memory bandwidth

 Just 42% of theoretical memory bandwidth for this CPU

 This leaves 17.2 GBps of unutilized memory bandwidth (more than 
enough to fit the 4GBps of RDMA bandwidth)

 Expectation is that RDMA will have no real impact on STREAM
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STREAM + RDMA write

 STREAM sustained bandwidth reduced from 12.7 to 5.6 GBps
 Reduction to 44% of original STREAM performance

 Somehow the RDMA writes are causing massive interference
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Possible Culprits

 Memory Controllers: how is RDMA traffic distributed across 
different memory controllers?
 Subtle policies like open page row-buffer management

 Memory Channels: ganged vs unganged

 CPU processing from Onload NIC’s: some portion of packet 
processing is handled by the CPU
 In our experiments this was never more than 2% of a single core

 Other overlooked factors
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Further Evaluation
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 Need more results to draw meaningful conclusions

 7 different CPU architectures
 Ranging from Westmere to Xeon Phi

 3 variations of Infiniband Networks
 Including onload and offload NICs

 6 different memory frequencies

 7 workloads of varying memory intensity
 STREAM, CNS, HPCCG, LAMMPS, Lulesh, SNAP, XSBench



Further Evaluation

 Similar setup to the preliminary STREAM experiment

 All of our workloads for these experiments run on a single 
node
 We don’t want to delay the application due to contention for network 

resources

 Injecting the maximum possible amount of RDMA writes
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STREAM results
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 6 out of 8 systems see degradation of STREAM bandwidth
 4-56% reduction in sustainable bandwidth

 Most noticeable for systems with onload NIC’s

 Older offload systems, where sustainable bandwidth is near 
theoretical see a reduction proportionate to the volume of RDMA 
writes



Small Scale Results (Sandy-Onload)
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Why is LAMMPS 
more impacted than 

STREAM?

What about CNS?



Diving in with OpenSpeedShop
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Evidence of Cache Pollution
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 In the absence of RDMA writes
 No real correlation between stalled cycles and any of the cache misses

 No real correlation between stalled cycles and runtime

 Add in RDMA writes
 Strong correlation between Stalled Cycles and misses throughout the 

cache hierarchy

 Correlation between runtime and L1 Misses becomes larger



Impact at Scale
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Solutions for NiMC

 Offload Network Cards

 Network Bandwidth Throttling

 Core Reservation
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Solutions for NiMC
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Summary of Results

 NiMC degraded performance on 75% of the evaluated 
systems
 Up to 56% reduction of sustained memory bandwidth on single nodes

 3X slowdown in LAMMPS running on an onload system with 
8k processes

 Evaluated three possible solutions
 Offload NIC’s (for recent CPU’s)

 Network throttling

 Core reservation
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Architectures
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Number of Concurrent Writers
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Workloads
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