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High Performance Computing ).

Concentrated computational power solving a common problem
N computers: 1 problem
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Connected system solving disparate, independent problems
N computers : M problems




Background ) s,

= High Performance Computing is bottlenecked:
= Bursty workloads
= Synchronous communication models
= Contention for shared resources, e.g. memory, networks
= Processes operating in private address space

= Community proposed improvements:
= Asynchronous many-task models
= Partitioned Global Address Space, Remote Direct Memory Accesses
= Efforts to further parallelize memory and communication
= Smaller diameter networks with higher connectivity
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Background (Overlap)

= Traditionally
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Background (RDMA) )

= Remote Direct Memory Access (RDMA)

= Bypass the CPU and access memory directly

= Facilitates overlap between communication and computation
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= The only problem is that we are adding additional traffic on the
memory subsystem
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Primary Goal )

Evaluate the impact of RDMA on modern systems

= Does this create Network-induced Memory Contention?

= What performance characteristics do we see on varying
memory, CPU and network architectures?

= How does this impact different application workloads in the
future?

= Given a performance degradation, can we identify solutions?
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Preliminary Evaluation ) .

= Test the worst case scenario
1. Run memory intensive workload

2. From a separate node, use RDMA writes to push as much data as
possible into the machine to further increase pressure.
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Preliminary Tests ) S,

= Experiments on small cluster of AMD Piledriver (4 cores)
= Theoretical Network bandwidth 4GBps
= Theoretical Memory Bandwidth 29.9 GBps

= STREAM benchmark (sustainable memory bandwidth)

= QObserved 12.7 GBps sustainable memory bandwidth
= Modern CPU’s don’t fully utilize the theoretical memory bandwidth
= Just 42% of theoretical memory bandwidth for this CPU

" This leaves 17.2 GBps of unutilized memory bandwidth (more than
enough to fit the 4GBps of RDMA bandwidth)

= Expectation is that RDMA will have no real impact on STREAM
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STREAM + RDMA write
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= STREAM sustained bandwidth reduced from 12.7 to 5.6 GBps
= Reduction to 44% of original STREAM performance

= Somehow the RDMA writes are causing massive interference




Possible Culprits ) &,

= Memory Controllers: how is RDMA traffic distributed across
different memory controllers?

= Subtle policies like open page row-buffer management

= Memory Channels: ganged vs unganged

= CPU processing from Onload NIC’s: some portion of packet
processing is handled by the CPU

= |n our experiments this was never more than 2% of a single core
= Other overlooked factors
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Further Evaluation )

= Need more results to draw meaningful conclusions

= 7 different CPU architectures
= Ranging from Westmere to Xeon Phi

= 3 variations of Infiniband Networks
* |Including onload and offload NICs

= 6 different memory frequencies

7 workloads of varying memory intensity
= STREAM, CNS, HPCCG, LAMMPS, Lulesh, SNAP, XSBench




Further Evaluation )

= Similar setup to the preliminary STREAM experiment

= All of our workloads for these experiments run on a single
node

= We don’t want to delay the application due to contention for network
resources

" |njecting the maximum possible amount of RDMA writes




STREAM results

= 6 out of 8 systems see degradation of STREAM bandwidth
= 4-56% reduction in sustainable bandwidth

= Most noticeable for systems with onload NIC's

= QOlder offload systems, where sustainable bandwidth is near

theoretical see a reduction proportionate to the volume of RDMA

writes

TABLE II: STREAM Triad Bandwidth with and without RDMA-NiMC
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[ machine | Triad no RDMA (GB/s) |

Triad + ROMA (GB/s) |

dift. (GB/s) || dilt. %

Westmere @ 800 MHz, 1066 MHz, respectively | 12.9, 16.8 97, 12.8 3.2, 4.0 ~25%, -24%,
Lisbon @ 8§00 MHz, 1066 MHz, 1333 MHz, respectively | 140, 17.9, 197 10.8, 143, 16.5 32, 3.6, 32 -235%, -20%, -16%

Piledriver-1600 | 124 74 5 -60%

Piledriver-1866 | 12.7 56 7.1 -44%
Sandy Bridge-X2-FDR-offload | 77.8 77.6 -0.2 0%

Sandy Bridge-X2-onload | 73.4 36.1 373 51%
Xeon-Phi (on-chip bandwidth) 126.4 121.7 47 A%,
Haswell-X2 | 116.6 1169 03 0%
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Small Scale Results (Sandy-Onload) @&

Why is LAMMPS
more impacted than
STREAM?

NiMC single node slowdown

= i i o=
= o =] =]
T T T T

Mormalized increase to runtime
=
FJ

What about CNS?

-
o

-a‘?“"‘"ﬁh

N
‘cﬁ“{'
S

W © i NS
C \JE'{’ \P“h‘h \}}\ 6\& 1‘%

Fig. 3: Normalized impact of NiMC on single node runs.
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Diving in with OpenSpeedShop ) .
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Fig. 4: Comparing performance counters for single node runs of benchmarks and proxy-apps with and without NiMC.
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Evidence of Cache Pollution ) e,

= |n the absence of RDMA writes
= No real correlation between stalled cycles and any of the cache misses
= No real correlation between stalled cycles and runtime

= Addin RDMA writes

= Strong correlation between Stalled Cycles and misses throughout the
cache hierarchy

= Correlation between runtime and L1 Misses becomes larger

TABLE IV: Performance Monitoring Counter Correlations
Across All Applications

| | Com Metric | Stalled Cycle | LI Miss | L2 Miss | L3 Miss |
Time 004 0.941 0046 | 00930
No RDMA | ¢\ lled Cycles N/A 0.086 0.030 0.068
— Time 0912 0.959 0.978 0.925
Stalled Cycles N/A 0.870 0.973 0.997
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Impact at Scale
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Solutions for NiMC )

= (Offload Network Cards

= Network Bandwidth Throttling

= Core Reservation




Solutions for NiMC )

Impact of NIMC on LAMMPS w. Offload (64-8k)
(SandyBridge-X2-FDR-offload)

Impact of MiIMC on LAMMPS w. Core Reserv. (64-8k)

Impact of NIMC on STREAM w. Core Reserv. (SandyBridge-X2-onload)
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Summary of Results ) .

= NiMC degraded performance on 75% of the evaluated
systems

= Up to 56% reduction of sustained memory bandwidth on single nodes

= 3X slowdown in LAMMPS running on an onload system with
8k processes

= Evaluated three possible solutions
= Offload NIC’s (for recent CPU’s)
= Network throttling

= Core reservation
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Architectures

TABLE I: Evaluated Architectures

| machine | nodes | kemel | CPU | cores | channels | DRAM | DRAM GB/s | Network |
Westmere®@ (800 MHz, 1066 MHz) 1 3.2.0 (Ubuntul2) Intel E5620 4 2 16GB 12.8, 17.1 QDR IB off
Lishon@(800 MHz, 1066 MHz, 1333 MHz) | 1 3136 (UN12) AMD 4170 HE | 6 3 6GB | 128,171,213 | QDR IB off
Piledriver-1600 70 2.6.32 (RHEL®) AMD AT0-5800K 4 2 16GB 25.6 QDR IB on
Piledriver-1866 2 2632 (RHELB) AMD A10-5800K 4 2 64GB 299 QDR 1B on
Sandy Bridge-X2-FDR-offload 6400 2.6.32 (Cent6.3) 23 Intel E5S-2680 8 b 64GB B5.3 FDR IB off
Sandy Bridge-X2-onload 1196 2.6.32 (RHEL6.2) 2w Intel ES-2670 8 4 64GB 102.4 QDR IB on
Xeon-Phi (on-chip bandwidth) | 49 2.6.38.8+mpss3.1.2 Xeon Phi 3120P 5 1 6GH 240 QDR IB off
Haswell-X2 33 3.14.23 (RHELG.5) Intel E5-2698 1 4 128GEB 136 FDR IB off




Number of Concurrent Writers

TABLE V: Number of concurrent RDMA writes
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Application Writes/s (Daly) Writes/s (Daly) Writes/s (0.2%)
node (rank) count QDE-onload FDR-offload
64 0 0 0
512 1 1 1
1024 2 2 2
2048 5 6 4
4096 15 17 8
8192 42 47 16




Workloads ) &




