

Exceptional service in the national interest

$$\begin{aligned} &= P\left(\frac{18.4 - 20}{5} < Z < \right. \\ &= P(-0.32 < Z < 1.20) \\ &= P(Z < 1.20) - P(Z \leq \\ &= 0.8849 - 0.3743 \\ &= 0.5106 \end{aligned}$$

Design and Analysis of Margin Testing at Sandia A Statistical Perspective

Justin Newcomer
Department of Statistical Sciences

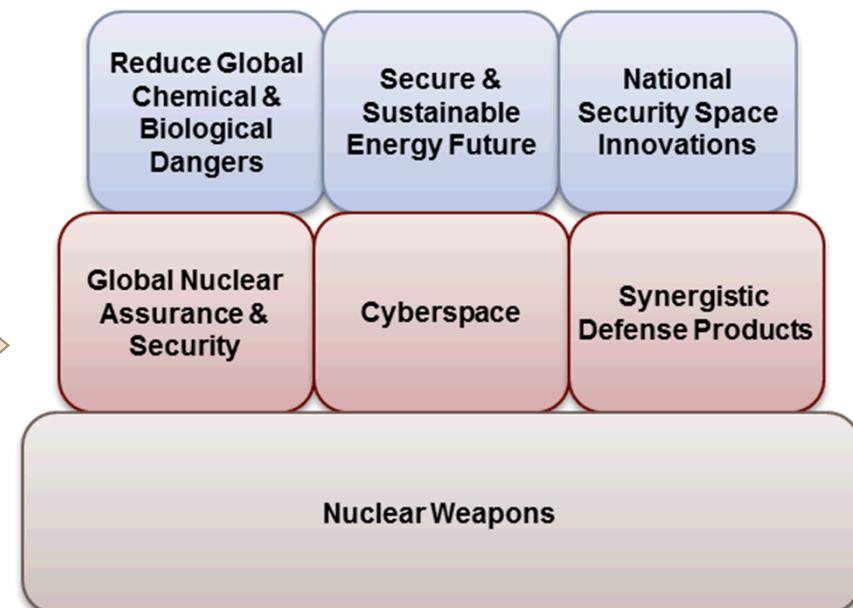
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

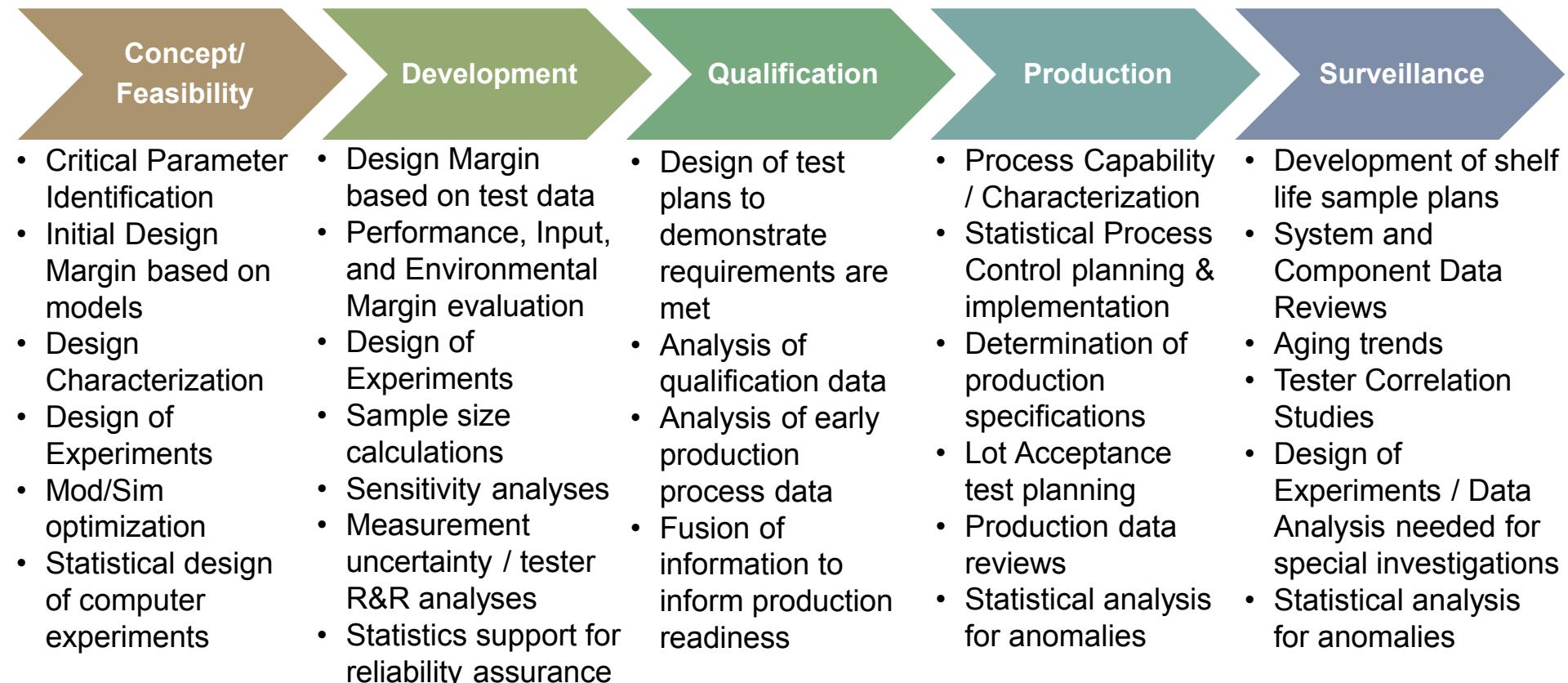
- Sandia Statistics Mission: Team with Sandia groups and projects to assist with statistical challenges
 - Promote optimization of Sandia product and process performance through application of statistical methods aimed at improving data collection, analysis, and communication of results
- Statistics is a foundational capability for a National Laboratory
 - There are many opportunities to advance the field of statistics, apply statistical methods more broadly in the engineering sciences, and team better to improve product quality
- The discipline of statistics has two main dependent focus areas:
 1. Making data make sense (planning and design of statistical studies)
 2. Making sense out of data (analysis of data and communication of results)
- Primary areas of statistical expertise provided by the group are:
 - Design of experiments, sampling and test plans, and sample size calculations
 - Statistical quality control
 - Statistical reliability and maintainability
 - Margin and uncertainty analyses
 - Measurement error, repeatability, and reproducibility plans and analysis
 - Bayesian Statistics
 - Probabilistic modeling and computer simulation
 - Spatial data analysis
 - Signal processing
 - Causal Inference
 - Statistical computing

Statistics Work at Sandia

- **Statistics is a foundational capability across all Sandia mission areas**
- **Customer interaction and teaming is critical to our success**
 - We work with our customers to:
 - Identify project objectives and requirements
 - Determine a technical approach based on the unique circumstances of the project
 - Perform the work based on a customized approach
 - Review the results and assist with communication
- **Current Staff**
 - 11 full-time statisticians (4 MS, 7 PhDs)
 - 2 year round MS level interns

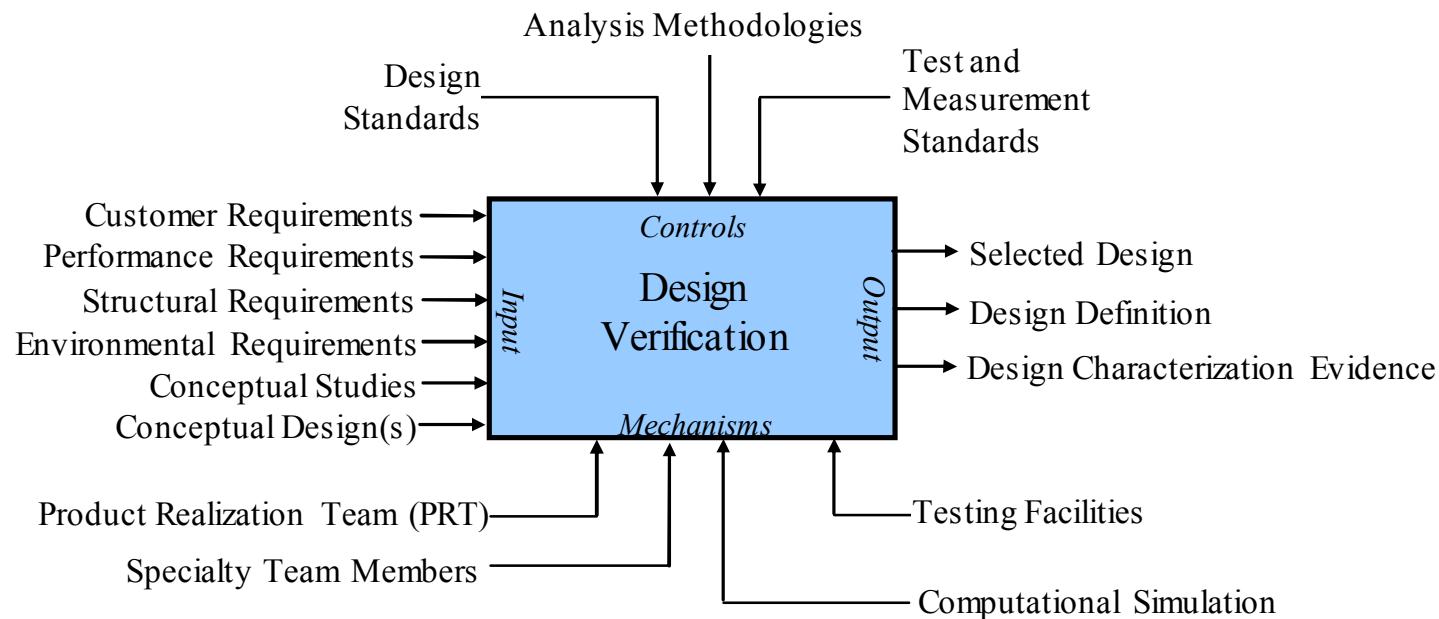
7 Mission Areas

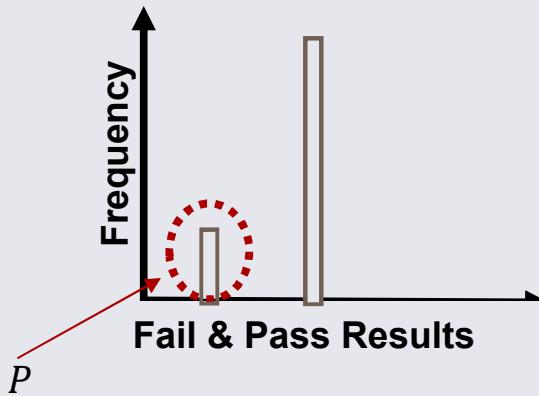




Multiple large scale development programs create a growing need for statistics support

- Qualification is a planned set of evaluation activities to assure design intent and customer requirements are met
- Key design attributes that must be evaluated are
 - Robustness: The design is such that there is a demonstrated significant performance margin between the product requirements and the product performance
 - Reliable: The design provides for an acceptable probability that the item will perform a required function under stated conditions for a stated period of time

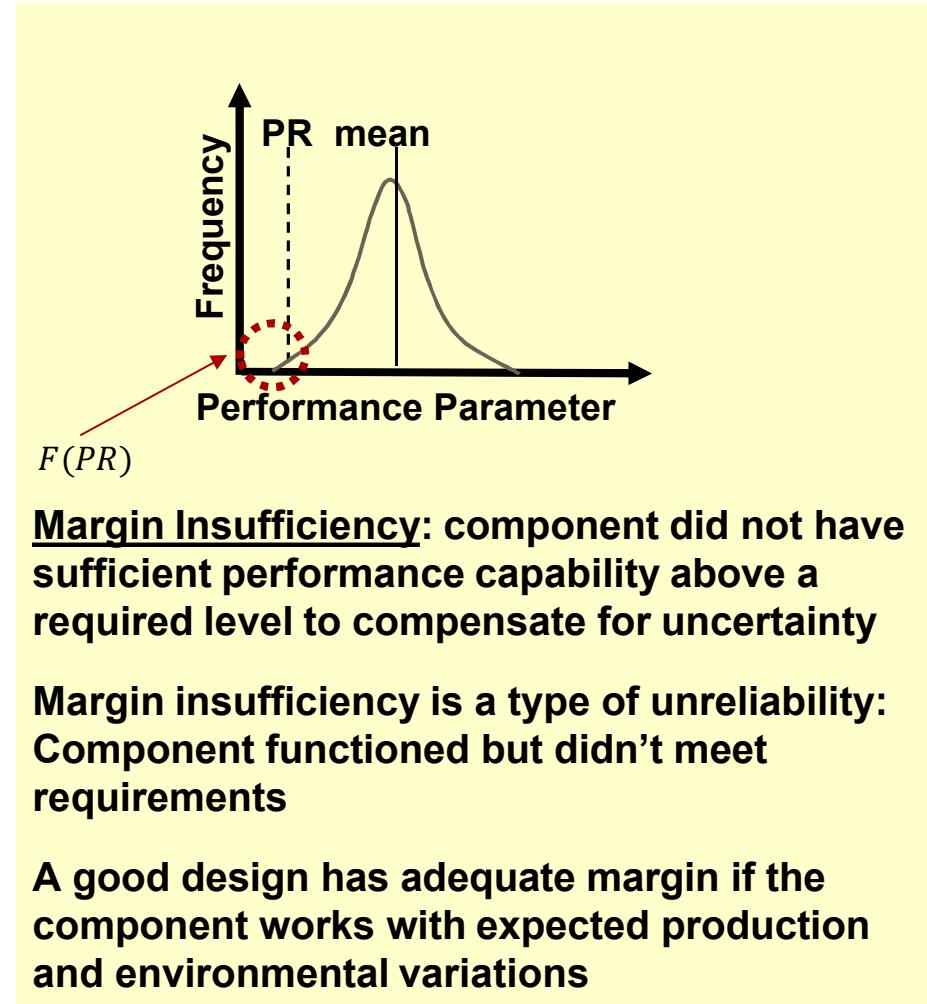




Quality defect – component did not meet design intent and is not capable of functioning properly in all design basis environments

Quality defect is a type of unreliability: Component did not function properly

Quality defects are often assembly errors, workmanship problems, mistakes, etc. caused by design or production problems



Component reliability

$$\begin{aligned} &= \text{Prob (no failure due to} \\ &\quad \text{quality defects)} & * & \text{Prob (no failure due to low margin,} \\ &\quad \text{given no quality defects)} \\ &= \{1 - P\} & * & \{1 - F(PR)\} \end{aligned}$$

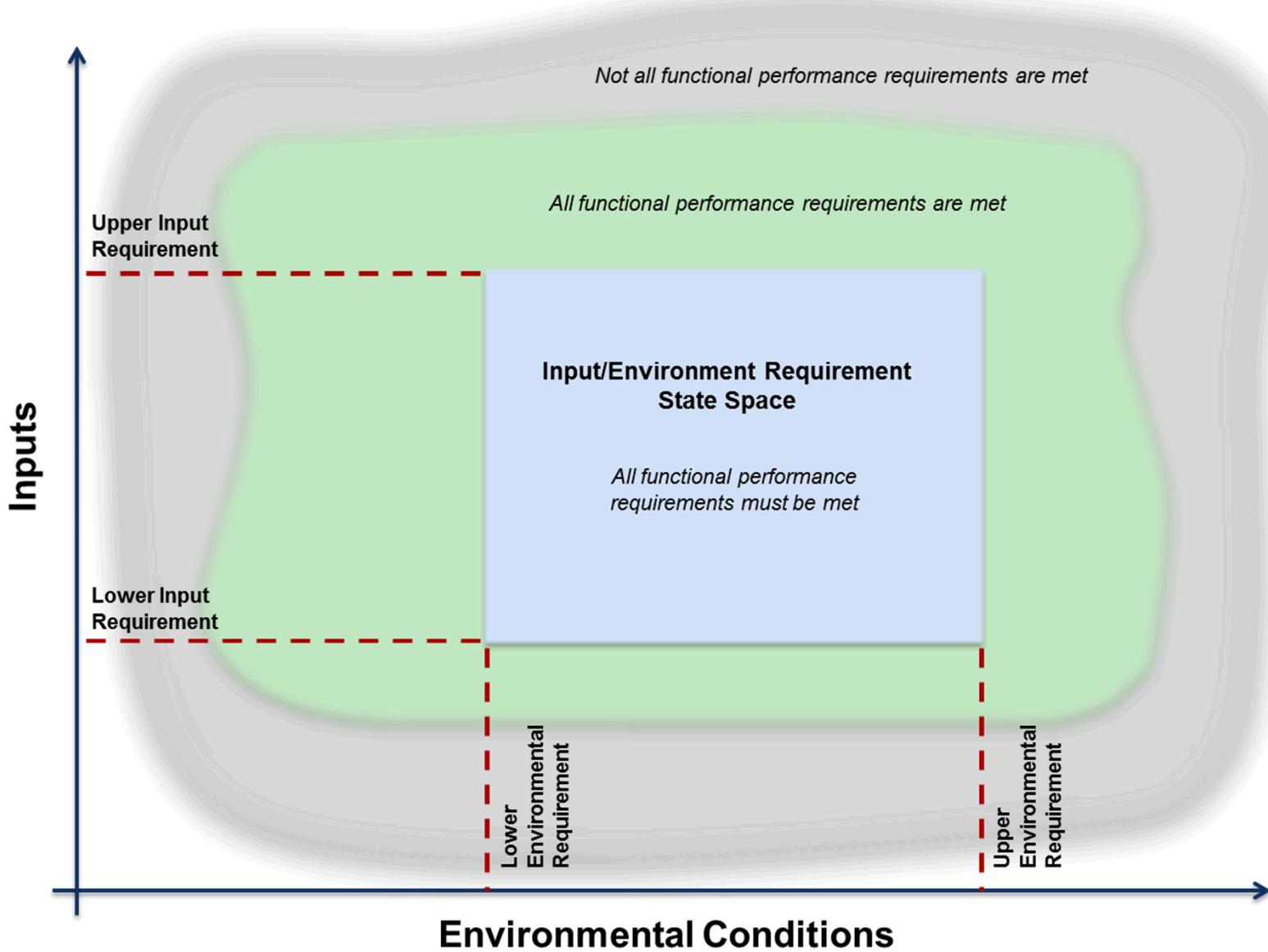
Always in model

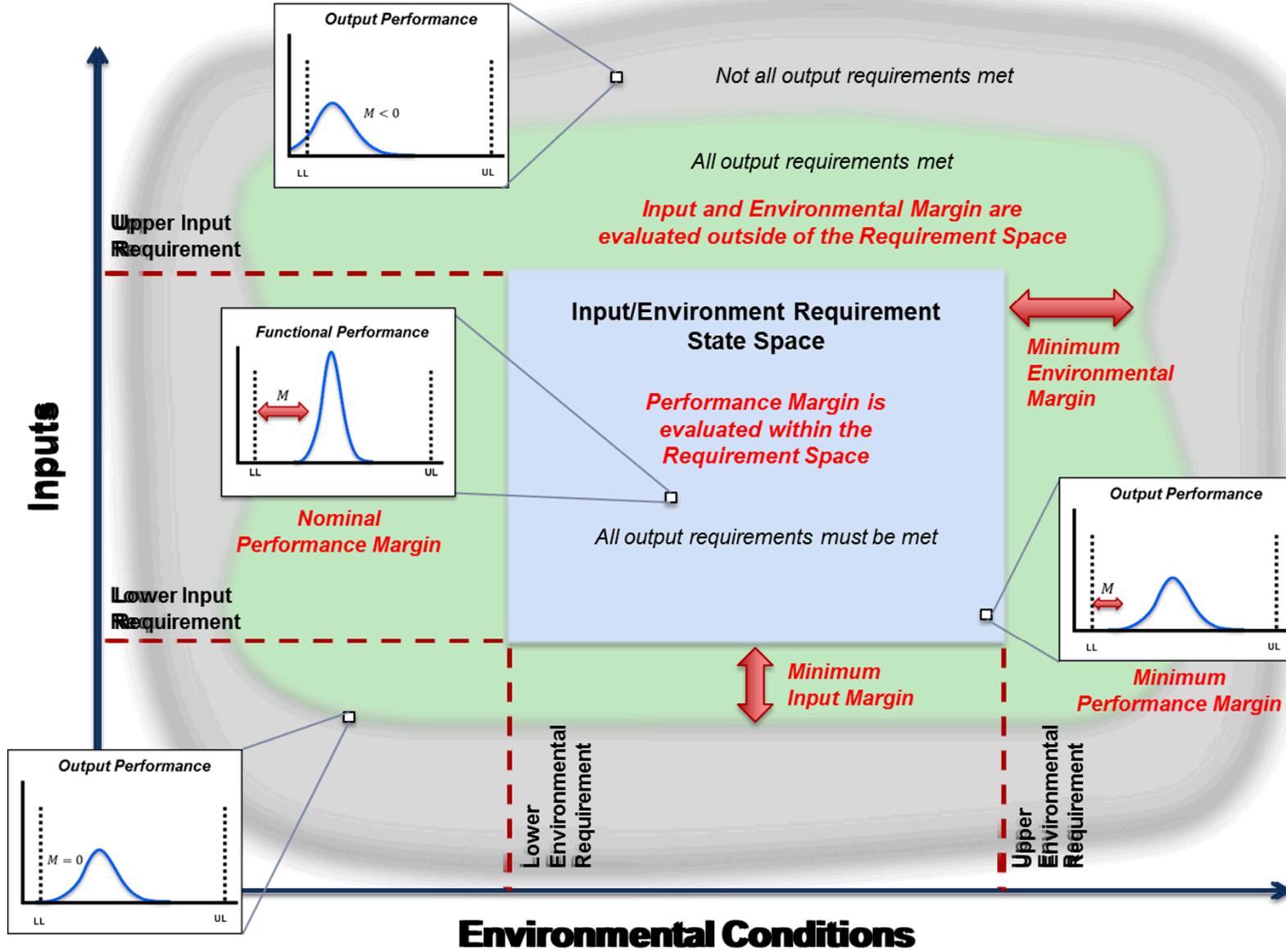
**Included in model
if needed**

**Margin studies identify and quantify
margin insufficiency terms**

Benefits of Margin Analysis

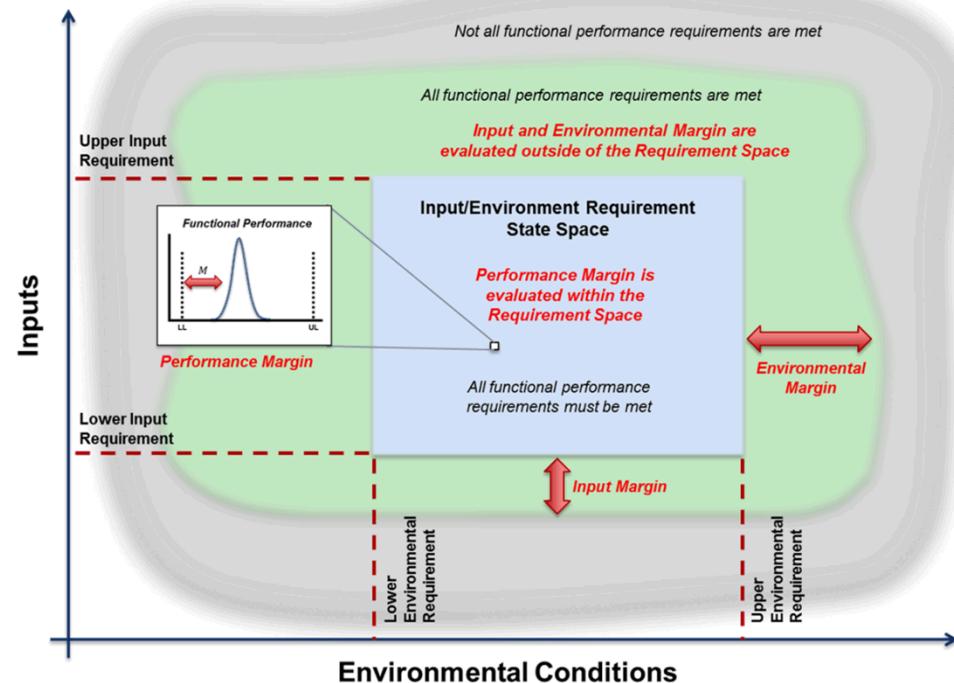
- Improved understanding of product
 - Performance impacts due to margin insufficiency
 - What behavior is expected (baseline)
 - Performance margin, stability over time
 - *Motivates in-depth review of failure mechanisms*
 - *Motivates thinking about what data may be needed*
- Improved understanding of test programs
 - *Motivates in-depth review of tester, analysis, and monitoring points and their impact on data*
 - *Motivates thinking about what data may be available*
- Improved opportunity to detect defects
 - Margin analyses allow for detection of trends before they affect performance



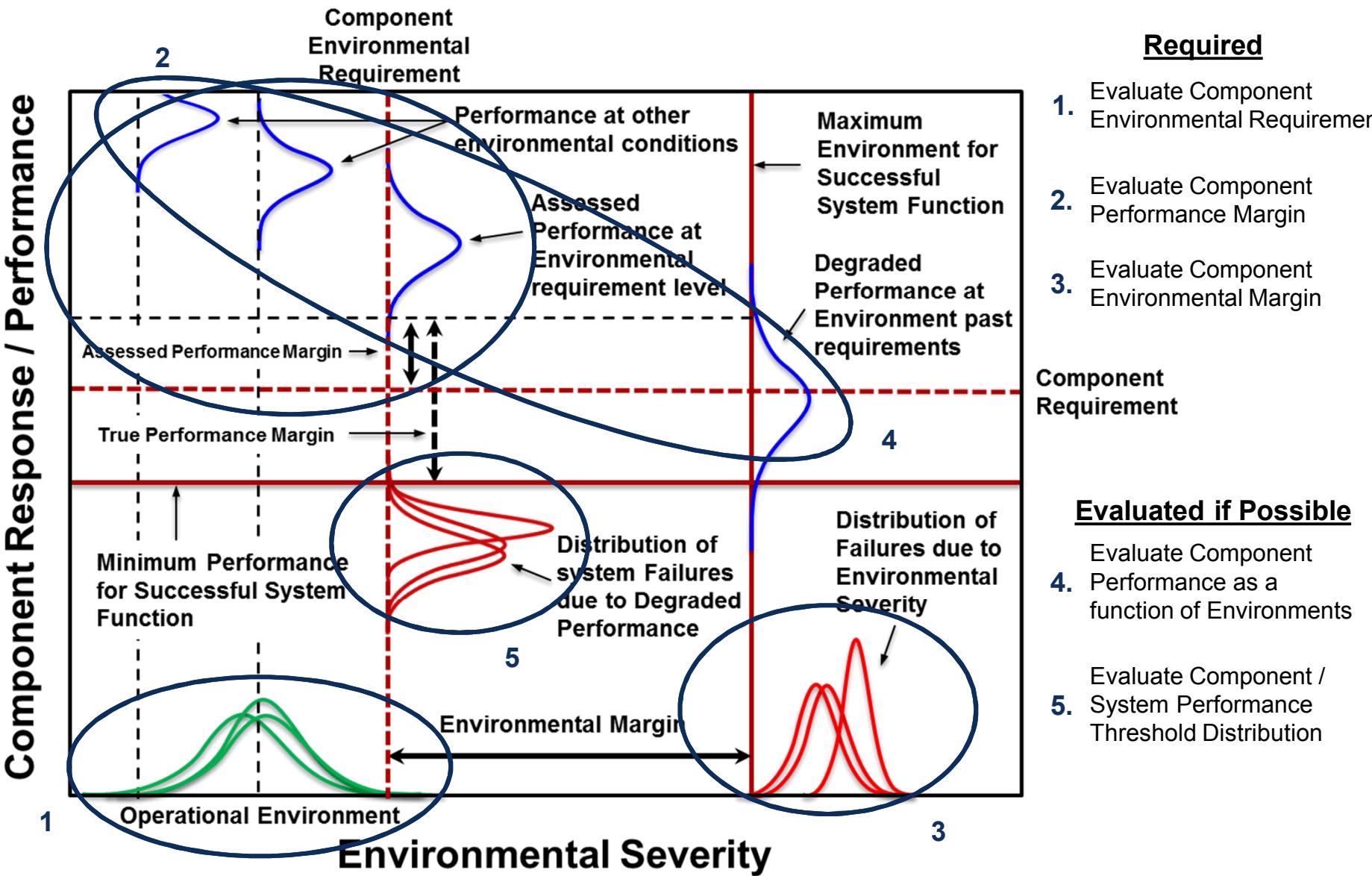


Challenges for Qualification

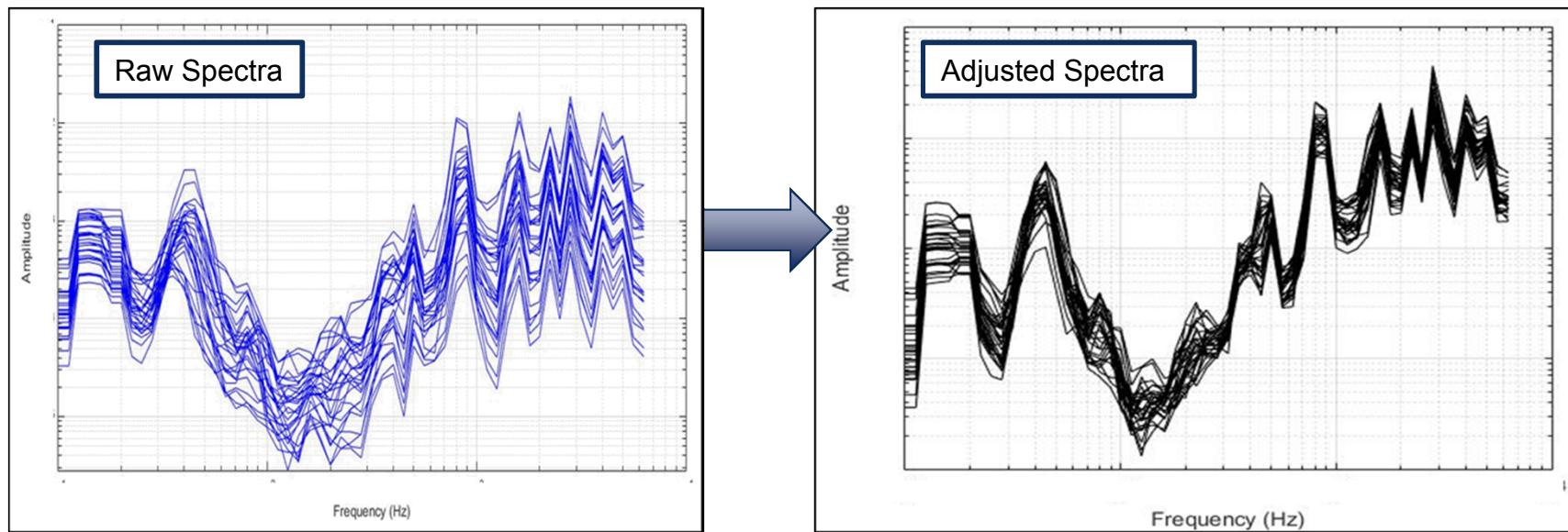
- Statistical Challenges:
 - How / where to test across this multi-dimensional space
 - Balance between testing inside and beyond the requirements space
 - How to evaluate performance at each test point in the space
 - Balance between binary (pass/fail) and continuous performance data
 - Inputs and Environmental severity may not be scalar
- Additional Considerations:
 - Worst case environments and inputs may be unknown
 - Computational models and engineering judgment is often leveraged to inform assumptions
 - Test facilities may not be capable of achieving all points in the requirements space (or too far beyond the requirement space)
 - Often results in censored data
 - Challenges are exacerbated when resources (both assets and test time) are limited



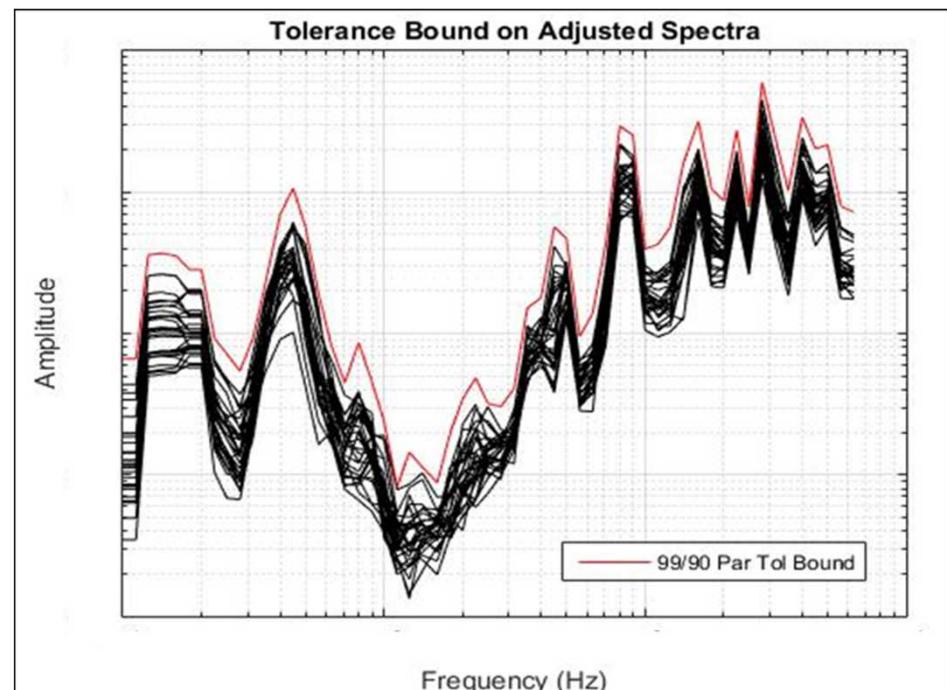
Evaluating Margin

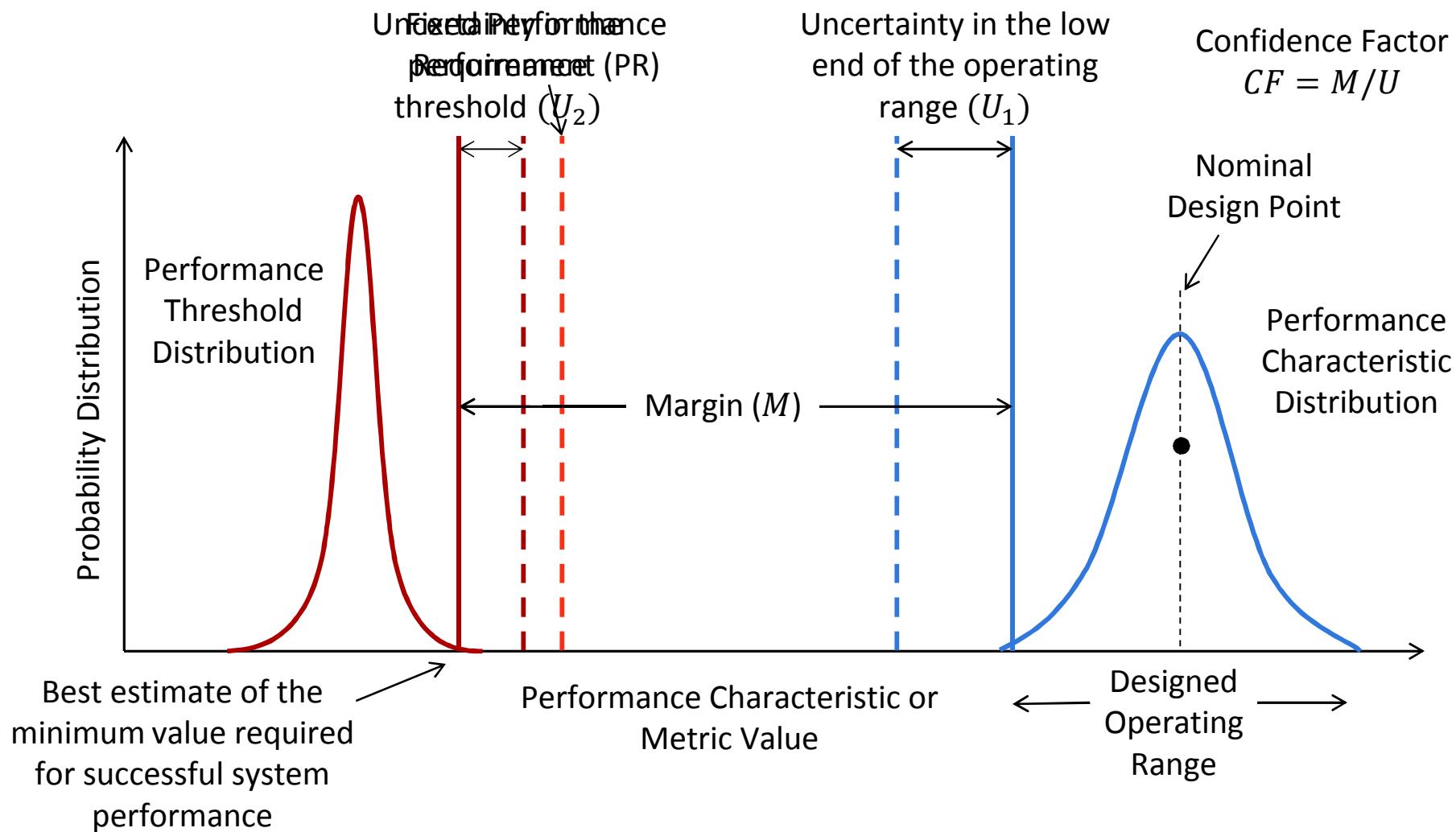


- A key part of system development and qualification is the characterization of the environments associated with system deployment
 - We have developed methods to construct tolerance bounds for the Acceleration Spectral Density (ASD), which is a measure of the vibration environment
 - There is a large predictable effect of dynamic pressure (Q), therefore the ensemble of ASDs are normalized to a target value of Q – which can then be used to construct an upper tolerance bound for the targeted conditions

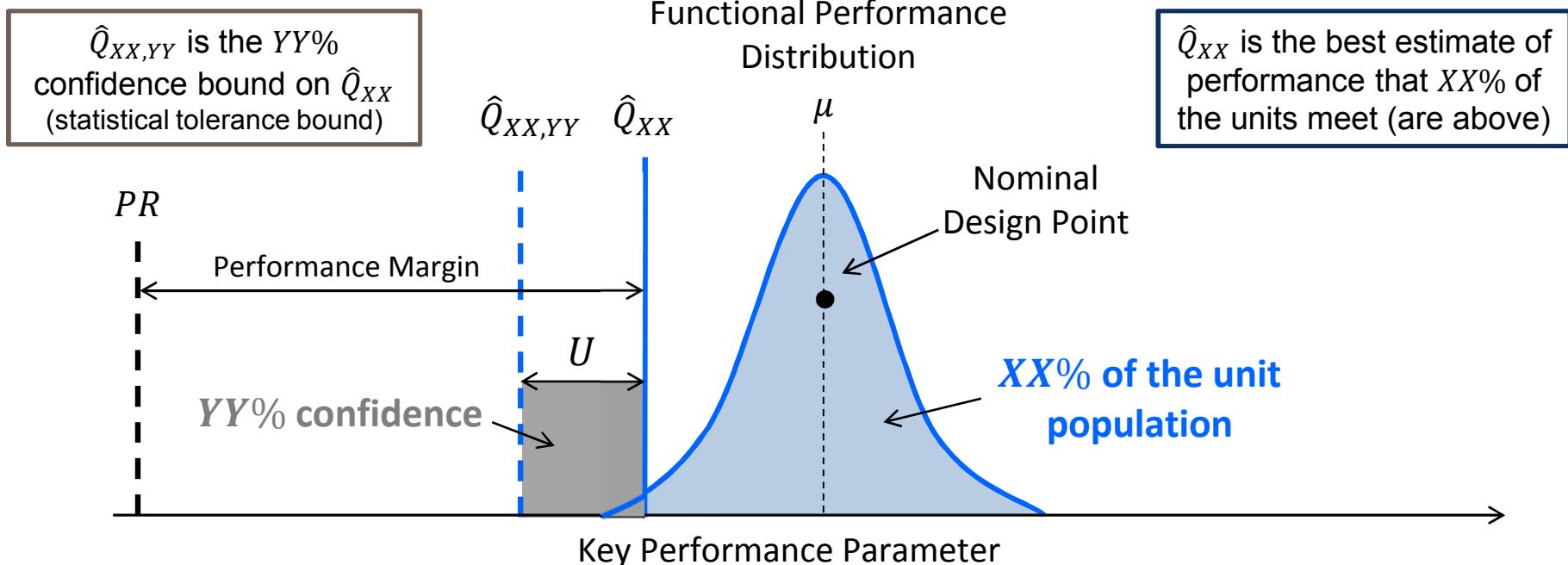


- The method used to derive the tolerance bound relies on a “parametric bootstrap” variant of the general bootstrap procedure
- It is assumed that an appropriate basis set has been determined such that p latent variables are sufficient to adequately represent the spectral variation
 - This method is based on a principal-components decomposition of an appropriate set of spectra where we project the log-transformed high-dimensional spectral data onto a smaller dimensional orthogonal space (defined by latent variables) which facilitates analysis.
- At each of B iterations, plausible values for the true (unknown) parameters of assumed normal distributions (σ_k and μ_k) are simulated
 - The $(1-\alpha)$ percentile for the i^{th} bootstrap iteration is
$$P_{boot}^i(j) = \bar{Y}_{boot}^i(j) + z_{1-\alpha} \cdot S_{boot}^i(j),$$
 - \bar{Y}_{boot}^i and S_{boot}^i are functions of the simulated σ_k and μ_k
 - The γ -percentile of the values within $\{P_{boot}^i(j)\}_{i=1:B}$ is the γ -level upper confidence bound for the $(1-\alpha)$ percentile of the j^{th} spectral channel.



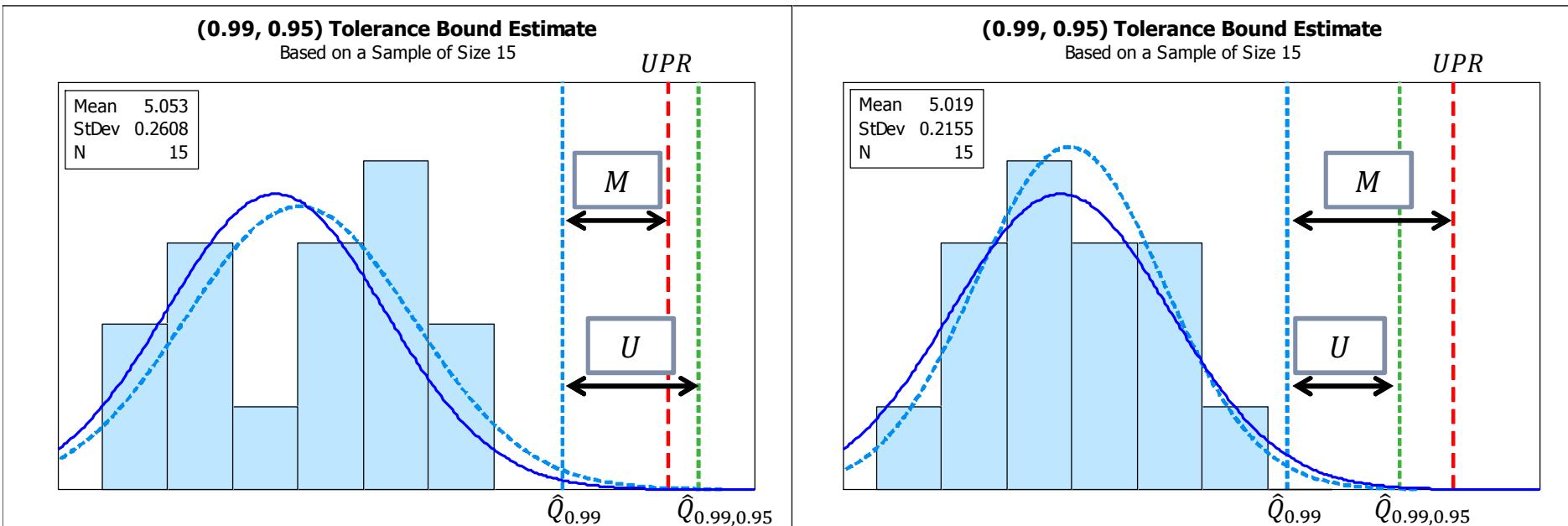


- Are we $YY\%$ confident that **at-least $XX\%$** of the unit population will yield a response **greater than** the performance requirement PR ?



- Statistical Challenges:
 - Estimation of a parametric distribution requires unverifiable assumptions
 - Traditional goodness-of-fit tests are inadequate
 - Quantile estimates require extrapolation outside of observable data

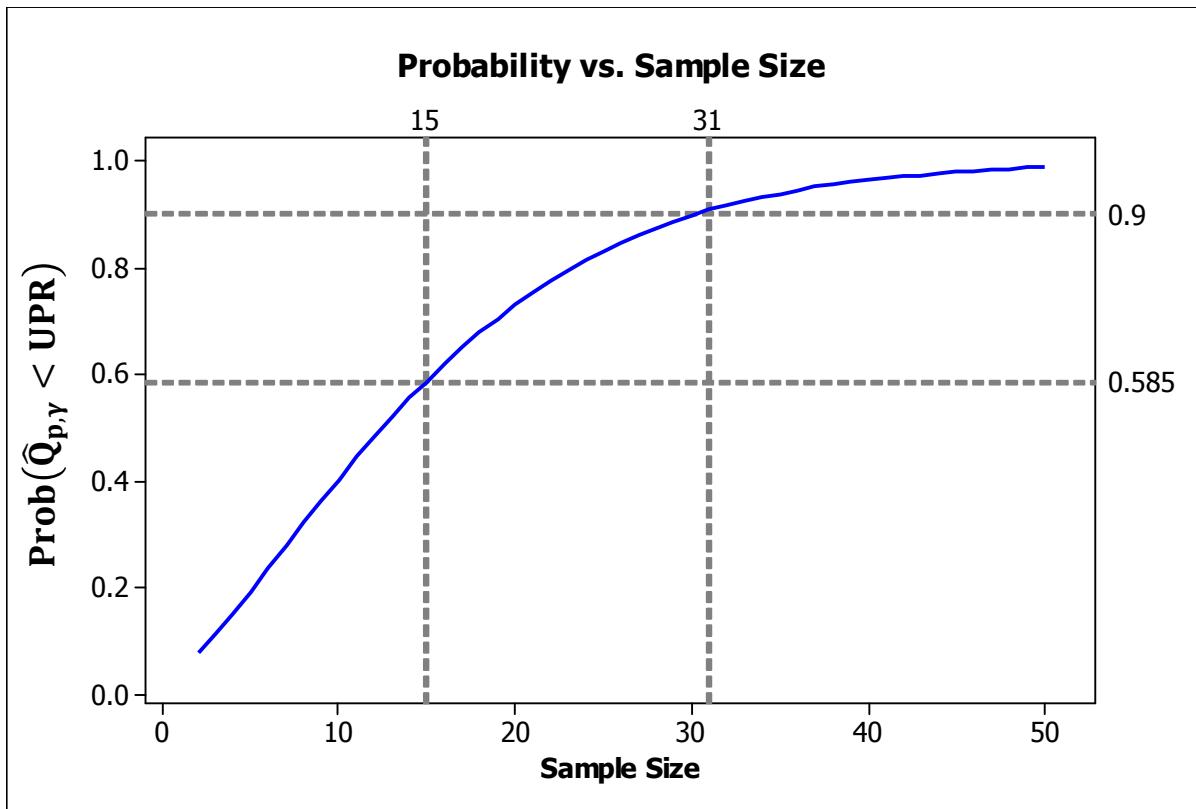
- How many samples do I need to **demonstrate** the performance characteristic has sufficient margin to requirements with a high probability, provided the true underlying distribution has positive margin?
 - Smaller sample sizes create more risk of not being able to make high confidence statements



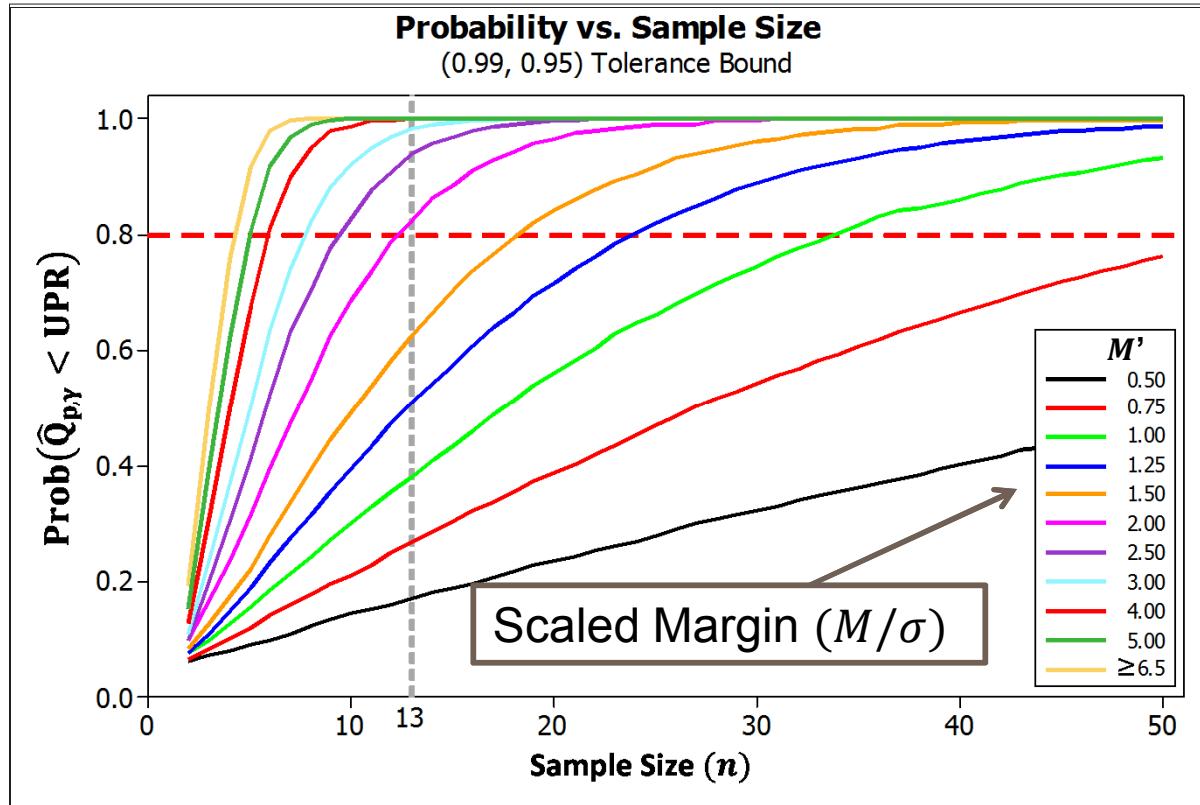
Choose a Sample Size that Provides Acceptable Risk

- “How many samples do I need to **demonstrate** the performance characteristic has sufficient margin to requirements with a high probability, provided the true underlying distribution has positive margin?”
 - Mathematically, we want $Prob(\hat{Q}_{p,\gamma} < UPR) \geq \beta$

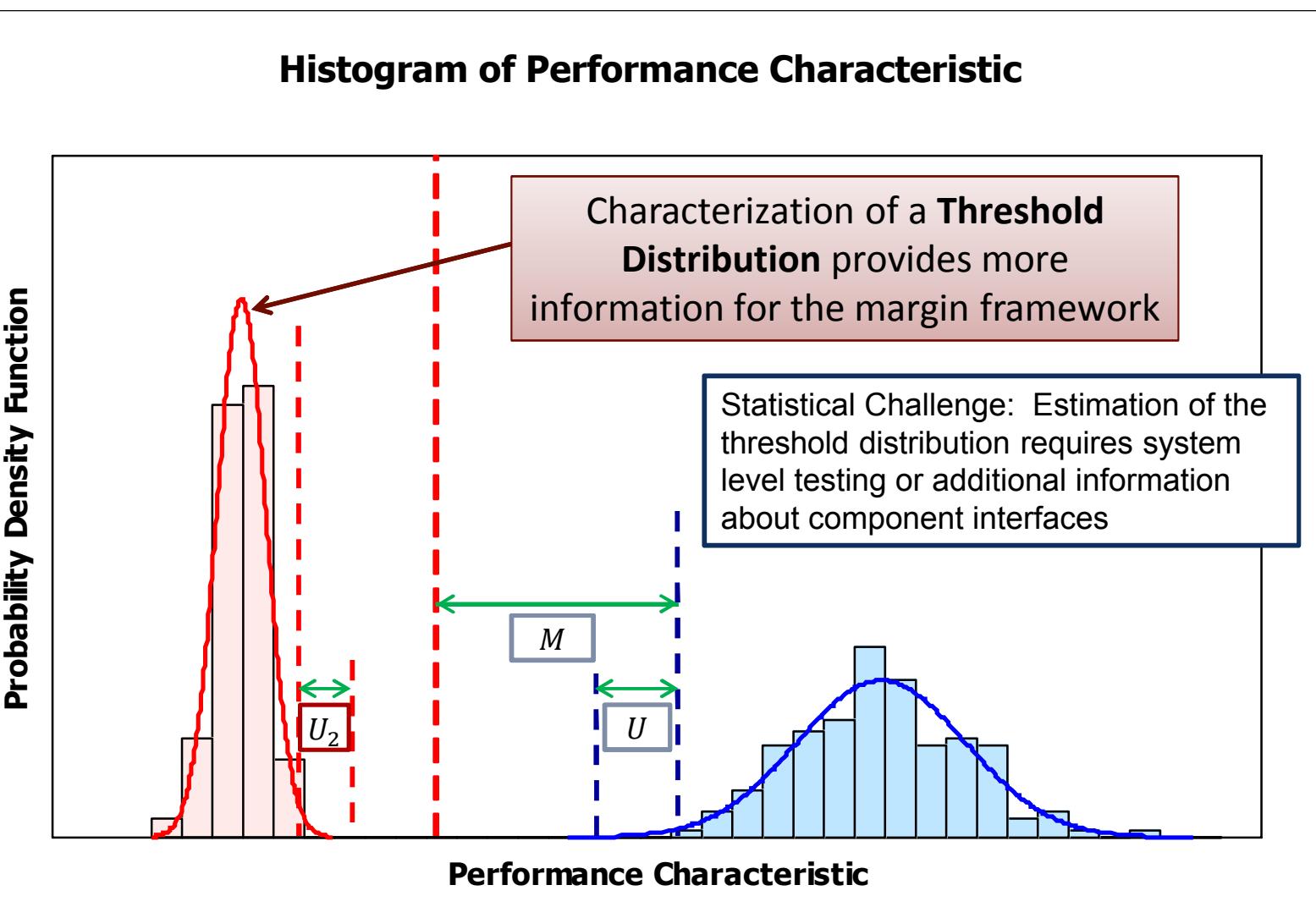
Set to achieve a
tolerable level of risk



- Curves are generated via Monte Carlo Simulation
- Repeat steps below S times
 - Sampling Step: Draw a sample of size n from the distribution $f(x)$ that has a margin = M
 - Estimation Step: Estimate a (p, γ) upper tolerance bound $\hat{Q}_{p,\gamma}$
 - Comparison Step: Compare the estimated upper tolerance $\hat{Q}_{p,\gamma}$ to UPR and record if $\hat{Q}_{p,\gamma} < UPR$ (i.e. let $y_i = 1$ if $\hat{Q}_{p,\gamma} < UPR$ and $y_i = 0$ otherwise)
- Estimate the probability of $\hat{Q}_{p,\gamma}$ not exceeding UPR by
 - $Prob(\hat{Q}_{p,\gamma} < UPR) = (\# \text{ of times } \hat{Q}_{p,\gamma} < UPR) / S = \sum_{i=1}^S y_i / S$
- Recommend smallest sample size that achieves**
 $Prob(\hat{Q}_{p,\gamma} < UPR) \geq 0.80$

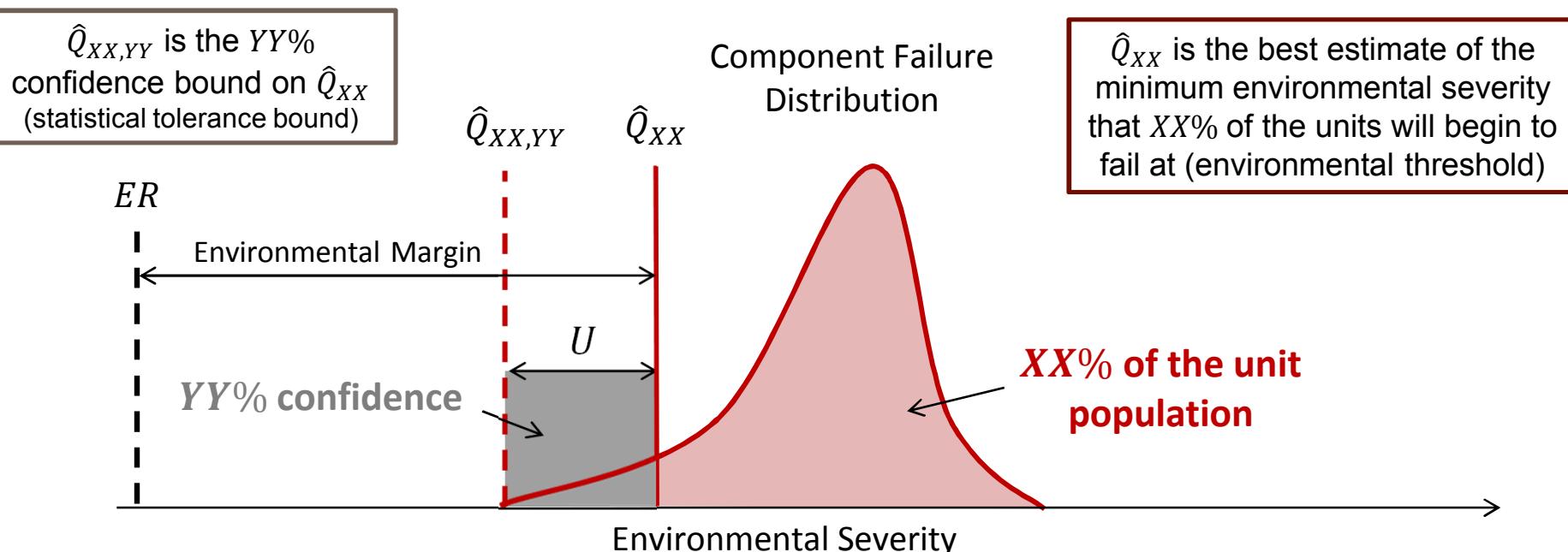


$p = 0.99, \gamma = 0.95$			
M'	Minimum sample size for $Prob(\hat{Q}_{p,\gamma} < UPR) \geq 0.80$	M'	Minimum sample size for $Prob(\hat{Q}_{p,\gamma} < UPR) \geq 0.80$
0.5	110	2.5	10
0.75	55	3.0	8
1.0	34	3.5	7
1.25	24	4.0	6
1.5	19	5.0	5
2.0	13	≥ 6.5	4



Graphical Depiction of a Margin Analysis with Overlapping Distributions

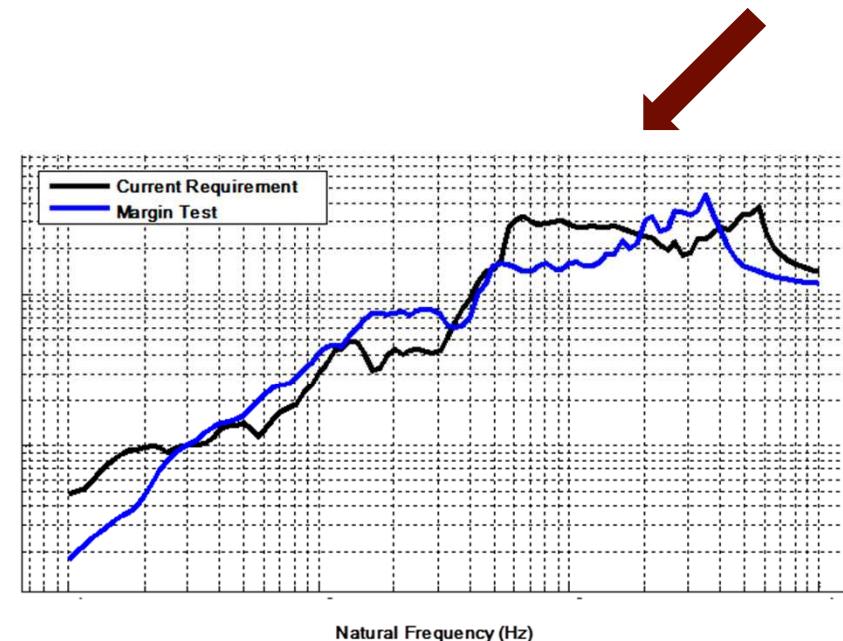
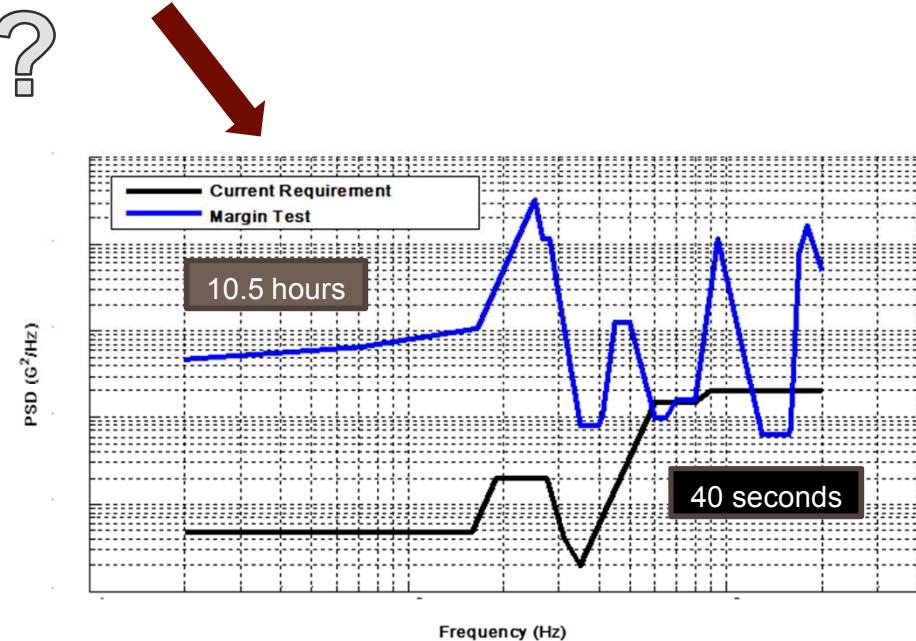
- Are we $YY\%$ confident that **at-least $XX\%$** of the unit population failures will be in an environment **more severe than** the maximum required environment ER ?



- Statistical Challenges:
 - Estimation of the component failure distribution with limited binary data
 - Highly robust components often lead to multiple censored observation
 - Environmental severity is often a functional variable

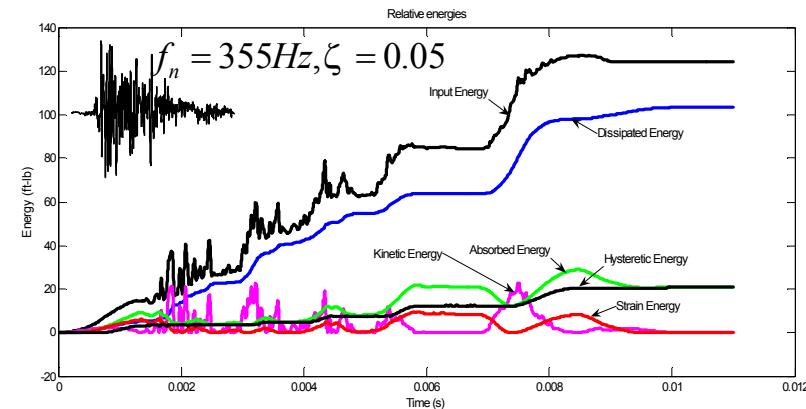
- Many common tasks rely on assessment of environmental severity
 - Existing tools struggle to answer the question in a meaningful way.
 - New tools are needed to provide a rigorous answer

Which test is more severe?



Energy Analysis – Mechanical Environments

- Most important characteristics of energy-based analysis:
 - **Scalar margin estimates**
 - Closely related to accepted material failure criteria
 - Accounts for multiple exposures and duration
 - Can be used to generate scalar estimates of margin for complex spectra
 - Can characterize failures of different types
 - Peak strain energy → first passage type failures
 - Total energy → fatigue type failures
 - Kinetic energy → electrical contact intermittency
 - Hysteretic energy → plastic failure



Total Input Energy

$$E_I^R = - \int \{\dot{z}\}^T [M] \{\ddot{x}_g\} dt$$

Dissipated Energy

$$E_D = \int \{\dot{z}\}^T [C] \{\dot{z}\} dt$$

Absorbed Energy

$$E_A = \int \{\dot{z}\}^T \{f_s\} dt$$

Kinetic Energy

$$E_K^R = \frac{1}{2} \{\dot{z}\}^T [M] \{\dot{z}\}$$

Strain Energy

$$E_\epsilon = \int \{\dot{z}\}^T [K] \{z\} dt$$

Energy balance:

$$E_K + E_D + E_A = E_I$$

Energy metrics have quickly become an indispensable tool for environmental margin analyses

- Evaluating component margins is a key task for system qualification
 - Performance, Input, and Environmental margins all must be evaluated
 - There are many statistical challenges in assessing these margins
- The statistical sciences group at Sandia is leading the development and evaluation of novel statistical approaches to the design and analysis of margin testing
- References
 1. J.T. Newcomer and K.E. Freeland, *A Margin Based Approach to Determining Sample Sizes via Tolerance Bounds*, SAND2013-8168, September 2013.
 2. J.T. Newcomer, B.M. Rutherford, E.V. Thomas, R.L. Bierbaum, L.M. Hickman, J.W. Lane, S Fitchett, A Urbina, A.A. Robertson, and L.P. Swiler, *Handbook of Statistical Methodologies for QMU*, SAND2012-9603, November 2012.
 3. J.T. Newcomer, *A New Approach to QMU for Physical Simulation Data*, SAND2012-7912, Sandia National Laboratories, Albuquerque, NM, September 2012.