

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

DOE/Sandia National Labs Energy Storage Program

Daniel Borneo, P.E.
Sandia National Laboratories

NAATBatt
Member Update
February, 2015

Energy Storage (ES) Demonstration & Analysis

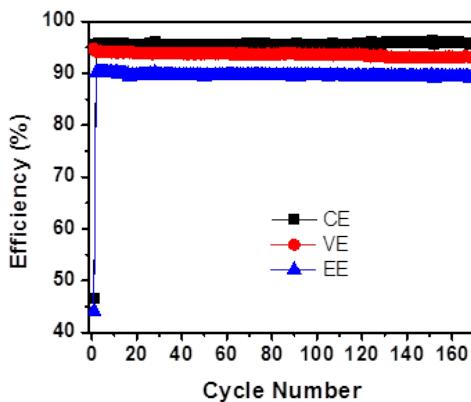
Presentation Outline

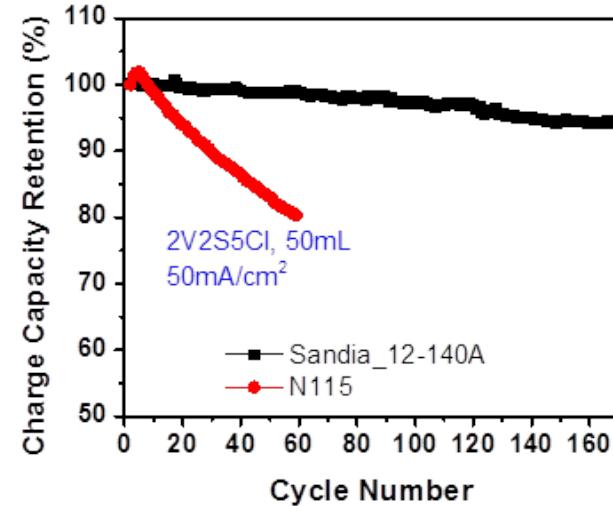
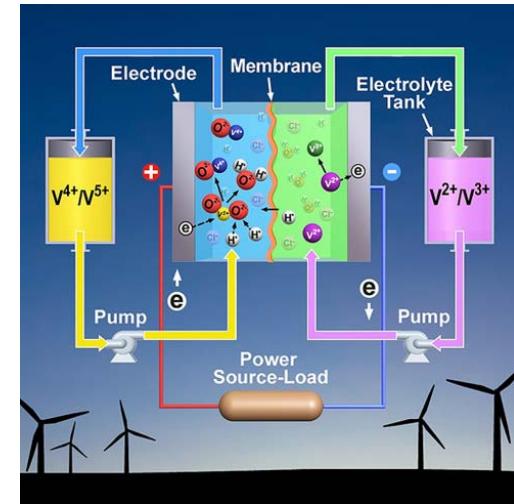
- **Project Overview**
 - Mission Statement
 - Approach
- **Current Projects**
 - Geographical Location of Projects
 - Summary Chart of Projects
- **Path Forward - Next Steps**
 - Demonstration and Analysis
 - Commissioning
 - Safety & Reliability

Mission Statement:

Encourage investment in Energy Storage (ES) by:

- Developing new ES technologies
- Developing new materials for ES devices
- Power electronics research and development
- Evaluation, analysis, and optimization of ESSS
- Conducting field demonstrations of new and existing technologies in various applications
- Commissioning support and operational evaluation
- Developing codes, standards and regulation
- Outreach

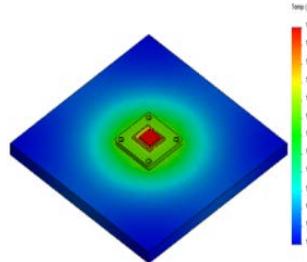

Advanced Membranes for VRFB



- VRFB are being explored by DOE and industry for large scale energy storage
- Several companies looking to commercialize the technology

- Sandia is developing a low cost membrane separator that has been shown to have high efficiencies and able to maintain high charge capacity over 160 cycles (4 months of testing) while Nafion loses 80% of capacity after 60 cycles

Columbic efficiency 95%
Voltage efficiency 94%
Energy efficiency 90%

Energy Storage Power Electronics Program, SNL



Using wide bandgap semiconductor devices, advanced topologies, and controls to reduce installed cost and footprint, improve control capability, and increase reliability

Arkansas Power Electronics International
15kV Discrete SiC Package

$P_{dis} = 200 \text{ W}$, Max Temperature = 166 ° C

Recognition

- Four R&D100 Awards
- Three U.S. Patents, three pending
- Over 40 technical publications
- Stan Atcitty received Presidential Early Career Award for Scientists and Engineers
- Power Electronics for Renewable & Distributed Energy Systems book

FY15 Accomplishments

- Developed World's first high voltage (15kV at 100 amps, 200C) SiC multichip module
- Developed world's first normally-off 6.5 kV SiC Junction Field Effect Transistor (JFET) high voltage module
- Developed route for direct fabrication of advanced transformer cores for > 20 kHz high frequency converters

FY15-16 Plans

- Transition the SiC high voltage module into a manufactured product and commercialize
- Demonstrate continuous operation of the 6.5kV JFET module at 20 kHz, 60A, 200C for next generation ESS
- Optimize synthesis and fabrication of advanced transformer cores to maximize performance of high frequency DC-link converters

The Energy Storage Systems Analysis Laboratory (ESSAL)

Providing reliable, independent, third party analysis and verification of advanced energy technologies for cell to MW systems

Cells and Modules

72V 1000A Bitrode (2 Channels)

Cell, Battery and Module Analysis

- 14 channels from 36 V, 25 A to 72 V, 1000 A for battery to module performance analysis
- Over 125 channels; 0 V to 10 V, 3 A to 100+ A for cell performance analysis
- Potentiostat/galvanostats for spectral impedance
- Multimeters, shunts and power supply for high precision testing
- Temperature chambers

Fully Integrated Systems Lab Analysis

Energy Storage Test Pad (ESTP)

- Scalable from 5 KW to 1 MW, 480 VAC, 3 phase
- 1 MW/1 MVAR load bank for either parallel microgrid, or series UPS operations
- Subcycle metering in feeder breakers for system identification and transient analysis
- Thermal imaging
- System Safety Analysis (new)

Field Analysis (new)

Remote Data Acquisition System (RDAS)

- Portable, Modular, Remotely Reconfigurable, and outdoor-ready
- Subcycle metering
- Tractable calibration
- Command Signal Ready for Grid Operator Simulation
- No control over grid conditions

ES Demonstration & Analysis Project Overview

Approach

- Work with National and International entities including DOD, State Energy offices, Utilities, ES Industry, Universities and Consumers to:
 - Provide **third party independent analysis and evaluation** for cells and systems
 - Support **grid-tied field demonstration** projects to monitor and analyze new and existing ES technologies in differing applications
 - Support State renewable/resiliency/ES initiatives
 - Develop public information programs

DOE Global Energy Storage Database

www.energystorageexchange.org

The screenshot shows the homepage of the DOE Global Energy Storage Database. At the top, there is a navigation bar with links for 'HOME', 'PROJECTS', 'POLICIES', and a 'SEARCH' bar. Below the navigation is a world map with numerous yellow markers indicating the location of energy storage projects. The map is divided into major oceans and continents. At the bottom of the page, there is a 'Database Results' section displaying a list of featured projects. Each project entry includes a thumbnail image, the project name, technology type, power rating, duration, status, and a 'Description' link. The featured projects listed are: Beacon Power 20 MW Flywheel Frequency Regulator Plant, Princeton, New Jersey, United States; Beacon Energy VRS-2500 - Grid Onsite, Orinda, California, United States; Beacon Wind Farm, Lanai, Hawaii, United States; San Joaquin Pumped Storage Station, San Joaquin River National Forest, Warm Springs, Virginia, United States; Hawaii Wind Project, Maui, Hawaii, United States; and Tres Amigas, Coahuila, Mexico, United States.

Help grow ES industry - providing data allowing analysis by a variety of users

Live Since June 2012

- 1,206 Projects
- 21 Policies
- Users in 189 countries
- 60+ data fields
- 50+ energy storage technologies
- Data Visualization

For more information, visit the website at:
www.sandia.gov/batterytesting

The 2015 Winter Call:

The call will be issued in February 2015

To receive notification when announced:

Sign up for RSS feed on the ESS Program website

http://www.sandia.gov/ess/events_news.html

The database is always open for [FAST-Track Proposals](#).

Contact: Summer Ferreira

srferre@sandia.gov

or David Rosewater

dmrose@sandia.gov

Advanced Energy Storage Device Testing

Reliable independent evaluation of energy storage solutions.

Acknowledgements

DOE's **Office of Electricity** and Dr. Imre Gyuk for the confidence in me and my team, and continuing funding Sandia and the Energy Storage Demonstration Project.

Thank You Questions?

Contact Information:

Dan Borneo - drborne@sandia.gov

Power Electronics

- Advanced Magnetics for high frequency power conversion system for energy storage - focus high density power electronic designs
- Advanced power semiconductor device development to significantly increase performance (efficiency and reliability) of PCS for energy storage
- Advanced capacitor development in increase power density of PCS for energy storage applications.
- Wide band gap device reliability characterization and optimization.