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Motivation

e Acquisition of Trinity (NNSA’s ATS-1) by ACES ( SNL & LANL

Partnership)
— >9000 nodes with Intel Haswell; SIMD unit:AVX2

— > 9000 nodes of Intel Knights Landing (KNL); SIMD unit AVX-
512F(AVX3.1)

— Study vectorization to realize performance potential on Trinity

e Evaluate Cray, Intel and GNU compilers ( auto-vectorization)
— Study TSVC benchmark
— Study LCALS benchmark

* |nvestigate approaches with real SNL SIERRA Mechanics

kernels (auto-vectorization, use of prgama and Intrinsics)
— Impact of data layout

— Compiler auto-vectorization limitations and effective usage

— Design and performance of a specially developed SIMD library
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“;"ACES (Sandia, LANL Partnership) new
Advanced Technology System: Trinity
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%’ SIMD Processor Performance Trends

(from Eric Welch & James Evans; Multiple Processor Systems, 2013)
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86
computers. This figure assumes that two cores per chip for MIMD will be added every two years and the number of
operations for SIMD will double every four years.
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Vectorization Kernels from
SIERRA/SM (Solid Mechanics)

A general purpose massively parallel nonlinear solid mechanics

finite element code for explicit transient dynamics, implicit
transient dynamics and quasi-statics analysis

Built upon extensive material, element, contact and solver
libraries for analyzing challenging nonlinear mechanics
problems for normal, abnormal, and hostile environments

Similar to LSDyna or Abaqus commercial software systems
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¥ SIERRA Mechanics; need and

approaches

 Compiler Auto-Vectorization
— For simple loops, compilers auto-vectorizes;
. EXanlple:for (inti=0; i < N; ++i) {
\ a[i] = b[i] + c[i] * d[i];

* For “Complicated” loops compilers typically will not auto-
vectorize

* S|IERRA Solid Mechanics kernels have loops that are > 200
lines
— Tensor33 multiply (symmetric x asymmetric)
— Eigenvectors
— Constitutive law evaluations
* Use SIMD vector intrinsics (low level functions):
— Each intrinsic is equivalent to an assembly instruction
— SimdLib is designed for easy port to different architectures
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e

> SSE2/AVX intrinsics (Intel, AMD)

__m128d (2 doubles) __m256d (4 doubles)

Compute {1,2,3,4} + 2.1:

double x[4] ={1,2,3,4};

_m256d a=_m256_loadu_pd(x);
~m256d b =_m256_setl_pd(2.1);
__m256d ¢ =_m256_add_pd(a,b);
double result[4];
_m256_store_pd(result,c);
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y Platforms, Processors and compilers
used in this study

Platform Name Specification/CPU

Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU
E5-2695 v2 @
2.40GHz

Mutrino, Shephard Intel(R) Xeon(R) CPU
E5-2698 v3 @
2.30GHz

Corner, Morgan04 Intel(R) Xeon(R) Phi
CPU @ 1.238 GHz

Compiler Versions used:
Intel 15.0.2
GNU gcc 4.9.2
Cray compilers under Cray Programming environment 5.2.40
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A
V*Tsvc (Test Suite for Vectorizing Compilers)
Benchmark

* Originally developed by Callahan, et al (1988)
In Fortran

* Extended, and converted to C by Maleki, et al
* Atotal of 151 loops

* Chosen for this study as it provides a large
collection of basic loops that could be found in
scientific HPC codes

 Forms a good basis for basic compiler support
and capabilities
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A
> Method for Determining
“vectorization”

* Taken from Maleki paper

* Baseline measurement: No vectorization (e.g. —no-vec) but
include optimization (-O3)

* Vectorization enabled: Include vectorization (e.g. —mavx)
and optimization (-03)
* Speedup = (time w/o vectorization) / (time w/vectorization)
— Greater than 1.5 is a “vectorized”
— Less than 0.85 is “vectorized” but a slowdown
 Benchmarks were modified to ensure array alignment on
the appropriate SIMD width for the architecture
— 32 bytes (256 bits) for Ivy Bridge and Haswell
— 64 bytes (512 bits) for KNC
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TSVC Results

- lvy Bridge w/AVX Haswell w/AVX2

Intel GNU Intel Cray GNU Intel Cray

vectorized 111 61 99 101 63 91 102

speedup 103 58 96 96 59 88 93

slowdown 8 3 3 5 4 3 9

average

speedup 8.04 2.87 247 2.80 282 260 2.88

total time

(min) 177.82 21.41 17.15 16.53 17.29 14.45 13.56
//%‘V'A"/f)"z% 4/23/2015 Sandia Unclassified Unlimited Release 11 ,‘1 Eﬁ?ﬁ%ﬁﬁ




TSVC Results
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Haswell Only

TSVC
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KNC Only
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A 4
LCALS (Livermore Compiler Analysis Suite)

Benchmark

* Developed by Rich Hornung (LLNL)

* Represents loops and kernels taken and/or
derived from real codes

e Three variants

— “Raw”: C/C++ for-loop syntax -> used for this study
e Subset A: loops used in application codes
* Subset B: used to illustrate compiler optimization issues

e Subset C: extracted from Livermore Loops in C by Steve
Langer

— Other variants include OpenMP, functors and C++11
lambda functions -> NOT utilized for this study
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r
LCALS Results

- lvy Bridge w/AVX Haswell w/AVX2

Intel GNU Intel Cray GNU Intel Cray

vectorized = 9 16 6 9 17 6
speedup 17 8 16 6 8 14 6
0 1 0 0 1 3 0
slowdown
sgzzguep 380 1.77 212  2.07 2.00 236 298
:‘r:fr:)t'me 557 083 059 0.87 065 042 0.65
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A d .
#“”SIERRA Kernels Chosen for this study

» Eigenvector kernel:

Computes eigenvectors and eigenvalues of a symmetric 3x3 matrix
Computation based on analytic formula
Kernel code uses conditionals and trigonometric function evaluations

» Elasticity Kernel:

Computes mechanical stress from stretching tensor and rotation tensor ; all 3x3
matrices; rotation tensor non-symmetric

Uses material properties Bulk Modulus and Shear Modulus

Kernel code relatively straight forward; no conditionals; most complicated math is a
cube-root

» Plasticity Kernel:

T VAL =37
UM /A Ay

Computes stress tensor from strain-rate tensor and old-stress tensor (all symmetric 3x3
matrices); uses also an array of length 11 that stores the internal state history of the
material

Uses material properties Bulk Modulus ,Shear Modulus, Yield Stress, and Hardening
Modulus

Kernel code is complex as it has structs with stride 11 (i.e. 11 doubles), has many inputs,
has conditionals and even has a while loop at the inner most level to assess
convergence of the material model’s plastic strain updates
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ol
Data structure layout investigated
AOS, SOA and SLI

oyl z eddealledd < |y |z | ol e

Array of Structures (AOS)

RS SRIFNRASNRA STES E LS

Structure of Arrays (SOA)

oy el 2 e > Y 2

SimdLib with Intrinsics (SLI); schematic SIMD Length=2
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Sandia SIERRA/SM team’s SIMDLIB

* Motivated by compiler limitations on complex loops
* Uses SIMD vector intrinsics

* Clever design using C++templates and structs to make it
independent of platform and compilers ( Portability a key
design goal)

 Key components: “Doubles” struct, a “Bools” struct, and an
integer valued vector-length

* At compile time for the target SIMD unit “Doubles” and
“Bools” structs are then sized to the vector-length

 The most common mathematical operations (such as +,-
*,/,sqrt,<,<=,1=,&&,| |,etc.) are overloaded to use the
approprlate SIMD intrinsics on the data members of the
“Doubles” and “Bools” structs
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lvy Bridge: SIERRA kernels speedup relative

to AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 1.62 1.01 0.99
AQS, IVDEP 1.67 1.61 0.98
SOA 1.09 0.99 0.70
SOA, IVDEP 2.45 2.19 0.71
SLI 2.27 1.86 1.80
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Eigenvector

AOS 1.80
AOS, IVDEP 1.74
SOA 0.90
SOA, IVDEP 2.53
SLI 2.03

Elasticity

1.00
1.37
0.99
2.45

1.79

0.97
0.97
0.58
0.59

1.54

Haswell: SIERRA kernels speedup relative
to AOS layout and no vectorization

Plasticity

* Are prefetch instructions for compiled code the reason for SOA+IVDEP performance being

better than the SLI performance?

Used CrayPat: ratio of the metric: MEM_UOPS_RETIRED:ALL LOADS SimdLib/ SOA+IVDEP = 1.4;

Value close to run time ratio of SimdLib/ SOA+IVDEP = 1.38;
Also CrayPat metric that measures L2 prefetch hits: L2 RQSTS:L2 _PF_HIT registered 3 times higher value for

SOA+IVDEP over Simdlib.

CrayPat metric that measures L2_RQSTS:L2_PF_MISS were nearly the same.
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KNC: SIERRA kernels speedup relative to
AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 2.28 1.00 1.00
AOS, IVDEP 1.64 0.92 1.00
SOA 0.95 0.84 0.63
SOA, IVDEP 5.14 7.16 0.63
SLI 5.10 2.39 2.63
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r
MiniApps on KNC

% speedup with 4.68% 6.52% 17.95% 19.52%
Vectorization

MiniFE Tuning:
— — » KNC performance, 23% slower than the
00 MiniFE Optimizations front-end Sandy Bridge node
CG Solve Time (Seconds), 175x175x175, 200 Itr > Additional gains in performance were

8.0

achieved by disabling transparent huge

6.0 pages and using selectively large page
allocations for vector data structures to

4.0 lower TLB miss rates. These tuning

20 measures improved the KNC performance
by 33%

0.0 » Finally KNC exceeded FE Sandy Bridge by

Optimized Sandy MIC MiniFE MIC MiniFE MIC MiniFE MIC MiniFE

Bridg Ref (MPL  Inlined K | OpenMP and MPI Selective L o) i

e RO gyt et skl | 20% (see figure)
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4% Use of hardware counters on KNC:;
vectorization effectiveness

Investigated with a simple DGEMM matrix multiply benchmark:

Vectorization intensity defined as:
Vectorization Intensity = VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

vectorization intensity measured for DGEMM = 7.84
Metric upper bound of 8. Values close 8 suggest efficient use of MIC’s SIMD units.

However since the VPU_ELEMENTS_ACTIVE counter measures in addition to the double
precision floating point instructions, vector load/stores from memory and instructions to
manipulate vector mask registers this metric is misleading.

The fact that our measurements of this metric achieves close to the peak showing high
vectorization intensity is misleading if our goal is to achieve high floating point operations
throughput. The percentage of peak double precision floating point operations achieved
with MKL DGEMM in this test is about 30%; Need DP_OPS counter!!
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Conclusions

The TSVC and LCAL benchmarks shows that significant
improvements, up to 3X in performance if the compute intensive
kernels of are vectorized

Need for SIERRA/SM SimdLib as typified by the J2 plasticity kernel for
which the compiler is unable to vectorize complex loops

SimdLib designed for easy portability to processors with different
lengths of the vector registers

Interestingly observation from our study of the Elasticity and
Eigenvalue kernels show that that the compiler can indeed give the
best performance when kernels have appropriate data structure and
compiler vectorization is aided by pragma

The importance of hardware performance counter measures to
identify all aspects of effective use of the SIMD units is pointed out
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Conclusions

* QOur Goal: Use of MPI library that is robust and
performs well; help users with optimizing performance
for production runs on all our HPC systems

e Shared a few application use cases that stress MPI
performance; e.g. collectives and 1k-4k messages

* Some benchmark data collected point to potential
benefit for application performance with MVAPICH

 Would like from MVAPICH group & from MUG meeting

— Suggestions on how users can extract best performance
— Optimal environment variable settings
— MPI 3.0 release and potential benefits

— Collaboration with Sandia on Advanced architectures and
use of Mantevo mini-apps

//Av' R / bg&{ m ﬁa?dia|
X ationa
/| A D‘ > | Laboratories




