on Current and Next-generation Intel

} SAND2016- 3215C

An Investigation of Compiler Vectorization

Processors using Benchmarks and Sandia’s

SIERRA Applications

Mahesh Rajan?, Doug Doerfler?, Mike Tupek?, Si Hammond*
1Sandia National Laboratories, 2Lawrence Berkeley National Laboratory
Cray User Group Meeting, April 26-30, 2015, Chicago, IL

This work was supported in part by the U.S. Department of Fnergy. Sandia is 4
muly program laboratory gperated by Sandia Corporation, a Lockheed Martin Company,
Lo the United States National Nuclear Secursty Administration and the Department of

FLinergy under contract DE-ACO#- 944185000,

V| A | b()“
NN M

Sandia
National
Laboratories

F72d

Motivation

e Acquisition of Trinity (NNSA’s ATS-1) by ACES (SNL & LANL

Partnership)
— >9000 nodes with Intel Haswell; SIMD unit:AVX2

— > 9000 nodes of Intel Knights Landing (KNL); SIMD unit AVX-
512F(AVX3.1)

— Study vectorization to realize performance potential on Trinity

e Evaluate Cray, Intel and GNU compilers (auto-vectorization)
— Study TSVC benchmark
— Study LCALS benchmark

* |nvestigate approaches with real SNL SIERRA Mechanics

kernels (auto-vectorization, use of prgama and Intrinsics)
— Impact of data layout

— Compiler auto-vectorization limitations and effective usage

— Design and performance of a specially developed SIMD library

T VAT =
///IVA/\)

‘ 4/23/2015

Sandia Unclassified Unlimited Release

QL

Sandia
National
Laboratories

“;"ACES (Sandia, LANL Partnership) new
Advanced Technology System: Trinity

C =AY XCFamily Supercomputer

Compute (Intel “Haswell”)
>9500 nodes

42PF Total Performance and 2.1PiB of Total Memory

Gateway Nodes Lustre Routers Burst Buffer

2x 648 Port IB Switches

Cray Development |
& Login nodes A1PB file system

Pt |t | et | et [t | et | it et | it [t | et |t |t [t [
e e S I I _C K I L I I IC IC)
1

41PB file system

82 PB Usable ~1.7 TB/sec - 2 Filesystems

Cray Sonexion® Storage System

V| U J a7
A TN~ fh

Nuclear ity A i

Sandia
National
Laboratories

%’ SIMD Processor Performance Trends

(from Eric Welch & James Evans; Multiple Processor Systems, 2013)

1000
“~ MIMD*SIMD (32b) e S|MD
—¢ MIMD*SIMD (64 b) o /)
SIMD (32b) s an

—e— SIMD (64b) ' MIMD
= MIMD

% 100 [r-ssesniainis N L e SO e T

= |

&

o

©

- SIMD

©

5

g

-t
o

1 1 1 1 1
2003 2007 2011 2015 2019 2023

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86
computers. This figure assumes that two cores per chip for MIMD will be added every two years and the number of
operations for SIMD will double every four years.

National

] VAN g% 4 Sandia
/| VNA'D" " 4/23/2015 Sandia Unclassified Unlimited Release fl'l Labora e

Vectorization Kernels from
SIERRA/SM (Solid Mechanics)

A general purpose massively parallel nonlinear solid mechanics

finite element code for explicit transient dynamics, implicit
transient dynamics and quasi-statics analysis

Built upon extensive material, element, contact and solver
libraries for analyzing challenging nonlinear mechanics
problems for normal, abnormal, and hostile environments

Similar to LSDyna or Abaqus commercial software systems

YU AN «J% Sandia Unclassified Unlimited Release 5
$8 4/23/2015
Tl NI A' R4

Sandia
d'l National

Laboratories

¥ SIERRA Mechanics; need and

approaches

 Compiler Auto-Vectorization
— For simple loops, compilers auto-vectorizes;
. EXanlple:for (inti=0; i < N; ++i) {
\ a[i] = b[i] + c[i] * d[i];

* For “Complicated” loops compilers typically will not auto-
vectorize

* S|IERRA Solid Mechanics kernels have loops that are > 200
lines
— Tensor33 multiply (symmetric x asymmetric)
— Eigenvectors
— Constitutive law evaluations
* Use SIMD vector intrinsics (low level functions):
— Each intrinsic is equivalent to an assembly instruction
— SimdLib is designed for easy port to different architectures

YU AN «J% Sandia Unclassified Unlimited Release 6 Sandia
NI A D"-Qi 4/23/2015 d'l National

Laboratories

e

> SSE2/AVX intrinsics (Intel, AMD)

__m128d (2 doubles) __m256d (4 doubles)

Compute {1,2,3,4} + 2.1:

double x[4] ={1,2,3,4};

_m256d a=_m256_loadu_pd(x);
~m256d b =_m256_setl_pd(2.1);
__m256d ¢ =_m256_add_pd(a,b);
double result[4];
_m256_store_pd(result,c);

I I+ I

/NN DT 45317015 Sandia Unclassified Unlimited Release 7 ,‘1 Sandia

v €. !
UNINSS o s

y Platforms, Processors and compilers
used in this study

Platform Name Specification/CPU

Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU
E5-2695 v2 @
2.40GHz

Mutrino, Shephard Intel(R) Xeon(R) CPU
E5-2698 v3 @
2.30GHz

Corner, Morgan04 Intel(R) Xeon(R) Phi
CPU @ 1.238 GHz

Compiler Versions used:
Intel 15.0.2
GNU gcc 4.9.2
Cray compilers under Cray Programming environment 5.2.40

//;NA"/S;:&% 4/23/2015 Sandia Unclassified Unlimited Release 8 ,‘1 Eﬁgr%&i
Nuclear ty A i es

A
V*Tsvc (Test Suite for Vectorizing Compilers)
Benchmark

* Originally developed by Callahan, et al (1988)
In Fortran

* Extended, and converted to C by Maleki, et al
* Atotal of 151 loops

* Chosen for this study as it provides a large
collection of basic loops that could be found in
scientific HPC codes

 Forms a good basis for basic compiler support
and capabilities

T VAN g% \dia
/| !,‘ D"- 4 d'l National

A
> Method for Determining
“vectorization”

* Taken from Maleki paper

* Baseline measurement: No vectorization (e.g. —no-vec) but
include optimization (-O3)

* Vectorization enabled: Include vectorization (e.g. —mavx)
and optimization (-03)
* Speedup = (time w/o vectorization) / (time w/vectorization)
— Greater than 1.5 is a “vectorized”
— Less than 0.85 is “vectorized” but a slowdown
 Benchmarks were modified to ensure array alignment on
the appropriate SIMD width for the architecture
— 32 bytes (256 bits) for Ivy Bridge and Haswell
— 64 bytes (512 bits) for KNC

//Av' "‘2&{ m ﬁa?dial
B¢ ationa
///’ A /\) 4 Laboratories

r2d
TSVC Results

- lvy Bridge w/AVX Haswell w/AVX2

Intel GNU Intel Cray GNU Intel Cray

vectorized 111 61 99 101 63 91 102

speedup 103 58 96 96 59 88 93

slowdown 8 3 3 5 4 3 9

average

speedup 8.04 2.87 247 2.80 282 260 2.88

total time

(min) 177.82 21.41 17.15 16.53 17.29 14.45 13.56
//%‘V'A"/f)"z% 4/23/2015 Sandia Unclassified Unlimited Release 11 ,‘1 Eﬁ?ﬁ%ﬁﬁ

TSVC Results

& <O KNC/Intel?
L IVBEGNUR
A IVBAntel®
X VB rayl

@

P

KHSWEGNUE

O HSWintel?
+ HSWITrayl

{ZIOQgA

FSINAA
FISeA
9TTYS
’IT6vS
1CSyS
EITEVS
SEITCYS
. JEYES
RIECES
HITTTES
o ™ HLTES
...ﬁ TCTES
4 @10TCS
) Eses
c H6LTS
iAlYAA
FEIT9¢S
1S CS
RITSCTS
FIEY TS
RIEECS
HTCCTS
F19LTS
RITLTS
HTSTS

Tl CTS
TS
19TTS
FKIETTS
i | 70005
= 3] & = =
(Vo) (o)) [e¢] < o
i -
@gdnpaads

Benchmark

Speedup values > 16 not displayed

Laboratories

Sandia
National

7 ()

Sandia Unclassified Unlimited Release

4/23/2015

(27

Nuclear

l AL =g

/|

Haswell Only

TSVC

O HSWEGNUE
/A HSWrayR

O HSWdntel®

<

LHUOgA
FISINAA
M- TISeA

| [BOTTYS
“IET6YS

L esvs
.....mm. T
J _=ETTYS
.._._.._‘ BEVES
“faeces
HTTTES
B/ TES
u KICTES
HTOTCS
H18TS
) B6LTS
®9 8BS
“oa HT9TS

TSTS
IRYARS
.n.._.__. BEVTS
w2 meses
@ P ETeeIs
VAR
BILTS
FITSTS
1/ CTS
WeerTs
HITTS
BETTS
#0005

i

|

250

20

=

=
LN
—

gdnpaadguoneziioldan

106
50

Benchmark@

© ()

Sandia Unclassified Unlimited Release

4/23/2015

(23

Il VAL«

Sandia
National

)
X

Q.

NN A AR

Laboratories

Nuclear

KNC Only

TSVC

O KNC/Intel?

oo
%
o°.

*se

&
&
<
o

&
%

350

30

= =
o n
(gl —

gdnpaadguoneziioldan

250

Benchmark?®

Laboratories

Sandia
National

“ ()

Sandia Unclassified Unlimited Release

4/23/2015

%
oA
=

Nuclear

Il VAL«

NN

A 4
LCALS (Livermore Compiler Analysis Suite)

Benchmark

* Developed by Rich Hornung (LLNL)

* Represents loops and kernels taken and/or
derived from real codes

e Three variants

— “Raw”: C/C++ for-loop syntax -> used for this study
e Subset A: loops used in application codes
* Subset B: used to illustrate compiler optimization issues

e Subset C: extracted from Livermore Loops in C by Steve
Langer

— Other variants include OpenMP, functors and C++11
lambda functions -> NOT utilized for this study

/N A
NI A

Sandia
National
Laboratories

’4
0
-.éi’s
st

r
LCALS Results

- lvy Bridge w/AVX Haswell w/AVX2

Intel GNU Intel Cray GNU Intel Cray

vectorized = 9 16 6 9 17 6
speedup 17 8 16 6 8 14 6
0 1 0 0 1 3 0
slowdown
sgzzguep 380 1.77 212 2.07 2.00 236 298
:‘r:fr:)t'me 557 083 059 0.87 065 042 0.65
/%‘V:,A"&% 4/23/2015 Sandia Unclassified Unlimited Release 16 ,‘1 Eﬁ?:irz?éﬁa

H o .
g > T > =2 = 0O
c z2 £ C B & B
o B o B =2 = =2
Z 2@ O D K »h »n
S =2 =2 =2 T I =T
C O <K X X O +
[[@NIATLSHI4 aNId
[@AZ OYAAH dII
e | 1D ”nz<_v_mzu<i
ALVINX LVIN
@aY¥0 DsIa

@YND3Y NI NID
@AZ OYAAH
& | 3 @atT 2ld

@Az old
1 244107 LS¥I4
@INNS LSYI4
@101a3¥d 4410
@L01a34d NI
@av

@S03

@A OVIAIYL
@ |03 NI aNve

LCALS Results
=

K P @A0Yd ¥INNI
& |@ [@0I
@ - @AT OYAAH
P ELNIdvdL
P D @avno 4l
P @ | = | @9NsSaavin
& : EELINI
| Eﬂ [BYE
P [831dN0D
& < [#acH3In"Loa1aa
9D [EDTvD AETON
P &4 B €210 ADYAN3
M ED1vD " 34NSSIYd
gdnpaads

17

Sandia Unclassified Unlimited Release

4/23/2015

4

%

Nuclear

l VAL =g
NI

Haswell Only

LCALS

O HSWEGNUE

>0

COHSWHnNtelR

A HSWIray

ENINTLSHI4aNI4
AT OYAAH dWI
ENVIIONY1d
ELVYIN X LVIN
@AYo dsIa
@YND3Y NIT NID
@AZ O¥AAH

@At old

@Az dld

@441Q° LSYI4
AINNS LSYI4
@L01a3¥d 4410
@L01a34d NI
@av

@S03

@NIN3 OVIAIL
@03 NIT_aNve
@a0¥d YINNI
@900I

©AT OYAAH

ELNI dVYL
EAVNO 4|
@9NSaavinin
BELINI

[NE

@31dN0D

@ac 23N LOd 13d
@)1vD as10A
@DV~ A9YINI
@1V I¥NSSIYd

= =
o o

@dnpaads

=)
o

18

Sandia Unclassified Unlimited Release

§8 4/23/2015

4

(o)
7y

T VAL =9
NI

Nuclear

O KNCintel®

ENINLSYI4~aNId
AT OYAAH dWI
N ENVINONYd
ELVIN X LVYIN
@aY02sIa
@YNDIYNIT NID
EA7 OYAAH
P @atT old
@Az dld
@4410"1SYI4
@INNS~LSYI4
@101a34d 441
@101a3¥d LNI
@av
P 8503
AN OVIAINL
@03 NIT ANV
P @A0Yd HINNI
P @90I
& QT OYAAH
ELNIdvdL
P @avNo "4l
P @aNsaavinin
P EELINI
P e

P [©31dN0D
P @Az D3N 10d 13d
P> @TVD Ag10A
P @DV~ ADYIN3
@D1VD 34NSSIYd

< o (qV] — o

gdnpaads

KNC Only

LCALS

5'!

8@
el
60

19

Sandia Unclassified Unlimited Release

4/23/2015

"8

<4

J

4

%

Q.

Nuclear

l VAL =g
NI

A d .
#“”SIERRA Kernels Chosen for this study

» Eigenvector kernel:

Computes eigenvectors and eigenvalues of a symmetric 3x3 matrix
Computation based on analytic formula
Kernel code uses conditionals and trigonometric function evaluations

» Elasticity Kernel:

Computes mechanical stress from stretching tensor and rotation tensor ; all 3x3
matrices; rotation tensor non-symmetric

Uses material properties Bulk Modulus and Shear Modulus

Kernel code relatively straight forward; no conditionals; most complicated math is a
cube-root

» Plasticity Kernel:

T VAL =37
UM /A Ay

Computes stress tensor from strain-rate tensor and old-stress tensor (all symmetric 3x3
matrices); uses also an array of length 11 that stores the internal state history of the
material

Uses material properties Bulk Modulus ,Shear Modulus, Yield Stress, and Hardening
Modulus

Kernel code is complex as it has structs with stride 11 (i.e. 11 doubles), has many inputs,
has conditionals and even has a while loop at the inner most level to assess
convergence of the material model’s plastic strain updates

Sandia
National
Laboratories

QL

ol
Data structure layout investigated
AOS, SOA and SLI

oyl z eddealledd < |y |z | ol e

Array of Structures (AOS)

RS SRIFNRASNRA STES E LS

Structure of Arrays (SOA)

oy el 2 e > Y 2

SimdLib with Intrinsics (SLI); schematic SIMD Length=2

. AT % 21 Sandia

o3 4/23/2015 . . .
I A' &4 Sandia Unclassified Unlimited Release m National __

/| Y

NI A

=72

Sandia SIERRA/SM team’s SIMDLIB

* Motivated by compiler limitations on complex loops
* Uses SIMD vector intrinsics

* Clever design using C++templates and structs to make it
independent of platform and compilers (Portability a key
design goal)

 Key components: “Doubles” struct, a “Bools” struct, and an
integer valued vector-length

* At compile time for the target SIMD unit “Doubles” and
“Bools” structs are then sized to the vector-length

 The most common mathematical operations (such as +,-
*,/,sqrt,<,<=,1=,&&,| |,etc.) are overloaded to use the
approprlate SIMD intrinsics on the data members of the
“Doubles” and “Bools” structs

Sandia
National
Laboratories

’4
0
QR
=

>
lvy Bridge: SIERRA kernels speedup relative

to AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 1.62 1.01 0.99
AQS, IVDEP 1.67 1.61 0.98
SOA 1.09 0.99 0.70
SOA, IVDEP 2.45 2.19 0.71
SLI 2.27 1.86 1.80

Sandia
National _
Laboratories

/N0
NI A

’4
0
QR
o

A
\,"

Eigenvector

AOS 1.80
AOS, IVDEP 1.74
SOA 0.90
SOA, IVDEP 2.53
SLI 2.03

Elasticity

1.00
1.37
0.99
2.45

1.79

0.97
0.97
0.58
0.59

1.54

Haswell: SIERRA kernels speedup relative
to AOS layout and no vectorization

Plasticity

* Are prefetch instructions for compiled code the reason for SOA+IVDEP performance being

better than the SLI performance?

Used CrayPat: ratio of the metric: MEM_UOPS_RETIRED:ALL LOADS SimdLib/ SOA+IVDEP = 1.4;

Value close to run time ratio of SimdLib/ SOA+IVDEP = 1.38;
Also CrayPat metric that measures L2 prefetch hits: L2 RQSTS:L2 _PF_HIT registered 3 times higher value for

SOA+IVDEP over Simdlib.

CrayPat metric that measures L2_RQSTS:L2_PF_MISS were nearly the same.

T WAL =%
U N !

h

Sandia
National _
Laboratories

-~ &

o> |

KNC: SIERRA kernels speedup relative to
AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 2.28 1.00 1.00
AOS, IVDEP 1.64 0.92 1.00
SOA 0.95 0.84 0.63
SOA, IVDEP 5.14 7.16 0.63
SLI 5.10 2.39 2.63

Sandia
National _
Laboratories

/N0
NI A

’4
0
QR
o

r
MiniApps on KNC

% speedup with 4.68% 6.52% 17.95% 19.52%
Vectorization

MiniFE Tuning:
— — » KNC performance, 23% slower than the
00 MiniFE Optimizations front-end Sandy Bridge node
CG Solve Time (Seconds), 175x175x175, 200 Itr > Additional gains in performance were

8.0

achieved by disabling transparent huge

6.0 pages and using selectively large page
allocations for vector data structures to

4.0 lower TLB miss rates. These tuning

20 measures improved the KNC performance
by 33%

0.0 » Finally KNC exceeded FE Sandy Bridge by

Optimized Sandy MIC MiniFE MIC MiniFE MIC MiniFE MIC MiniFE

Bridg Ref (MPL Inlined K | OpenMP and MPI Selective L o) i

e RO gyt et skl | 20% (see figure)

AN %S 26 Sandia

/| VA‘/Q#% 4/23/2015 Sandia Unclassified Unlimited Release I"l mnrg':lxiu

T~ G
4% Use of hardware counters on KNC:;
vectorization effectiveness

Investigated with a simple DGEMM matrix multiply benchmark:

Vectorization intensity defined as:
Vectorization Intensity = VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

vectorization intensity measured for DGEMM = 7.84
Metric upper bound of 8. Values close 8 suggest efficient use of MIC’s SIMD units.

However since the VPU_ELEMENTS_ACTIVE counter measures in addition to the double
precision floating point instructions, vector load/stores from memory and instructions to
manipulate vector mask registers this metric is misleading.

The fact that our measurements of this metric achieves close to the peak showing high
vectorization intensity is misleading if our goal is to achieve high floating point operations
throughput. The percentage of peak double precision floating point operations achieved
with MKL DGEMM in this test is about 30%; Need DP_OPS counter!!

1/ ' 27

(2%, Sandia
///I\Nl D‘ i 4/23/2015 Sandia Unclassified Unlimited Release d'l lNaal}lul:g'?(I)ries

A
ty

F72d

l AN ag

Conclusions

The TSVC and LCAL benchmarks shows that significant
improvements, up to 3X in performance if the compute intensive
kernels of are vectorized

Need for SIERRA/SM SimdLib as typified by the J2 plasticity kernel for
which the compiler is unable to vectorize complex loops

SimdLib designed for easy portability to processors with different
lengths of the vector registers

Interestingly observation from our study of the Elasticity and
Eigenvalue kernels show that that the compiler can indeed give the
best performance when kernels have appropriate data structure and
compiler vectorization is aided by pragma

The importance of hardware performance counter measures to
identify all aspects of effective use of the SIMD units is pointed out

\

VA 4 7| Nona

Laboratories

—:.. '
: °
Conclusions

* QOur Goal: Use of MPI library that is robust and
performs well; help users with optimizing performance
for production runs on all our HPC systems

e Shared a few application use cases that stress MPI
performance; e.g. collectives and 1k-4k messages

* Some benchmark data collected point to potential
benefit for application performance with MVAPICH

 Would like from MVAPICH group & from MUG meeting

— Suggestions on how users can extract best performance
— Optimal environment variable settings
— MPI 3.0 release and potential benefits

— Collaboration with Sandia on Advanced architectures and
use of Mantevo mini-apps

//Av' R / bg&{ m ﬁa?dia|
X ationa
/| A D‘ > | Laboratories

