
Parallel Algebraic Multigrid Preconditioned
Krylov Solvers using Trilinos

Tobias Wiesner

April 4, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-00000

SAND2016-3200C



Parallel AMG preconditioned Krylov Solvers using Trilinos

1) How to set up linear problems using Trilinos?

Linear Algebra packages in Trilinos
How to assemble a Tpetra matrix using Kokkos

2) Parallel Algebraic Multigrid kernels

Algorithmic kernels of Algebraic Multigrid methods
3) How to use AMG preconditioned Krylov solvers from Trilinos

Overview of Krylov solver packages in Trilinos
How to use MueLu as AMG preconditioner with Belos



How to set up linear problems?

Linear algebra frameworks and parallel assembly of
linear systems using Trilinos



Linear Algebra frameworks

Epetra

Standard implementation of
Petra framework
Supports SC=double only
Supports OpenMP
(configuration flag)
Epetra64: GO=long long

Tpetra

New implementation of
Petra framework
Tpetra objects use C++
templates to let you specify
SC and GO on any device
Uses Kokkos underneath

Xpetra

Thin abstraction layer with unified user interface for E/Tpetra

Xpetra-sup

Extensions: support for blocked operators, helper routines, …



Which linear algebra framework should i use?

Use Epetra if…

you need a code which only needs SC=double and GO=int on CPU
systems. Not actively developed any more.

Use Tpetra if…

you start writing a new code based on the second Trilinos stack
which is supposed to run on next generation HPC systems
(including GPUs, Xeon Phi, …).

Use Xpetra if…

you have an Epetra based code that you want to migrate
step-by-step to Tpetra or
you want to write your own block preconditioners



Xpetra versus Thyra

Common features

General abstraction layer for Epetra or Tpetra
Provides support for blocked operators

Thyra: for application interfaces

Designed following strict mathematical principles
Access to different linear solvers through Stratimikos (by
setting run-time options)
Rather complicated direct access to matrix/vector data

Xpetra: for algorithms

Replicates the Tpetra interface for Epetra
Easy access to matrix/vector data



How to assemble a Tpetra matrix using Kokkos

1) Local part using Kokkos

Determine number of unknowns per row in graph/matrix
Fill Kokkos::View objects with CSR data

Use local ids for columns

2) Global part using Tpetra

Generate row and column map (containing global column IDs)
for MPI communication
Construct Tpetra::CrsMatrix using row and column map
(Tpetra::Maps) and local CSR data (Kokkos::Views).



Example - 1a) Count entries per row

1 // Do a reduct ion over l o c a l e lements to count the t o t a l number
2 // of ( l o c a l ) e n t r i e s i n the graph . While doing so , count the
3 // number of ( l o c a l ) e n t r i e s i n each row , us ing Kokkos ’ atomic
4 // updates .
5 LO numLclRows = 10000;
6 Kokkos : : View<s i ze_t*> rowCounts ( ”row counts ” , numLclRows) ;
7 s i ze_t numLclEntr ies = 0;
8 Kokkos : : pa r a l l e l_ r educe ( numLclElements ,
9 KOKKOS_LAMBDA ( const LO e l t , s i z e_t& curNumLclEntr ies ) {
10 const LO lc lRows = e l t ;
11
12 // Always add a d iagona l matr ix ent ry .
13 Kokkos : : atomic_fetch_add (&rowCounts ( lc lRows ) , 1) ;
14 curNumLclEntr ies++;
15 . . .
16 } , numLclEntr ies /* reduct ion r e s u l t */ ) ;

Use the default device defined in Kokkos
We need Kokkos::atomic_fetch_add since other threads
might also increment row counter at the same time



Example - 1b) Generate row offset data

1 // Use a p a r a l l e l scan ( p r e f i x sum) over the ar ray of row
2 // counts , to compute the ar ray of row o f f s e t s f o r the
3 // spar se graph . Use an ’ e x c l u s i v e scan ’
4 Kokkos : : View<s i ze_t*> rowOffsets ( ”row o f f s e t s ” ,numLclRows+1) ;
5 Kokkos : : pa r a l l e l_ s can (numLclRows+1,
6 KOKKOS_LAMBDA ( const LO lclRows , s i ze_t& update , const bool

f i n a l ) {
7 i f ( f i n a l ) {
8 // Kokkos uses a mul t ipass a lgor i thm to implement scan .
9 // Only update the ar ray on the f i n a l pass . Updating
10 // the ar ray be fo re changing ’ update ’ means that we do
11 // an e x c l u s i v e scan . Update the ar ray a f t e r f o r an
12 // i n c l u s i v e scan .
13 rowOffsets [ lc lRows ] = update ;
14 }
15 i f ( lc lRows < numLclRows) {
16 update += rowCounts ( lc lRows ) ;
17 }
18 }) ;



Example - 1c) Fill CSR data

1 // zero out row counter
2 Kokkos : : deep_copy ( rowCounts , s ta t i c_cas t<size_t> (0) ) ;
3 Kokkos : : View<LO*> co l I n d i c e s ( ”column i n d i c e s ” , numLclEntr ies ) ;
4 Kokkos : : View<double*> matr ixValues ( ”matr ix va lue s ” ,

numLclEntr ies ) ;
5
6 // I t e r a t e over e lements in p a r a l l e l to f i l l the matr ix
7 Kokkos : : p a r a l l e l _ f o r ( numLclElements ,
8 KOKKOS_LAMBDA ( const LO e l t ) {
9 const i n t lc lRows = e l t ;
10
11 // Always add a d iagona l matr ix ent ry .
12 const s i ze_t count =
13 Kokkos : : atomic_fetch_add (&rowCounts ( lc lRows ) , 1) ;
14 c o l I n d i c e s ( rowOffsets ( lc lRows ) + count ) = lc lRows ;
15 Kokkos : : atomic_fetch_add (&matr ixValues ( rowOffsets ( lc lRows )

+ count ) ,2 .0 ) ;
16 . . .
17 }) ;



Example - 2a) Create global maps for MPI communication

Tpetra objects

To generate Tpetra objects using local data (e.g. a local
Kokkos::Graph), we have to provide the corresponding global
communication pattern in form of Tpetra::Map objects.

For a Tpetra::CrsMatrix we need
a (non-overlapping) row map
a (overlapping) column map



Example - 2a) Create global maps for MPI communication

Generate a global non-overlapping row map
1 // Wrap the ”raw” MPI communicator f o r use in Tpetra .
2 RCP<const Teuchos : :Comm<int> > comm =
3 rcp (new Teuchos : :MpiComm<int> (MPI_COMM_WORLD) ) ;
4
5 const GO indexBase = 0;
6 RCP<const Tpetra : :Map<> > rowMap =
7 rcp (new Tpetra : :Map<> (numGblElements , numLclElements ,

indexBase , comm) ) ;

Use Tpetra::Map with default template parameters



Example - 2b) Create global maps for MPI communication

Generate a global overlapping column map
1 // Create column map ( us ing g l oba l column i n d i c e s )
2 const LO num_col_inds = numLclElements ;
3 Kokkos : : View<GO*> co l I nd s ( ”Col Map” , num_col_inds ) ;
4 auto lclRowMap = rowMap−>getLocalMap () ;
5 Kokkos : : p a r a l l e l _ f o r ( num_col_inds , KOKKOS_LAMBDA ( const LO k) {
6 co l I nd s (k ) = lclRowMap . getGlobalElement (k ) ;
7 }) ;
8 . . .
9
10 // Flag to t e l l Tpetra : :Map to compute the g l oba l number of
11 // i n d i c e s in the Map.
12 const Tpetra : : g loba l_s i ze_t INV =
13 Teuchos : : Ord ina lTra i t s<Tpetra : : g loba l_s ize_t >:: i n v a l i d () ;
14 // Soon , i t w i l l be acceptab le to pass in a Kokkos : : View here ,
15 // in s t ead of a Teuchos : : ArrayView .
16 RCP<const Tpetra : :Map<> > colMap =
17 rcp (new Tpetra : :Map<> (INV , Kokkos : : Compat : : getConstArrayView

( co l I nd s ) , indexBase , comm) ) ;



Example - 2c) Construct Tpetra::CrsMatrix

Create the Tpetra::CrsMatrix providing the row and column
map information and the local CSR data

1 Tpetra : : CrsMatrix<> A (rowMap , colMap ,
2 rowOffsets , c o l I nd i c e s , matr ixValues ) ;
3 A. f i l l Comp l e t e () ;

The global matrix A is ready to use (e.g. for solvers)

More information
The detailed example can be found here:
packages/tpetra/core/examples/Lesson07-Kokkos-Fill
A similar example can be found here:
packages/xpetra/test/CrsMatrix/CrsMatrix_UnitTests.cpp



Example - 2c) Construct Tpetra::CrsMatrix

Create the Tpetra::CrsMatrix providing the row and column
map information and the local CSR data

1 Tpetra : : CrsMatrix<> A (rowMap , colMap ,
2 rowOffsets , c o l I nd i c e s , matr ixValues ) ;
3 A. f i l l Comp l e t e () ;

The global matrix A is ready to use (e.g. for solvers)

More information
The detailed example can be found here:
packages/tpetra/core/examples/Lesson07-Kokkos-Fill
A similar example can be found here:
packages/xpetra/test/CrsMatrix/CrsMatrix_UnitTests.cpp



Parallel Algebraic Multigrid

Algorithmic kernels of Algebraic Multigrid Methods



Parallel Algebraic Multigrid

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = MPI + X

Tpetra: Tpetra handles MPI communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Definition: Parallel (algorithms)

Parallel = Solve problems simultaneously instead of consecutively.



Parallel Algebraic Multigrid

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra + Kokkos

Tpetra: Tpetra handles MPI communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Definition: Parallel (algorithms)

Parallel = Solve problems simultaneously instead of consecutively.



Parallel Algebraic Multigrid

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra + Kokkos

Tpetra: Tpetra handles MPI communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Definition: Parallel (algorithms)

Parallel = Solve problems simultaneously instead of consecutively.



Parallel Algebraic Multigrid

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra + Kokkos

Tpetra: Tpetra handles MPI communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Definition: Parallel (algorithms)

Parallel = Solve problems simultaneously instead of consecutively.



Parallel Algebraic Multigrid

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2



Parallel Algebraic Multigrid

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Two main components

Smoothers
“Cheap” reduction of
oscillatory error (high
energy)
SL ≈ A−1

L on the coarsest
level L

Grid transfers (prolongators
and restrictors)

Data movement between
levels
Definition of coarse level
matrices.



Parallel Algebraic Multigrid

P2R2

P1R1

Ai = RiAi−1Pi

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Two main components

Smoothers
“Cheap” reduction of
oscillatory error (high
energy)
SL ≈ A−1

L on the coarsest
level L

Grid transfers (prolongators
and restrictors)

Data movement between
levels
Definition of coarse level
matrices.



Parallel Algebraic Multigrid - Algorithmic kernels

Smoothers

Matrix-Vector
products
Polynomial
evaluation
Matrix
operations (ILU)
Residual
evaluation

Transfers

Coarsening/ag-
gregation
Matrix
operations

Matrix
Matrix (MM)
multiplication
Scaling
operations

Galerkin product

Matrix Matrix
Matrix (MMM)
product

Two Matrix
Matrix (MM)
multiplica-
tions

Scaling
operations

Linear Algebra kernels for multigrid

Matrix-Vector multiplication
Vector operations (norms,…)

Matrix-Matrix multiplication



AMG preconditioned Krylov solvers

How to use AMG preconditioned Krylov solvers
from Trilinos



Krylov solvers in Trilinos

AztecOO:

Object-oriented interface for Aztec 2.1 package
Support for Epetra only
Contains CG, GMRES, BiCGstab, TFQMR

Belos:

Modern C++ implementation of Krylov solvers
Native support for {E,T,X}petra through traits and
specializations
Contains CG, GMRES, BiCGstab, TFQMR
Actively supported



AMG packages in Trilinos

ML:

Smoothed aggregation AMG in Trilinos
Support for Epetra only
Not actively developed any more

MueLu:

Modern C++ multigrid framework in Trilinos
Native support for {E,T}petra through Xpetra
Runs on next generation HPC systems (MPI+X)



MueLu as a preconditioner in Belos

1) Prepare input

1 // Create A, B, X ...
2 Teuchos::RCP<Tpetra::CrsMatrix <> > A = ...;
3 Teuchos::RCP<Tpetra::MultiVector <> > B = ...;
4 Teuchos::RCP<Tpetra::MultiVector <> > X = ...;

The multi vector B contains the RHS vector(s). The multi vector X
contains the initial guess.

2) Construct preconditioner

3) Construct problem

4) Set solver parameters

5) Solve problem



MueLu as a preconditioner in Belos

1) Prepare input

2) Construct preconditioner

1 std::string optionsFile = "mueluOptions.xml";
2 Teuchos::RCP<MueLu::TpetraOperator >

mueLuPreconditioner =
3 MueLu::CreateTpetraPreconditioner(A, optionsFile);

The XML file contains the MueLu multigrid parameters (see MueLu
user guide for all options).

3) Construct problem

4) Set solver parameters

5) Solve problem



MueLu as a preconditioner in Belos

1) Prepare input

2) Construct preconditioner

3) Construct problem

Put all information together for Belos.
1 Belos::LinearProblem <> problem(A, X, B);
2 problem ->setLeftPrec(mueLuPreconditioner);
3 bool set = problem.setProblem();

Belos supports left and/or right-preconditioning.
4) Set solver parameters

5) Solve problem



MueLu as a preconditioner in Belos

1) Prepare input

2) Construct preconditioner

3) Construct problem

4) Set solver parameters

Set the Belos parameters. Refer to the Belos documentation for
all available options.

1 Teuchos::ParameterList belosList;
2 belosList.set("Maximum Iterations", 100);
3 belosList.set("Convergence Tolerance", 1e-7);

5) Solve problem



MueLu as a preconditioner in Belos

1) Prepare input

2) Construct preconditioner

3) Construct problem

4) Set solver parameters

5) Solve problem

1 Belos::BlockCGSolMgr <> solver(rcp(&problem ,false),
rcp(&belosList ,false));

2 Belos::ReturnType ret = solver.solve();

Variable X contains the solution vector.



MueLu Documentation

User’s Guide (packages/muelu/doc/UsersGuide)
Geared towards new users
Complete list of user options (new options are caught
automatically)

Tutorial: Download:
trilinos.org/packages/muelu/muelu-tutorial

Examples and tests (packages/muelu/{examples,tests})

Doxygen
Best used as reference for developers



MueLu Tutorial and virtual machine

PDF guide along with
interactive Python script
Provides a step-by-step
tutorial for new MueLu users
with practical examples
Easy to try multigrid
methods
Comes with a VirtualBox
image, no Trilinos
compilation

The MueLu tutorial, SAND2014-18624 R


