Sandia
Exceptional service in the national interest @ National
Laboratories

SAND2016- 3200C

Parallel Algebraic Multigrid Preconditioned
Krylov Solvers using Trilinos

Tobias Wiesner

April 4, 2016
©ENERGY NISA
Cor e -94AL LESUUU SAND NO ZDMODWU

lia
National
Lat

Parallel AMG preconditioned Krylov Solvers using Trilinos B

1) How to set up linear problems using Trilinos?

m Linear Algebra packages in Trilinos
m How to assemble a Tpetra matrix using Kokkos

2) Parallel Algebraic Multigrid kernels

m Algorithmic kernels of Algebraic Multigrid methods

3) How to use AMG preconditioned Krylov solvers from Trilinos

m Overview of Krylov solver packages in Trilinos

m How to use MueLu as AMG preconditioner with Belos

@
National
Laboratories

How to set up linear problems?

Linear algebra frameworks and parallel assembly of
linear systems using Trilinos

Linear Algebra frameworks

m Standard implementation of
Petra framework

m Supports SC=double only

m Supports OpenMP
(configuration flag)

m Epetra64: GO=long long

Xpetra

m New implementation of
Petra framework

m Tpetra objects use C++
templates to let you specify
SC and GO on any device

m Uses Kokkos underneath

Thin abstraction layer with unified user interface for E/Tpetra

Xpetra-sup

Extensions: support for blocked operators, helper routines, ..

Which linear algebra framework should i use?) .

Use Epetra if...

you need a code which only needs SC=double and GO=int on CPU
systems. Not actively developed any more.

Use Tpetra if...

you start writing a new code based on the second Trilinos stack
which is supposed to run on next generation HPC systems
(including GPUs, Xeon Phi, ..).

Use Xpetra if...

m you have an Epetra based code that you want to migrate
step-by-step to Tpetra or

m you want to write your own block preconditioners

DR
Xpetra versus Thyra e

Common features

m General abstraction layer for Epetra or Tpetra

m Provides support for blocked operators

Thyra: for application interfaces

m Designed following strict mathematical principles

m Access to different linear solvers through Stratimikos (by
setting run-time options)

= Rather complicated direct access to matrix/vector data

Xpetra: for algorithms

m Replicates the Tpetra interface for Epetra

m Easy access to matrix/vector data

How to assemble a Tpetra matrix using Kokkos .

1) Local part using Kokkos

m Determine number of unknowns per row in graph/matrix
m Fill Kokkos: :View objects with CSR data
m Use local ids for columns

2) Global part using Tpetra

m Generate row and column map (containing global column IDs)
for MPl communication

m Construct Tpetra: :CrsMatrix using row and column map
(Tpetra: :Maps) and local CSR data (Kokkos: : Views).

Sandia
Example - 1a) Count entries per row) .

1 |// Do a reduction over local elements to count the total number
2 |// of (local) entries in the graph. While doing so, count the
3 | // number of (local) entries in each row, using Kokkos' atomic
4 |// updates.

5 |LO numLclRows = 10000;

6 | Kokkos::View<size_t*> rowCounts ("row counts”, numLclRows);

7 | size_t numLclEntries = 0;

8 | Kokkos:: parallel_reduce (numLclElements,

9 KOKKOS_LAMBDA (const LO elt, size_t& curNumLclEntries) {

10 const LO IclRows = elt;

11

12 // Always add a diagonal matrix entry.

13 Kokkos :: atomic_fetch_add (&rowCounts(lclRows), 1);

14 curNumLclEntries++;

15

16 |}, numLclEntries /* reduction result */);

m Use the default device defined in Kokkos

m We need Kokkos: :atomic_fetch_add since other threads
might also increment row counter at the same time

National

Example - 1b) Generate row offset data .

1|// Use a parallel scan (prefix sum) over the array of row

2 | // counts, to compute the array of row offsets for the

3 |// sparse graph. Use an 'exclusive scan’

4 | Kokkos:: View<size_t*> rowOffsets ("row offsets”,numLclRows+1);

5 | Kokkos:: parallel_scan (numLclRows+1,

6 KOKKOS_LAMBDA (const LO IclRows, size_t& update, const bool
final) {

7 if (final) {

8 // Kokkos uses a multipass algorithm to implement scan.
// Only update the array on the final pass. Updating

10 // the array before changing 'update’ means that we do

11 // an exclusive scan. Update the array after for an

12 // inclusive scan.

13 rowOffsets[lclRows] = update;

14

15 if (lclRows < numLclRows) {

16 update += rowCounts(IcIRows);

17 }

18 1

Example - 1c) Fill CSR data @&

// zero out row counter
Kokkos : : deep_copy (rowCounts, static_cast<size_t> (0));
Kokkos : : View<LO*> collndices ("column indices”, numLclEntries);

Kokkos : : View<double*> matrixValues ("matrix values”,
numLclEntries);

AW N o=

5
6 |// lterate over elements in parallel to fill the matrix
7 | Kokkos:: parallel_for (numLclElements,

8 KOKKOS_LAMBDA (const LO elt) {

9

const int IclRows = elt;
10
11 // Always add a diagonal matrix entry.
12 const size_t count =
13 Kokkos :: atomic_fetch_add (&rowCounts(IlclRows), 1);
14 collndices (rowOffsets(lclRows) + count) = IclRows;
15 Kokkos :: atomic_fetch_add (&matrixValues(rowOffsets(lclRows)
+ count) ,2.0);
16
17 1

National

Example - 2a) Create global maps for MPl communication) .

Tpetra objects

To generate Tpetra objects using local data (e.g. a local
Kokkos: : Graph), we have to provide the corresponding global
communication pattern in form of Tpetra: :Map objects.

For a Tpetra: :CrsMatrix we need

= a (non-overlapping) row map

= a (overlapping) column map

Example - 2a) Create global maps for MPl communication

N o R W N =

Generate a global non-overlapping row map

()

// Wrap the "raw” MPlI communicator for use in Tpetra.
RCP<const Teuchos::Comm<int> > comm =
rcp (new Teuchos::MpiCommint> (MPL_COMM_WORLD)) ;

const GO indexBase = 0;
RCP<const Tpetra::Map<> > rowMap =
rcp (new Tpetra::Map< (numGblElements, numLclElements,
indexBase, comm));

Use Tpetra: :Map with default template parameters

Sandia
lational
Laboratories

Example - 2b) Create global maps for MPI communication) .

Generate a global overlapping column map

// Create column map (using global column indices)

const LO num_col_inds = numLclElements;

Kokkos : : View<GO*> collnds (" Col Map”, num_col_inds);

auto IclRowMap = rowMap—>getLocalMap ();

Kokkos:: parallel_for (num_col_inds, KOKKOS_LAMBDA (const LO k) {
collnds (k) = IcIRowMap.getGlobalElement (k);

© 0 N oUW N =

10 |// Flag to tell Tpetra::Map to compute the global number of

11 |// indices in the Map.

12 | const Tpetra::global_size_t INV =

13 Teuchos:: OrdinalTraits<Tpetra:: global_size_t >::invalid ();

14 |// Soon, it will be acceptable to pass in a Kokkos::View here,
15 | // instead of a Teuchos::ArrayView.

16 | RCP<const Tpetra::Map<> > colMap =

17 rcp (new Tpetra::Map< (INV, Kokkos::Compat:: getConstArrayView
(collnds), indexBase, comm));

Example - 2c) Construct Tpetra::CrsMatrix @

Create the Tpetra: :CrsMatrix providing the row and column
map information and the local CSR data

Tpetra:: CrsMatrix<> A (rowMap, colMap,
rowOffsets, collndices, matrixValues);
A.fillComplete ();

The global matrix A is ready to use (e.g. for solvers)

Example - 2c) Construct Tpetra: :CrsMatrix G}

Create the Tpetra: :CrsMatrix providing the row and column
map information and the local CSR data

Tpetra:: CrsMatrix<> A (rowMap, colMap,
rowOffsets, collndices, matrixValues);
A.fillComplete ();

The global matrix A is ready to use (e.g. for solvers)

More information

The detailed example can be found here:
packages/tpetra/core/examples/Lesson07-Kokkos-Fill

A similar example can be found here:
packages/xpetra/test/CrsMatrix/CrsMatrix_UnitTests.cpp

@
National
Laboratories

Parallel Algebraic Multigrid

Algorithmic kernels of Algebraic Multigrid Methods

Parallel Algebraic Multigrid @ .

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = MPI 4+ X

Parallel Algebraic Multigrid @ .

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra 4+ Kokkos

Parallel Algebraic Multigrid @ .

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra 4+ Kokkos

Tpetra: Tpetra handles MPl communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Parallel Algebraic Multigrid @ .

Definition: Parallel (computer science)

Distribute problem over machine

Parallel = Tpetra 4+ Kokkos

Tpetra: Tpetra handles MPl communication and inter-node
parallelism

Kokkos: Kokkos handles on-node parallelism

Definition: Parallel (algorithms)

Parallel = Solve problems simultaneously instead of consecutively.

Sandia
National
Laboratories

@

igri

Parallel Algebraic Mult

Parallel Algebraic Multigrid

@
National
Laboratories

Two main components

m Smoothers

m “Cheap” reduction of
oscillatory error (high
energy)

m S = AL_1 on the coarsest
level L

Parallel Algebraic Multigrid @ .

Two main components
m Smoothers

m “Cheap” reduction of
oscillatory error (high
energy)

m S = AL_1 on the coarsest
level L

m Grid transfers (prolongators
and restrictors)

m Data movement between
S Ai = RiAi-1Pj levels
2 -
m Definition of coarse level
matrices.

Parallel Algebraic Multigrid - Algorithmic kernels

| Smoothers | Galerkin product

m Matrix-Vector » Coarsening/ag- m Matrix Matrix
products gregation Matrix (MMM)
= Polynomial m Matrix RICSUS: _
evaluation operations m Two Matrix
. = Matrix Matrix (MM)
m Matrix Matrix (MM) multiplica-
operations (ILU) s ezt tions
m Residual m Scaling m Scaling
evaluation operations operations

Linear Algebra kernels for multigrid

m Matrix-Vector multiplication i i o
m Matrix-Matrix multiplication

» Vector operations (norms,...)

@
National
Laboratories

AMG preconditioned Krylov solvers

How to use AMG preconditioned Krylov solvers
from Trilinos

Sandia
Krylov solvers in Trilinos ()

m Object-oriented interface for Aztec 2.1 package
m Support for Epetra only
m Contains CG, GMRES, BiCGstab, TFQMR

Belos:

m Modern C++4 implementation of Krylov solvers

m Native support for {E,T,X}petra through traits and
specializations

m Contains CG, GMRES, BiCGstab, TFQMR
m Actively supported

AMG packages in Trilinos) .

m Smoothed aggregation AMG in Trilinos
m Support for Epetra only

m Not actively developed any more

m Modern C++ multigrid framework in Trilinos
m Native support for {E,T}petra through Xpetra
m Runs on next generation HPC systems (MPI+4X)

Sandia
MueLu as a preconditioner in Belos) .

1) Prepare input

// Create A, B, X

Teuchos::RCP<Tpetra::CrsMatrix<> > A= ...;
Teuchos::RCP<Tpetra::MultiVector<> > B ce e
Teuchos::RCP<Tpetra::MultiVector<> > X 5oaf

F N
non

The multi vector B contains the RHS vector(s). The multi vector X
contains the initial guess.
2) Construct preconditioner

3) Construct problem

4) Set solver parameters

5) Solve problem

Sandia
MuelLu as a preconditioner in Belos [i

1) Prepare input

2) Construct preconditioner

1 |std::string optionsFile = "mueluOptions.xml";

2 | Teuchos::RCP<MueLu::TpetraOperator>
muelLuPreconditioner =

3 |MueLu::CreateTpetraPreconditioner (A, optionsFile);

The XML file contains the MueLu multigrid parameters (see MueLu
user guide for all options).

3) Construct problem

4) Set solver parameters

5) Solve problem

Sandia
MuelLu as a preconditioner in Belos [i

1) Prepare input
2) Construct preconditioner

3) Construct problem

Put all information together for Belos.

1 |[Belos::LinearProblem<> problem(A, X, B);
2> |problem->setLeftPrec (muelLuPreconditioner) ;
3 |bool set = problem.setProblem();

Belos supports left and/or right-preconditioning.

4) Set solver parameters

5) Solve problem

Sandia
MueLu as a preconditioner in Belos [i

1) Prepare input
2) Construct preconditioner

3) Construct problem

4) Set solver parameters

Set the Belos parameters. Refer to the Belos documentation for
all available options.

1 | Teuchos::ParameterList belosList;
2 |belosList.set("Maximum Iterations", 100);
3 |belosList.set ("Convergence Tolerance", le-T7);

5) Solve problem

Sandia
MuelLu as a preconditioner in Belos [.

1) Prepare input
2) Construct preconditioner
3) Construct problem

4) Set solver parameters

5) Solve problem

1 |Belos::BlockCGSolMgr<> solver (rcp(&problem,false),
rcp(&belosList ,false));
> |Belos::ReturnType ret = solver.solve();

Variable X contains the solution vector.

Sandia
MueLu Documentation () &,

m User’'s Guide (packages/muelu/doc/UsersGuide)

m Geared towards new users
m Complete list of user options (new options are caught
automatically)

® Tutorial: Download:
trilinos.org/packages/muelu/muelu-tutorial

m Examples and tests (packages/muelu/{examples,tests})

m Doxygen
Best used as reference for developers

Sandia
MueLu Tutorial and virtual machine [i

m PDF guide along with
interactive Python script

m Provides a step-by-step
tutorial for new Muelu users

The MUELU tuforial

with practical examples pems
m Easy to try multigrid a
methods
m Comes with a VirtualBox (o
image, no Trilinos The MueLu tutorial, SAND2014-18624 R
compilation

