The DARMA Approach to Asynchrond\Gs*¢ 327
Many-Task (AMT) Programming

Jeremiah J. Wilke, David S. Hollman, Nicole
Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Janine C. Bennett (PI), Robert L. Clay (PM)

=%, U.S. DEPARTMENT OF
&

PN T AT a7
‘O/ENERGY @ VA"

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SAND2016-0930 C

0000020000
[e]e]

Q0
0000
0000000

Q0
00

o]
[o]e]
Q0O
00
00
00
00
jole]
ele]

000000000000 00000000
0000000000000 00
09 200000000000000

00000® 2000000000000

000000000000000
00000

Asynchronous Many-Task (AMT) runtimes address key s
performance challenges posed by future architectures

National _
Laboratories

(Low Capacity, High Bandwidth)

= Performance challenges:

Y
3D Stacked (High Capacity,

= Utilizing whole machine o Banduey
requires more parallelism

Managing deep memory
hierarchies requires flexible
staging of data/assigning work

COMPUTER

Handling dynamic workloads -
requires erxibIe task scheduling Image courtesy of www.cal-design.org P LABORATORY

Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

Many-task: Chunks of work of "“correct” granularity that can be
flexibly assigned to different memory/execution spaces

Matrix assembly a priori knows all parallelism, but Sandia
managing/deriving parallelism is difficult

Laboratories

g = D200+ (1) R, = / (6Lt — Vi, - q + dlys] dO
Q

1

I_?i

uk

u’ P

Ghost exchange has fixed communication pattern

On-node DAG can be complex, but statically (semi-statically) known
Given data dependencies, compiler/runtime can maximize parallelism
App developer doesn’t really need to understand
execution/concurrency models if data model is good enough

Particle-in-cell (PIC) exhibits has dynamic data Sanda
distribution/load balancing challenges e

Particles migrate irregularly through cells
An idle cell may not STAY idle
Load-balancing problems for inhomogenous particle distributions

Some task parallelism, but major challenge is unknown parallelism
5

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

Sandia
National
Laboratories

Broad survey of many AMT runtime systems | RS

Deep dive on Charm++, Legion, Uintah
Programmability

= Does this runtime enable efficient
expression of our workloads?

Performance

= How performant is this runtime for our
workloads on current platforms?

= How well suited is this runtime to
address exascale challenges?

Mutability

= What is the ease of adopting this
runtime and modifying it to suit our
needs?

SANDIA REPORT
SAND2015-8312

Unlimited Release
Printed September 2015

ASC ATDM Level 2 Milestone #5325:
Asynchronous Many-Task Runtime System
Analysis and Assessment for Next
Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),

Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

Ryan Grant, 8i Hammond, Stephen Olivier (Performance Analysis)

Sandia National Laboratories

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm+)
University of llinois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)
Stanford University

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

Pat McCormick and Samuel Gutierrez (Tools)
Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)
Lawrence Livermore National Laboratory

Approved for public release; further dissemination uniimited.

@ Sandia National Laboratories

Lessons learned from study led to application-driven San
programming model specification co-design effort

National _
Laboratories

Data, task, and pipeline parallelism can be expressed in
different ways

= Explicit parallelism vs apparently sequential semantics

= Arbitrary data structures vs strong data model

= Runtime vs user-level control

= New language vs embedded in C/C++

Model should enhance performance, productivity, resilience
= Applications should not be (much) more difficult to write than MPI
= Make difficult things manageable, e.g. load balancing, fault-tolerance

Design space tradeoffs need further assessment prior to
committing to a single runtime
= Across variety of applications and architectures

= Further research required in some aspects of runtime (e.g., resource
management)

Sandia needs a software stack that supports diverse Sando
applications and provides performance portability

National _
Laboratories

Electromagnetic

Reentry Plasma

Applications

Embedded Mesh Matrix Solver
uQ Assembly 0
Libraries

(Sacado) SleE (Phalanx)

Runtime software

Sl Al e and hardware

Vendor-supported runtime system and standards are Sanda
N o o Laboratories
ideal but AMTs are still an active research area

We face a spectrum of choices/risks in developing technical roadmap

Build system from scratch Rely completely
and take ownership on external partners

Risk: current academic
runtimes may lack features
to support our workloads

Risk: potential lack of
vendor support/buy in

Lots of control, but lots Less control,
of extra investment but less investment

Sandia

DARMA is the reincarnation of DHARMA Ntional

Laboratories
= Distributed, Asynchronous, Resilient Models for
Applications

Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

Dhr is sanskrit meaning to hold, keep
Programming model concerns for fault-tolerance
similar to AMT

= Simplify reasoning about code correctness

= Latency hiding

= Recoverable (migratable) chunks of work

Sandia

DARMA is the reincarnation of DHARMA Ntional

Laboratories
= Distributed, Asynchronous, Resilient Models for
Applications

Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

Dhr is sanskrit meaning to hold, keep
Programming model concerns for fault-tolerance
similar to AMT

= Simplify reasoning about code correctness

= Latency hiding

= Recoverable (migratable) chunks of work

Noble Truths of HPC

e Alllife is suffering
 Qur desire for more flops is the
source of our suffering

0000020000
[e]e]

Q0
0000
0000000

Q0
00

o]
[o]e]
Q0O
00
00
00
00
jole]
ele]

O
OOO

Q00 OOOOOOOOO
OOOOgOOOOOOOOOOOOOOO

00000

000000000000

Sandia
National
Laboratories

The exascale software stack should NOT look like this

Is the only way to achieve exascale a
monolithic, tightly-coupled software stack?

Or can we have well-defined, independent
components?

Sandia
National

DARMA software stack separates policy and mechanism o

Higher Level

Applications)
Abstractions

DARMA Programming Model
Specification

Policy to Mechanism

DARMA Portability Layer Translation Layer

Mechanism

Runtime :
Implementation Layer

OS/Hardware

Policy: Express correctness and performance requirements
Mechanism: Implement correctness and performance requirements

Expression of policy enables runtime freedom to make sanda
complex performance-oriented decisions

Laboratories

Design Intent:

. . . . Applications DSL
= Applications specify policy

1) Express problem decomposition

. .
E na ble ra pld development into tasks and data dependencies
of correct im plementation 2) Express task ordering constraints

3) Express which data can be copied/
migrated to create more parallelism

= Applications can specify e for e ofl SISHOAS

2) ldentify synchronization requirements to Policy to Mechanism

mec h anism ensure correct task ordering Translation Layer
3) Identify memory/execution spaces that

" Ena b | eim proveme nt maximize a task’s concurrency/locality
towards performant 1) Handle events S

. . 2) Move data around system Imolementation Laver
mp lementation 3) Resource allocation and arbitration P y

OS/Hardware

The separation of policy and mechanism facilitates sanda
exploration of runtime design space

Laboratories

= AMT software stack working
group at Sandia
Electromagnetic

DAR MA Fizsnl Plasma
Embedded Matrix

Kokkos
Mesh Solver Higher Level
Data Warehouse/Kelpie Sacace) | oray [EEETOE L Libraries | [ENSCMAN

Sample Sandia Software Stack

Resource allocation and
management

Qthreads Kokkos Portability DARMA Portability Policy to Mechanism
Layer Layer Translation Layer

= |nitial implementation of stack
thlS year |everaging Cha rm++ Abstract Machine Model Resource Allocator

Mechanism

- Worklng Wlth Commun|ty tO CUDA Pthreads Qthreads Kelpie Implementation Laye

i OpenMP NSSI Ch
explore alternative stack pei arm-++

= OCR, REALM

[e]e]

00000000 ®00
CO0000000000

o]
o]
o
o
(o]
o]
o]
o]
(o]

o]
o]
000
0000
0000
000
(@]

O
O
O
Q0
(o]}
O

0000000000000 00000C
00000000

00000000
[o)alelele]s]

Q0000000
00000000

Q000000000
000000 0000000000000 00000!
Q0000000 0002 0000000000000 0!
0000000000000 Q0® 2000000
00000000000000 00000000000
00000880000088

8000OIOOOO

0000000000
00000000

Keep simple things simple, keep manageable things sanda
manageable , make difficult things manageable

Laboratories

= Simple/manageable
= SPMD launch and initial problem decomposition/distribution
= Collectives
= Basic checkpoint/restart fault recovery supported
= Application-specific data structures/layouts

= Difficult

Express/mix all forms of parallelism (data, pipeline, task)
Dynamic load balancing, work stealing

Data staging (software-managed cache)

Performance portability across execution spaces

Macro data-flow parallelism (parallelism within a task)

Sandia

The Ontology of DARMA: Axioms/assumptions of Neona
programming model derived from L2/co-design study

Laboratories

SPMD is the dominant parallelism

There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

The traditional MPI abstract machine model (uniform
compute elements, flat memory spaces) will get further and
further away from actual system architecture

There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling not
yet implemented in MPI/OpenMP that need more productive
programming model

Sandia
National
Laboratories

All parallel programming require four basic components

= Problem decomposition

= How to decompose data/work into tasks that might run in parallel

= Derive parallelism

= Safe to run parallel tasks based on data disjointness, read/write
permissions, or even use of atomics

= Figure out which tasks can run in parallel
= Work distribution

= How should tasks be distributed based on available parallelism and
data relationships

= Data movement

= Once tasks are assigned to compute units, data must be moved
between parallel compute units

Granularity of tasks is THE problem: Will parallelizing i) e
compilers ever succeed in distributed memory?

National _
Laboratories

The correct granularity for the problem decomposition has to
balance increased parallelism against increased overheads

Compilers really good at deriving parallelism

= Compilers understand read/write conflicts on registers

= Can derive a lot of instruction-level parallelism
Humans better at decomposing problems, worse at
generating correct code

= Compilers do not understand “big picture’’ of data partitioning

= Difficult for humans to reason about and write explicitly parallel code
Is there an optimal human/compiler hybrid?

= Humans choose decomposition that compiler/runtime works with

= Compilers/runtime use problem decomposition to generate correct
and performant parallelism

Balancing the promise of sequential semantics against Sadia
the peril of poor performance
= “|deal” programming model must choose semantics that
makes it possible to verify and optimize code

Sequential semantics makes code correctness easier

Laboratories

Mapping sequential semantics to parallel execution is easiest
with strict tasks, which limits scalability

Strict fork-join No strictness (allowed in MPI)

Sandia
National

SPMD is the nightmare scenario for sequential semantics ibomiaes

SPMD task graph
No strictness (allowed in MPI)

Specific design choices try to mix best parts of humans Sanda
° ° ° Laboratories
with best parts of compilers/runtimes

Humans are responsible for problem decomposition

Humans are responsible for SPMD parallelism using
explicitly parallel semantics

Humans do not explicitly express task parallelism, rely on
apparently sequential semantics

Compilers/runtime are responsible for deriving on-node
task parallelism from sequential semantics

Compilers/runtime are responsible for deferring/re-ordering
tasks to achieve communication/computation overlap

0000020000
[e]e]

Q0
0000
0000000

Q0
00

o]
[o]e]
Q0O
00
00
00
00
jole]
ele]

Q0000 Q
000000000000 0000000
0000000000 00000000
00000000000000000000
000000000000000000
000000000000

Sandia

Use read/write conflicts to derive task parallelism from Natonal
sequential semantics and build operations/task DAG

RAW
Conflict

RAW = Read-after-write
WAR = Write-after-read

Lambda capture/copy constructors of Handle objects
allows runtime to derive parallelism

typedef AccessHandle<int> IntPtr;
IntPtr a;
IntPtr b;

deferred_work(reads(a),writes(b), [=1[
b += xa;

)

deferred_workl(reads(b),reads(a), [=I[
printf("added a=%d to get b=%d\n", *a, *b);

H)

deferred_work(writes(a), [=1[
a = 5;

H)

Sandia
National _
Laboratories

Sandia

Lambda capture/copy constructors of Handle objects Natonal
allows runtime to derive parallelism

typedef AccessHandle<int> IntPtr;
IntPtr a;
IntPtr b;

deferred_work(reads(a),writes(b), [=1[
b += xa;

H Read-after-write dependence on b

deferred_work{reads(b),reads(a), [=1[
IIprintf(“added a=%d to get b=%d\n", *xa, *b);
)

Write-after-read dependence on a

deferred_work(writes(a), [=I[
a = 5;

H)

Copy constructors are mechanism for building arbitrary sanda
operations graph directly in C++11

Laboratories

AccessHandle: :AccessHandle(AccessHandle& prev)
{
darma::runtimex rt = prev.runtime();
schedule_state_t state = prev.scheduleState();
switch (state)
{
case Read_Read:
rt->addReadAfterReadEdge(...)
break;
case Read_Write:
rt->addReadAfterWriteEdge(...)
break;
case Write_Read:
rt—->addWriteAfterReadEdge(...)
break:

Sandia

Explicit parallel launch to produce independent Natoral
execution streams: “coordinating” sequential processes

MPI Send(...) —-> publish(key={..}, readers={..})
MPI Recv(...) —-> fetch(key={..}), read access(key={..})

int main(int argc, charkk argv) . . oo main()
; _
int rank, size; {

MPI_Init(&argc, &argv); : . g d size():
MPI_Comm_rank(comm, &rank); int size = darma_spm L
MPI_Comm_size(comm, &size); AccessHandle<int> data;

if (rank —_— a){ if (rank == 0){

MPI Send(...) data.publish(...);
} else { } else {
MPI_Recv(...) data.fetch(...);
} }
} }

int rank = darma_spmd_rank();

Sandia

Explicit parallel launch to produce independent Natoral
execution streams: “coordinating” sequential processes

MPI Send(...) —-> publish(key={..}, readers={..})
MPI Recv(...) —-> fetch(key={..}), read access(key={..})

Data in distributed memory not allowed to be ""anonymous”’
No message-ordering semantics

All data must be explicitly published with unique name in tuple
space (key-value store)

Program expresses all true dependencies (RAW) via unique keys

Extra concept of “readership” and “versions” allows efficient
data reuse, zero-copy transfers, in-place updates

Extended coordination semantics for explicit parallelism bl
(usually SPMD)

Process 0:

DoublePtr residual = initial_access<double>("res");
DoublePtr vec® = read_access<vector<double>>("block", 0);
DoublePtr vecl = read_access<vector<double>>("block", 1);
deferred_work([=]1[i

ddot(residual.get(), vec@.get(), vecl.get(), vec@.size());

HE

Process 1:
int nelems = 100;
DoublePtr vec = initial_access<vector<double>>("block", 0);
deferred_work([=1[

auto& v = vec.get();

v.resize(nelems);

for (int i=0; i < nelems; ++i)i

v[i] = rand();

H
H
vec.publish()

Sandia

Extended coordination semantics enables explicit National _
SPMD parallelism

typedef AccessHandle<double> DoublePtr;
typedef AccessHandle<vector<double>> DoubleArray;

1. AccessHandle is a lightweight wrapper (aka smart pointer)
that can be freely copied with minimal cost

2. AccessHandle is unique to a task — each task gets its own
copy of the handle with different read/write privileges,
memory space, any other relevant metadata

3. Multiple AccessHandle instances can point to same data.
Each handle gets a unique identifier (key) for its data block.

auto& v = vec. get().

W re51ze(ne1ems).

for (int i=0; i < nelems; ++i)fi
v[i]l = rand();

}
)

vec.publish()

Copy constructors are mechanism for building arbitrary

operations graph directly in C++11

AccessHandle: :AccessHandle(AccessHandle& prev)

{

darma::runtimex rt = prev.runtime();

if (prev.memorySpace() !'= this->memorySpace()){
rt->addDataStagingEdge(...);

2".level memory

HIGH BANDPAIDTH HIGH BANDWIDTH ikhilia
1%level GRAPHICS MERMOGSY GRAFHICS MEMDRY BANCWIDTH LARGE
evel memory EYSTEM MEMDEY

Sandia
National
Laboratories

Sandia
National
Laboratories

Key-Value Store
(Data Warehouse)

Get/put ops

Execution Stream that
forks task parallelism

Key-Value Store
(Data Warehouse)

National

Sandia
Quick summary of programming model design L f

Application controls initial problem decomposition/distribution
through coordination

= Explicit parallelism at user-level

Extra task/pipeline parallelism added through read/write
qualifiers and task annotations

= Implicit parallelism compliant with sequential semantics
Embedded in C++11 — no compiler support needed

Global memory space (tuple space/key-value store) instead of a
global address space

National

m Sandia
F u t u re WO r k Laboratories

Data staging — use Lambda capture/copy operations to start data
movement to GPU/high-bandwidth memory if data not resident

Work stealing algorithms

= Data exists in global memory space, not global address space

= Data can be safely migrated to other address spaces
Elastic (parallel) tasks

= DARMA not designed to exploit fine-grained data parallelism

= Still need CUDA/Kokkos/OpenMP for multi-threading within a task
Macro data-flow scheduling

= Task graph can run ahead of execution
= Run scheduling heuristics on tasks graph to choose best schedule

Sandia
Acknowledgments)t

This work was supported by the U.S. Department of Energy (DOE) National Nuclear
Security Administration (NNSA) Advanced Simulation and Computing program and the
DOE Office of Advanced Scientific Computing Research. SNL is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the DOE NNSA under contract DE-AC04-

94AL85000.

NS

National Nuclear Security Administration

Sandia
National
Laboratories

0000000000800

00000+ 0000000

IeS

Sandia
Nationa
Laborator

00000000C000000C0000
0000000000000000000

000000000000000000
000000000000 000
0000000000000 000
00000000000 =000

00000

00000000000
0000000000000
00000000000

000000000

o]
O
o]
o]
o]
o]
O
o]
o]
o]

000000000000000000
0000000000000 000000
00000000000000000000
Q0000000000000 00000

O
O
o]
O
o]
O
O
o]
o]
o]
o]
O
O

0000000000000

ional interest

Exceptional service in the nat

