
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The DARMA Approach to Asynchronous

Many-Task (AMT) Programming

Jeremiah J. Wilke, David S. Hollman, Nicole
Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Janine C. Bennett (PI), Robert L. Clay (PM)

SAND2016-0930 C

SAND2016-3270PE

CHAPTER 1:
THE ORIGIN STORY

Asynchronous Many-Task (AMT) runtimes address key
performance challenges posed by future architectures

 Performance challenges:

 Utilizing whole machine
requires more parallelism

 Managing deep memory
hierarchies requires flexible
staging of data/assigning work

 Handling dynamic workloads
requires flexible task scheduling

 Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

 Many-task: Chunks of work of ``correct’’ granularity that can be
flexibly assigned to different memory/execution spaces

Image courtesy of www.cal-design.org

Matrix assembly a priori knows all parallelism, but
managing/deriving parallelism is difficult

4

• Ghost exchange has fixed communication pattern
• On-node DAG can be complex, but statically (semi-statically) known
• Given data dependencies, compiler/runtime can maximize parallelism
• App developer doesn’t really need to understand

execution/concurrency models if data model is good enough

Particle-in-cell (PIC) exhibits has dynamic data
distribution/load balancing challenges

5

• Particles migrate irregularly through cells
• An idle cell may not STAY idle
• Load-balancing problems for inhomogenous particle distributions
• Some task parallelism, but major challenge is unknown parallelism

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability

 Does this runtime enable efficient
expression of our workloads?

 Performance

 How performant is this runtime for our
workloads on current platforms?

 How well suited is this runtime to
address exascale challenges?

 Mutability

 What is the ease of adopting this
runtime and modifying it to suit our
needs?

Lessons learned from study led to application-driven
programming model specification co-design effort

7

 Data, task, and pipeline parallelism can be expressed in
different ways
 Explicit parallelism vs apparently sequential semantics

 Arbitrary data structures vs strong data model

 Runtime vs user-level control

 New language vs embedded in C/C++

 Model should enhance performance, productivity, resilience
 Applications should not be (much) more difficult to write than MPI

 Make difficult things manageable, e.g. load balancing, fault-tolerance

 Design space tradeoffs need further assessment prior to
committing to a single runtime
 Across variety of applications and architectures

 Further research required in some aspects of runtime (e.g., resource
management)

Sandia needs a software stack that supports diverse
applications and provides performance portability

8

Runtime software
and hardware

Applications

What goes here?!?!?!?

Vendor-supported runtime system and standards are
ideal but AMTs are still an active research area

9

Build system from scratch
and take ownership

Rely completely
on external partners

Lots of control, but lots
of extra investment

Less control,
but less investment

Risk: current academic
runtimes may lack features

to support our workloads

Risk: potential lack of
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap

DARMA is the reincarnation of DHARMA

 Distributed, Asynchronous, Resilient Models for
Applications

 Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

 Dhr is sanskrit meaning to hold, keep

 Programming model concerns for fault-tolerance
similar to AMT
 Simplify reasoning about code correctness

 Latency hiding

 Recoverable (migratable) chunks of work

10

DARMA is the reincarnation of DHARMA

 Distributed, Asynchronous, Resilient Models for
Applications

 Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

 Dhr is sanskrit meaning to hold, keep

 Programming model concerns for fault-tolerance
similar to AMT
 Simplify reasoning about code correctness

 Latency hiding

 Recoverable (migratable) chunks of work

11

Noble Truths of HPC
• All life is suffering
• Our desire for more flops is the

source of our suffering

CHAPTER 2:
THE HIGH-LEVEL TECHNICAL STORY

The exascale software stack should NOT look like this

13

Is the only way to achieve exascale a
monolithic, tightly-coupled software stack?

Or can we have well-defined, independent
components?

DARMA software stack separates policy and mechanism

Policy: Express correctness and performance requirements
Mechanism: Implement correctness and performance requirements

Expression of policy enables runtime freedom to make
complex performance-oriented decisions

Design Intent:

 Applications specify policy
 Enable rapid development

of correct implementation

 Applications can specify
mechanism
 Enable improvement

towards performant
implementation

The separation of policy and mechanism facilitates
exploration of runtime design space

 AMT software stack working
group at Sandia

 DARMA

 Kokkos

 Data Warehouse/Kelpie

 Resource allocation and
management

 Qthreads

 Initial implementation of stack
this year leveraging Charm++

 Working with community to
explore alternative stack
implementations

 OCR, REALM
16

Sample Sandia Software Stack

CHAPTER 3:
PHILOSOPHY OF PROGRAMMING MODELS

Keep simple things simple, keep manageable things
manageable , make difficult things manageable

 Simple/manageable

 SPMD launch and initial problem decomposition/distribution

 Collectives

 Basic checkpoint/restart fault recovery supported

 Application-specific data structures/layouts

 Difficult

 Express/mix all forms of parallelism (data, pipeline, task)

 Dynamic load balancing, work stealing

 Data staging (software-managed cache)

 Performance portability across execution spaces

 Macro data-flow parallelism (parallelism within a task)

The Ontology of DARMA: Axioms/assumptions of
programming model derived from L2/co-design study

19

 SPMD is the dominant parallelism

 There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

 Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

 The traditional MPI abstract machine model (uniform
compute elements, flat memory spaces) will get further and
further away from actual system architecture

 There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling not
yet implemented in MPI/OpenMP that need more productive
programming model

All parallel programming require four basic components

20

 Problem decomposition
 How to decompose data/work into tasks that might run in parallel

 Derive parallelism
 Safe to run parallel tasks based on data disjointness, read/write

permissions, or even use of atomics

 Figure out which tasks can run in parallel

 Work distribution
 How should tasks be distributed based on available parallelism and

data relationships

 Data movement
 Once tasks are assigned to compute units, data must be moved

between parallel compute units

Granularity of tasks is THE problem: Will parallelizing
compilers ever succeed in distributed memory?

 The correct granularity for the problem decomposition has to
balance increased parallelism against increased overheads

 Compilers really good at deriving parallelism
 Compilers understand read/write conflicts on registers

 Can derive a lot of instruction-level parallelism

 Humans better at decomposing problems, worse at
generating correct code
 Compilers do not understand “big picture’’ of data partitioning

 Difficult for humans to reason about and write explicitly parallel code

 Is there an optimal human/compiler hybrid?
 Humans choose decomposition that compiler/runtime works with

 Compilers/runtime use problem decomposition to generate correct
and performant parallelism

21

Balancing the promise of sequential semantics against
the peril of poor performance

 ‘’Ideal’’ programming model must choose semantics that
makes it possible to verify and optimize code

 Sequential semantics makes code correctness easier

 Mapping sequential semantics to parallel execution is easiest
with strict tasks, which limits scalability

22
Strict fork-join No strictness (allowed in MPI)

SPMD is the nightmare scenario for sequential semantics

23

Strict fork-join

No strictness (allowed in MPI)
SPMD task graph

Specific design choices try to mix best parts of humans
with best parts of compilers/runtimes

 Humans are responsible for problem decomposition

 Humans are responsible for SPMD parallelism using
explicitly parallel semantics

 Humans do not explicitly express task parallelism, rely on
apparently sequential semantics

 Compilers/runtime are responsible for deriving on-node
task parallelism from sequential semantics

 Compilers/runtime are responsible for deferring/re-ordering
tasks to achieve communication/computation overlap

CHAPTER 4:
THE DETAILED TECHNICAL STORY

26

Use read/write conflicts to derive task parallelism from
sequential semantics and build operations/task DAG

=

Task

Data

RAW = Read-after-write
WAR = Write-after-read

27

Lambda capture/copy constructors of Handle objects
allows runtime to derive parallelism

28

Lambda capture/copy constructors of Handle objects
allows runtime to derive parallelism

Read-after-write dependence on b

Write-after-read dependence on a

Copy constructors are mechanism for building arbitrary
operations graph directly in C++11

29

Explicit parallel launch to produce independent
execution streams: “coordinating” sequential processes

30

MPI_Send(...) -> publish(key={…}, readers={…})

MPI_Recv(...) -> fetch(key={…}), read_access(key={…})

Explicit parallel launch to produce independent
execution streams: “coordinating” sequential processes

MPI_Send(...) -> publish(key={…}, readers={…})

MPI_Recv(...) -> fetch(key={…}), read_access(key={…})

 Data in distributed memory not allowed to be ``anonymous’’

 No message-ordering semantics

 All data must be explicitly published with unique name in tuple
space (key-value store)

 Program expresses all true dependencies (RAW) via unique keys

 Extra concept of “readership” and “versions” allows efficient
data reuse, zero-copy transfers, in-place updates

31

32

Extended coordination semantics for explicit parallelism
(usually SPMD)

33

Extended coordination semantics enables explicit
SPMD parallelism

1. AccessHandle is a lightweight wrapper (aka smart pointer)
that can be freely copied with minimal cost

2. AccessHandle is unique to a task – each task gets its own
copy of the handle with different read/write privileges,
memory space, any other relevant metadata

3. Multiple AccessHandle instances can point to same data.
Each handle gets a unique identifier (key) for its data block.

34

Copy constructors are mechanism for building arbitrary
operations graph directly in C++11

35

Key-Value Store
(Data Warehouse)

Execution Stream that
forks task parallelism

Get/put ops

36

Key-Value Store
(Data Warehouse)

Get/put ops

Not so different from
MPI + OpenMP….

Quick summary of programming model design

 Application controls initial problem decomposition/distribution
through coordination
 Explicit parallelism at user-level

 Extra task/pipeline parallelism added through read/write
qualifiers and task annotations
 Implicit parallelism compliant with sequential semantics

 Embedded in C++11 – no compiler support needed

 Global memory space (tuple space/key-value store) instead of a
global address space

Future work

 Data staging – use Lambda capture/copy operations to start data
movement to GPU/high-bandwidth memory if data not resident

 Work stealing algorithms
 Data exists in global memory space, not global address space

 Data can be safely migrated to other address spaces

 Elastic (parallel) tasks
 DARMA not designed to exploit fine-grained data parallelism

 Still need CUDA/Kokkos/OpenMP for multi-threading within a task

 Macro data-flow scheduling
 Task graph can run ahead of execution

 Run scheduling heuristics on tasks graph to choose best schedule

38

Acknowledgments
This work was supported by the U.S. Department of Energy (DOE) National Nuclear
Security Administration (NNSA) Advanced Simulation and Computing program and the
DOE Office of Advanced Scientific Computing Research. SNL is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the DOE NNSA under contract DE-AC04-

94AL85000.

