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CHAPTER 1: 
THE ORIGIN STORY



Asynchronous Many-Task (AMT) runtimes address key 
performance challenges posed by future architectures

 Performance challenges:

 Utilizing whole machine 
requires more parallelism

 Managing deep memory 
hierarchies requires flexible 
staging of data/assigning work

 Handling dynamic workloads 
requires flexible task scheduling

 Asynchronous: express all possible parallelism and minimize/hide 
communication/scheduling latency

 Many-task: Chunks of work of ``correct’’ granularity that can be 
flexibly assigned to different memory/execution spaces
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Matrix assembly a priori knows all parallelism, but 
managing/deriving parallelism is difficult
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• Ghost exchange has fixed communication pattern
• On-node DAG can be complex, but statically (semi-statically) known
• Given data dependencies, compiler/runtime can maximize parallelism
• App developer doesn’t really need to understand 

execution/concurrency models if data model is good enough



Particle-in-cell (PIC) exhibits has dynamic data 
distribution/load balancing challenges
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• Particles migrate irregularly through cells
• An idle cell may not STAY idle
• Load-balancing problems for inhomogenous particle distributions
• Some task parallelism, but major challenge is unknown parallelism



Sandia led a comparative analysis study of leading AMT 
runtimes to inform our technical roadmap

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability

 Does this runtime enable efficient 
expression of our workloads?

 Performance

 How performant is this runtime for our 
workloads on current platforms?

 How well suited is this runtime to 
address exascale challenges?

 Mutability

 What is the ease of adopting this 
runtime and modifying it to suit our 
needs?



Lessons learned from study led to application-driven 
programming model specification co-design effort 
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 Data, task, and pipeline parallelism can be expressed in 
different ways
 Explicit parallelism vs apparently sequential semantics

 Arbitrary data structures vs strong data model

 Runtime vs user-level control

 New language vs embedded in C/C++

 Model should enhance performance, productivity, resilience
 Applications should not be (much) more difficult to write than MPI

 Make difficult things manageable, e.g. load balancing, fault-tolerance

 Design space tradeoffs need further assessment prior to 
committing to a single runtime
 Across variety of applications and architectures

 Further research required in some aspects of runtime (e.g., resource 
management)



Sandia needs a software stack that supports diverse 
applications and provides performance portability
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Runtime software 
and hardware

Applications

What goes here?!?!?!?



Vendor-supported runtime system and standards are 
ideal but AMTs are still an active research area
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Build system from scratch 
and take ownership

Rely completely 
on external partners

Lots of control, but lots 
of extra investment

Less control, 
but less investment

Risk: current academic 
runtimes may lack features 

to support our workloads

Risk:  potential lack of 
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap



DARMA is the reincarnation of DHARMA

 Distributed, Asynchronous, Resilient Models for 
Applications

 Originally fault-tolerance: Distributed Hash Array 
for Resilience in Massively parallel Applications

 Dhr is sanskrit meaning to hold, keep

 Programming model concerns for fault-tolerance 
similar to AMT
 Simplify reasoning about code correctness

 Latency hiding

 Recoverable (migratable) chunks of work
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Noble Truths of HPC
• All life is suffering
• Our desire for more flops is the 

source of our suffering



CHAPTER 2: 
THE HIGH-LEVEL TECHNICAL STORY



The exascale software stack should NOT look like this
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Is the only way to achieve exascale a 
monolithic, tightly-coupled software stack?

Or can we have well-defined, independent 
components?



DARMA software stack separates policy and mechanism

Policy: Express correctness and performance requirements
Mechanism: Implement correctness and performance requirements



Expression of policy enables runtime freedom to make 
complex performance-oriented decisions

Design Intent:

 Applications specify policy
 Enable rapid development 

of correct implementation

 Applications can specify 
mechanism
 Enable improvement 

towards performant
implementation



The separation of policy and mechanism facilitates 
exploration of runtime design space

 AMT software stack working 
group at Sandia

 DARMA

 Kokkos

 Data Warehouse/Kelpie

 Resource allocation and 
management

 Qthreads

 Initial implementation of stack 
this year leveraging Charm++

 Working with community to 
explore alternative stack 
implementations

 OCR, REALM
16

Sample Sandia Software Stack



CHAPTER 3: 
PHILOSOPHY OF PROGRAMMING MODELS



Keep simple things simple, keep manageable things 
manageable , make difficult things manageable 

 Simple/manageable

 SPMD launch and initial problem decomposition/distribution

 Collectives

 Basic checkpoint/restart fault recovery supported

 Application-specific data structures/layouts

 Difficult

 Express/mix all forms of parallelism (data, pipeline, task)

 Dynamic load balancing, work stealing

 Data staging (software-managed cache)

 Performance portability across execution spaces

 Macro data-flow parallelism (parallelism within a task)



The Ontology of DARMA: Axioms/assumptions of 
programming model derived from L2/co-design study
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 SPMD is the dominant parallelism 

 There will too much compute (parallelism) available in the 
hardware for basic data parallelism to fill

 Extra asynchrony should not complicate reasoning about 
application correctness (intuitive semantics, debugging tools)

 The traditional MPI abstract machine model (uniform 
compute elements, flat memory spaces) will get further and 
further away from actual system architecture

 There exist many applications/algorithms with dynamic load 
balance, dynamic sparsity, or complex workflow coupling not 
yet implemented in MPI/OpenMP that need more productive 
programming model



All parallel programming require four basic components
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 Problem decomposition
 How to decompose data/work into tasks that might run in parallel

 Derive parallelism
 Safe to run parallel tasks based on data disjointness, read/write 

permissions, or even use of atomics

 Figure out which tasks can run in parallel

 Work distribution
 How should tasks be distributed based on available parallelism and 

data relationships

 Data movement
 Once tasks are assigned to compute units, data must be moved 

between parallel compute units



Granularity of tasks is THE problem: Will parallelizing 
compilers ever succeed in distributed memory?

 The correct granularity for the problem decomposition has to 
balance increased parallelism against increased overheads

 Compilers really good at deriving parallelism
 Compilers understand read/write conflicts on registers

 Can derive a lot of instruction-level parallelism

 Humans better at decomposing problems, worse at 
generating correct code
 Compilers do not understand “big picture’’ of data partitioning

 Difficult for humans to reason about and write explicitly parallel code

 Is there an optimal human/compiler hybrid?
 Humans choose decomposition that compiler/runtime works with

 Compilers/runtime use problem decomposition to generate correct
and performant parallelism
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Balancing the promise of sequential semantics against 
the peril of poor performance

 ‘’Ideal’’ programming model must choose semantics that 
makes it possible to verify and optimize code

 Sequential semantics makes code correctness easier

 Mapping sequential semantics to parallel execution is easiest 
with strict tasks, which limits scalability
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Strict fork-join No strictness (allowed in MPI)



SPMD is the nightmare scenario for sequential semantics
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Strict fork-join

No strictness (allowed in MPI)
SPMD task graph



Specific design choices try to mix best parts of humans 
with best parts of compilers/runtimes

 Humans are responsible for problem decomposition

 Humans are responsible for SPMD parallelism using 
explicitly parallel semantics

 Humans do not explicitly express task parallelism, rely on 
apparently sequential semantics

 Compilers/runtime are responsible for deriving on-node 
task parallelism from sequential semantics

 Compilers/runtime are responsible for deferring/re-ordering 
tasks to achieve communication/computation overlap



CHAPTER 4: 
THE DETAILED TECHNICAL STORY
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Use read/write conflicts to derive task parallelism from 
sequential semantics and build operations/task DAG

=

Task

Data

RAW = Read-after-write
WAR = Write-after-read
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Lambda capture/copy constructors of Handle objects 
allows runtime to derive parallelism
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Lambda capture/copy constructors of Handle objects 
allows runtime to derive parallelism

Read-after-write dependence on b

Write-after-read dependence on a



Copy constructors are mechanism for building arbitrary 
operations graph directly in C++11
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Explicit parallel launch to produce independent 
execution streams: “coordinating” sequential processes
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MPI_Send(...) -> publish(key={…}, readers={…})

MPI_Recv(...) ->  fetch(key={…}), read_access(key={…})



Explicit parallel launch to produce independent 
execution streams: “coordinating” sequential processes

MPI_Send(...) -> publish(key={…}, readers={…})

MPI_Recv(...) ->  fetch(key={…}), read_access(key={…})

 Data in distributed memory not allowed to be ``anonymous’’

 No message-ordering semantics

 All data must be explicitly published with unique name in tuple 
space (key-value store)

 Program expresses all true dependencies (RAW) via unique keys

 Extra concept of “readership” and “versions” allows efficient 
data reuse, zero-copy transfers, in-place updates
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Extended coordination semantics for explicit parallelism 
(usually SPMD)
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Extended coordination semantics enables explicit 
SPMD parallelism

1. AccessHandle is a lightweight wrapper (aka smart pointer) 
that can be freely copied with minimal cost

2. AccessHandle is unique to a task – each task gets its own 
copy of the handle with different read/write privileges, 
memory space, any other relevant metadata

3. Multiple AccessHandle instances can point to same data. 
Each handle gets a unique identifier (key) for its data block.



34

Copy constructors are mechanism for building arbitrary 
operations graph directly in C++11
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Key-Value Store
(Data Warehouse)

Execution Stream that 
forks task parallelism

Get/put ops
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Key-Value Store
(Data Warehouse)

Get/put ops

Not so different from 
MPI + OpenMP….



Quick summary of programming model design

 Application controls initial problem decomposition/distribution  
through coordination
 Explicit parallelism at user-level

 Extra task/pipeline parallelism added through read/write 
qualifiers and task annotations
 Implicit parallelism compliant with sequential semantics

 Embedded in C++11 – no compiler support needed

 Global memory space (tuple space/key-value store) instead of a 
global address space



Future work

 Data staging – use Lambda capture/copy operations to start data 
movement to GPU/high-bandwidth memory if data not resident

 Work stealing algorithms 
 Data exists in global memory space, not global address space

 Data can be safely migrated to other address spaces

 Elastic (parallel) tasks
 DARMA not designed to exploit fine-grained data parallelism

 Still need CUDA/Kokkos/OpenMP for multi-threading within a task

 Macro data-flow scheduling
 Task graph can run ahead of execution

 Run scheduling heuristics on tasks graph to choose best schedule
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