
Error‐Corrected Computing

Erik P. DeBenedictis, Center for Computing Research, Sandia
Hans Zima, Jet Propulsion Laboratory, Caltech
Presentation at Georgia Tech, May 21, 2015

1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for Unclassified Unlimited Release
Tracking number 275883

SAND2016-3158PE

Precisely
where is
the end?

Future of CMOS

2

Supply voltage (originally, time as well)
.1V .5V .25V .125V

Log energy in units of kT ≈

4zJ
at room temperature

10,000 kT

100 kT
20 kT

MOSFET total
Energy/signal
or gate-op MOSFET

leakage
current

Reliability limit no ECC
perror = e-100Reliability

limit with
ECC

Energy
per gate or
signal

1,000 kT

Industry stuck in local minimum due to leakage current
Scaling resumes someday to reliability limit (10x‐100x energy)

Exascale reliability requirement

100000 Gates-ops per floating point op where an error would cause a wrong answer
1.00E+18 ops/second (definition of Exascale)

60 seconds per minue
60 minutes per hour
24 hours per day

365 days per year
3 years for a computer's lifetime (before it becomes obsolete)

9.46E+30 number of gate operations per lifetime where an error would cause a wrong answer
71.33211 If we have Esignal equal this many kT's, error rate will be inverse of previous line

Say an operation is this many gate-ops 1000 20000 1.00E+05 1.00E+06 1.00E+18
Steps in lifetime (serial and parallel) 9.46E+27 4.73E+26 9.46E+25 9.46E+24 9.46E+12

RRNS using system in Watson and Hastings
Gate ops per residue (four non-redundant residue 250 5000 25000 250000 2.5E+17
perror target for exaflops over lifetime 1 1 1 1 1
perror per step 1.06E-28 2.11E-27 1.06E-26 1.06E-25 1.06E-13
perror per residue; 3 errors in a step must go unde 7.02E-09 1.91E-08 3.26E-08 7.02E-08 7.02E-04
Es = this many kTs will meet reliability in line abov 24.30 26.30 27.37 28.90 47.33

Energy savings 2.94 2.71 2.61 2.47 1.51
However, we need 6 total residues, not 4 1.96 1.81 1.74 1.65 1.00

Additional beneficial factors
Fixes Cosmic Ray hits
Fixes weak and aging components
Could support overclocking; i. e. catches an "excessive overclocking" error

At stake? Maybe one generation

3

Scaling will not stop
abruptly, but it will be
stopped by an exponential
rise in error rate with
declining energy
But how much energy
efficiency improvement is
possible if we can tolerate
errors? Spreadsheet

No ECC 71 kT
ECC scenarios
24 kT – 28 kT
2:1 after overhead, +/‐

A trillion dollar
question

4

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

Plan for scaling from Theis

and Solomon

5

Conventional Logic: Reduce the stored energy ½CV2. For conventional FETs, as V
approaches a small multiple of kT/e, we must accept reduction in switching speed.
New device concepts, discussed below, may allow more significant reduction in V
and facilitate the reduction of stored energy towards kT. As thermal voltage
fluctuations become significant, we must incorporate redundancy and error correction
in the logic to keep the error rate in bounds. Refrigeration can reduce T, but in a
power-constrained environment, this only makes economic sense if the total power
needed to perform the computation is reduced, including the power for refrigeration.

Both from Theis, Thomas N., and Paul M. Solomon. "In Quest of the" Next Switch": Prospects for Greatly
Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor." Proceedings of the IEEE 98.12
(2010): 2005-2014.

Since Johnson–Nyquist voltage noise is Gaussian with a standard deviation of Vn , a
stored logic voltage of m standard deviations, or a stored energy of m2kT, would be
needed to achieve a reliability of ½Erfc[m/√2]. (Eight standard deviations give an
error probability of ~10-15.)

perror = ½Erfc[m/√2] ≈

exp(-Esignal / kT)

Circuit explanation

6

C

C

V

Signal = Esignal = CV2, where C is wire + fanout × Cgate
Noise power is 2fkT
Noise energy Enoise ~ kT/clock cycle
SNR is ~ CV2 / kT
perror = exp(‐Esignal / kT) = exp(‐CV2 / kT)

Timing:
Assume clock rate ≈

1/f

Exponentially
converging
signal

Noise can be
averaged out in
quadratic
time

E

Circuit:

(Oversimplification, every node will have a different C and fanout. Does not change conclusion.)

Backup: Alternate explanation
 using channel capacity

7

Bandwidth‐independent channel capacity

(Ref: http://www.dip.ee.uct.ac.za/~nicolls/lectures/eee482f/04_chancap.pdf).

C = B log2 (1 + S / (BkT)) = S / (kT) log2 (1 + S / (BkT) BkT/S,

where C is channel capacity (bits/second); B is bandwidth; S is signal power; k is
Boltzmann’s constant; T is temperature. Note limx 0 (1+x)1/x = e.

C∞

= limB ∞ C = (log2e) S / (kT)

In our terms, in a clock period (or any arbitrary time) Nbits = (log2 e) Esignal / (kT)

However Nbits = log2 (1/p) = ln(1/p) / ln 2, where p is the probability of a 0 or 1.
Rearrange to ln(1/p) / ln(2) = Nbits = Esignal / (kT ln 2) and exponentiate to get

p = exp(-Esignal / kT)

Which is perror if we were expecting a specific value

N is the number of gates with a
sensitized path to an output of
the circuit; errors in other gates
are said to be “masked.”

If industry succeeds in finding the
“millivolt switch”…
We should be able to power a
chip at changeable voltage V
This will create esignal = CV2

With C potentially different for
each node (wire)

This will lead to circuits where

However, the previous equation
is oversimplified. Every node or
net in a chip will have a slightly
different energy efficiency. So say

Computer model to exploit
 energy‐reliability tradeoff

8

Energy per

operation esignal

N

gates w/sensitized path

out

perror

= N

exp(‐esignal

/ kT)

V
DAC

perror

= αN

exp(‐β esignal

)

m

Logic
blocks

Reference
gate

9

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

Limits of logic error correction

10

Energy per

operation esignal

N

gates w/sensitized path

out

perror

= N

exp(‐esignal

/ kT) pundetected

=
N

N2

exp(‐esignal

/ kT)2
≤

(could be equal)

fault
Energy per

operation esignal

N gates w/sensitized path

Energy per

operation esignal

N gates w/sensitized path
compare

out

Comparator

energy is

ignored

Which is better, left or right?
Same energy if esignal = 2 esignal
Same probability of undetected
fault
However, right detects many
non‐energy fault classes

The “≤” is from errors that create the same output syndrome. Does not affect the exponential.

m m

m

Channel capacity equivalent for logic?

11

Shannon‘s channel capacity theorem says error correction can
be beneficial, but you cannot use it to beat channel capacity
limits
Previous VG is an example of using error detection
(correction) for logic...

However, it didn’t work; we tried to beat the limit and failed
Energy is the equivalent to channel capacity
Computing something with a fixed probability of error is equivalent to
information

This all depends on perror = exp(‐Energy / kT)
A different functional relationship would yield a different result

12

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

Primer on Redundant Residue Number System

13

Residue Number System (RNS)
Given a set of relatively prime
modulim1, m2, m3, m4, e. g.

199, 233, 194, 239

Any number < m1×m2×m3×m4 can
be represented by the four
remainders (residues) upon
division by mj

Addition and multiplication
become vector‐wise modular add
and multiply
Comparison, shifting, conversion
are residue interacting functions

Redundant RNS (RRNS)
Add extra moduli, m5, m6, e. g.

251, 509

Up to two bad residues can be
detected
Up to one bad residue can be
corrected

NOTE: Covers the math, not just
the storage!

This is the RNS used in Watson, Richard W., and Charles W. Hastings. "Self-checked computation
using residue arithmetic." Proceedings of the IEEE 54.12 (1966): 1920-1931.

14

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

Example where we gain energy efficiency

15

mod 199

mod 233

mod 194

mod 239

mod 251

mod 509

m
od 509

m
od 251

m
od 239

m
od 194

m
od 233

m
od 199

Corresponding

 remainders of

 result

mod 231

mod

231

Result

 mod 262

B. Redundant Residue Number System

A. Binary multiply

Input

Input

Inputs…

Inputs

Added energy for redundancy in
part B is about 50%, so energy
efficiency improves given
baseline on earlier VG.

This is the RNS used in Watson, Richard W., and Charles W.
Hastings. "Self-checked computation using residue arithmetic."
Proceedings of the IEEE 54.12 (1966): 1920-1931.

CTL

CTL

Baseline: Dual core approach
 (won’t help energy)

16

Detection:
Memory access
different

Correction: Rollback
(idempotency
argument)

Overhead: 100% on
core

32-bit ALU

Cache with
32-bit
words

ALU

Cache

ECC
Memory

Compare

CTL

CTL

CTL

CTL

CTL

CTL

Creepy architecture (temporary name)

17

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

Residue-interacting functions

Detection:
Number system
inconsistency

Correction: The state
of any node can be
reconstructed from
the others

Overhead: 50% on
ALU and cache; 6×

 on control

Yellow is original
data; green is check

Memory:

Each slice 8/9 bits wide
with one residue

Creepy architecture instruction set

18

Slices run in lock step (except during error processing)
Slices have two types of state

Local state, like loop indices
“Residue state,” where each slice uses a different modulus

Slices may interact with “residue interacting functions”
Comparing residue numbers
Consistency check a. k. a. error detection
Conversion, division, square root, etc.

Conditional branch
Allowed on local state
Prohibited on “residue state,” but
Allowed on result of residue interaction functions

Creepy architecture error recovery

19

Slices run in lock step (except during error processing)
Error detection

If residue consistency check fails
Residue consistency check deemed failed if a processor crashes for
any reason and fails to participate in a consistency check

Error recovery
On error, five processors will be good and one bad
The five good ones regenerate all state for the failed one
Restart the failed one

20

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

Programming with assertion language

21

RRNS structure definition with assertions (ED=error detect; EC=error correct):

struct RRN { int r199:8, r233:8, r194:8, r239:8, r251:8, r509:9; }
assert(ED(...)) error(EC(x,...));

Multiply:

struct RRN mul (RRN a, RRN b) { v, p_u(...), p_d(...), E(...) } {
return RRN (a.r199*b.r199%199,

a.r233*b.r233%233,
a.r194*b.r194%194,
a.r239*b.r239%239,
a.r251*b.r251%251,
a.r509*b.r509%509);

}

p_u(...), p_d(...), E(...)

are pragmas

conveying information on error probabilities

 and energy consumption to the system
Hans P. Zima, Erik DeBenedictis, Jacqueline Chame, Pedro C. Diniz, Robert F. Lucas, The FailSafe Assertion Language
Version 8.0, Technical Report, Information Sciences Institute, University of Southern California, May 2015

Managing the energy‐reliability tradeoff

22

+

*

=

a

b c

d +

*

=

a

b c

d

CHK

CHK

A. High v, low error rate: B. Low v, high error rate:Example:
a = b*c+d

Compiler and run time

 system may:
* Evaluate assertions or

 not do so
* Raise or lower power supply
* Use checkpoint/rollback
* Propagate properties

 up the hierarchy, so
only bottom levels

 need to be annotated

23

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

24

Overview

Let’s make an extremely energy efficient
system using different methods
Memory: High power but recycled

Adiabatic

Processor: Low power but error correction
Error‐corrected computing

From a different talk
This is an adaptation of a scaling
rule to memory
Based on adiabatic scaling where
energy ∝ f2

Let’s plot economic quality of a
gate or chip:

1,
00

0

17
,1
91

29
5,
52

1

5,
08

0,
21

8

87
,3
32

,6
16

1,
50

1,
31

0,
72

9 2014
2030
2046

100

1,000

10,000

100,000

25

Optimal Adiabatic Scaling

Optimal

 Adiabatic

 Scaling

Clock rate f

Hz

Zetta

Gate‐ops

per dollar

$purchase + $energy (f 2)
Opslifetime (f)Qchip =

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

Assume manufacturing costs
drops to ½ every three years
Top of the ridge rises with time

26

Resulting scaling scenario
 (standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran /core

Ncore /A

Pckt

f Ntran Ncore

P/A

1/α 1/α 1/α 1/α 1/α

1/α 1/α 1/α 1 1/α

1/α 1 1 1 1

1/α 1/α 1/α 1 1/α

1/α3 1/α 1/α 1 1/α

1*

N=α2†

1/√N=1/α‡

1

1

α 1 1 1α 1/√N=1/α

α2 1 1α2 1α2

1 1 11 √N=αα

1/α2 1 11/α 1/√N=1/α1/α

1 1α 1§1α2

1α2α3α3 α √N=α

Const
field Max f Const f Const f,

Ntran

Multi
core

Constant V Optimal
Adiabatic
Scaling

Theis and Solomon

* Term redefined to be line
width scaling; 1 means no line
width scaling
† Term redefined to be the
increase in number of layers;
previously was 1 for no scaling
‡ Term redefined to be heat
produced per step. Adiabatic
technologies do not reduce
signal energy, but “recycle”
signal energy so the amount
turned into heat scales down
§

Term clarified to be power
per unit area including all
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next
Switch”: Prospects for Greatly
Reduced Power Dissipation in a
Successor to the Silicon Field-Effect
Transistor, Proceedings of the IEEE,
Volume 98, Issue 12, 2010

New

If C and V stop
scaling, throughput
(f Ntran Ncore) stops
scaling.

Under optimal adiabatic
scaling, throughput
continues to scale even
with fixed V and C

27

Processor‐In‐Memory‐and‐Storage (PIMS)
 Physical implementation vision

From a different project
Storage/Memory

Flash, ReRAM (memristor), STM,
DRAM

Base layer
PIMS logic

3D
Whole structure is layered

Fast thread CPU
PIMS processors or ALUs

PIMS replication unit

PIMS 3D storage

layers A1‐A100

configuration

and

memory/storage

Stacked PIMS B, C,

D, E, F, G, H, I, J

Heat sink

(100 layers, see below)

PIMS interconnect

28

PIMS architecture

Control

Adiabatic

row

access

PIMS memory/storage:
Purple is the

configuration “opcode”

Green is memory

contents
Red is communications

between ALUs

Inductor

Memory
bank

Source of

loss

Adiabatic memory structure
Adiabatic memory banks, all
clocked the same but different
rows

PIM processors
Each row has multiple ALUs

Programming
Memory has opcodes and data
controlling arithmetic and
communications on ALUs

ALUs ALUs

ALUs ALUs

ALUsALUsALUs

CTL

CTL

CTL

CTL

CTL

CTL

RRNS architecture connected to PIMS
 (Creepy architecture)

29

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

Consistency check & convert to binary

RRNS used for both
data and memory
addresses (novel?)

Adiabatic memory;
OAS scaling rule

Logic at point of
optimal energy-
reliability tradeoff

Runs legacy code –
given augmentation
with assertion
language

PIMS memory:
Each slice 8/9 bits wide:

Address bus

Switch

30

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming

31

Tile programming
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0
Timestep 2: a00 1

x1 2 x0 1
y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0
a20 0 a11 0 a02 0

x3 4 x2 3 x1 2 x0 1
y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2
a32 0 a23 5

x3 4 x2 3
y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left
implemented by dataflow-like spreadsheet
below.

Note: the yj's are
updated, so they do
not all have the same
value

1st cell
column
above, as
it evolves
with time

2nd cell
column
above, as
it evolves
with time

3rd cell,
and so on

Note on above: this diagram is
only a spreadsheet, but you
may think of a row of x's and
y's as a register that shifts right
and left each time step; the a's
do not shift (see arrows).

32

x A y
1 2 3 4 1 2 = 25 12 6 17

3
4 5

6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2

x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5

x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')
Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow
faster than nearest neighbor per step. Sometimes
dance steps for ladies and gents.

GraphViz:

Tile programming

33

Conclusions I

Semiconductors heading to a non‐abrupt limit
The limit comprises a particular functional
relationship between energy and errors
Can we develop an error detection and
correction approach for this relationship?
If we succeed

Estimate 2:1 energy reduction (one generation)
Will fix errors due to Cosmic Rays, weak parts, etc.
so we may have to do it anyway

34

Conclusions II

What is the impact of a 2:1 boost in energy
efficiency?
In the past, this level of boost would get run
over by Moore’s Law in 18 months. If it
delayed your progress by more than 18
months, it would be a loser
However, it this moves out the endpoint of
Moore’s Law by 2:1, the benefit will
accumulate forever

35

Conclusions III

The assertion language may be needed sooner
Exascale documents list reliability in the top
several risk factors
If we have to address reliability in a systematic
way for Exascale, we might as well do it in a
way that could be used for power efficiency
later

36

Challenging issues

To save energy, logic error detection requires very light‐
weight circuits. More research will be needed on the circuits.
In a computer, error detection and correction can be done as
an exception or interrupt. However, this time becomes
overhead that reduces the amount of useful work done
Other issues could interact with the topics in this presentation

While thermal errors are unavoidable, other error classes could get in
the way first. Examples: Cosmic Rays, weak parts, aging, device‐to‐
device variance
The methods here could support reliable overclocking, essentially
recognizing an “excessive overclocking error.” This generalizes to
using error detection to convert design safety margin to performance

If this approach catches on, hardware design tools and
software may need enhancement

37

Abstract

It is well known that the rise in computer energy efficiency due to Moore’s Law is
associated with a rise in error rates, but we show how to turn this effect into a benefit.
Error rates do not rise abruptly, but will grow exponentially as energy is reduced. With
the energy vs. error rate tradeoff quantified, it is possible to derive management
strategies.

Computing with low-energy but unreliable components has been explored elsewhere as
approximate computing (where some errors pass through to the user) and random
computing (where errors become random numbers used in algorithms). However, we
devise a third approach where error correction makes computation reliable without the
error correction itself consuming more energy than gained.

We will discuss a fault-tolerant architecture tentatively named “creepy,” which uses
residue arithmetic to correct errors at high error rates while still being energy efficient.

By properly managing errors with the new architecture, it may become possible to utilize
a final few generations of semiconductor scaling beyond what can be exploited by the
traditional microprocessor.

	Error-Corrected Computing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

