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Precisely 
where is 
the end?

Future of CMOS
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Supply voltage (originally, time as well)
.1V .5V .25V .125V

Log energy in units of kT ≈

 

4zJ 
at room temperature

10,000 kT

100 kT
20 kT

MOSFET total 
Energy/signal 
or gate-op MOSFET 

leakage 
current

Reliability limit no ECC 
perror = e-100Reliability 

limit with 
ECC

Energy 
per gate or 
signal

1,000 kT

Industry stuck in local minimum due to leakage current
Scaling resumes someday to reliability limit (10x‐100x energy)



Exascale reliability requirement

100000 Gates-ops per floating point op where an error would cause a wrong answer
1.00E+18 ops/second (definition of Exascale)

60 seconds per minue
60 minutes per hour
24 hours per day

365 days per year
3 years for a computer's lifetime (before it becomes obsolete)

9.46E+30 number of gate operations per lifetime where an error would cause a wrong answer
71.33211 If we have Esignal equal this many kT's, error rate will be inverse of previous line

Say an operation is this many gate-ops 1000 20000 1.00E+05 1.00E+06 1.00E+18
Steps in lifetime (serial and parallel) 9.46E+27 4.73E+26 9.46E+25 9.46E+24 9.46E+12

RRNS using system in Watson and Hastings
Gate ops per residue (four non-redundant residue 250 5000 25000 250000 2.5E+17
perror target for exaflops over lifetime 1 1 1 1 1
perror per step 1.06E-28 2.11E-27 1.06E-26 1.06E-25 1.06E-13
perror per residue; 3 errors in a step must go unde 7.02E-09 1.91E-08 3.26E-08 7.02E-08 7.02E-04
Es = this many kTs will meet reliability in line abov 24.30 26.30 27.37 28.90 47.33

Energy savings 2.94 2.71 2.61 2.47 1.51
However, we need 6 total residues, not 4 1.96 1.81 1.74 1.65 1.00

Additional beneficial factors
Fixes Cosmic Ray hits
Fixes weak and aging components
Could support overclocking; i. e. catches an "excessive overclocking" error

At stake? Maybe one generation
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Scaling will not stop 
abruptly, but it will be 
stopped by an exponential 
rise in error rate with 
declining energy
But how much energy 
efficiency improvement is 
possible if we can tolerate 
errors? Spreadsheet 

No ECC 71 kT
ECC scenarios
24 kT – 28 kT
2:1 after overhead, +/‐

A trillion dollar
question



4

Outline

Energy‐reliability tradeoff
Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)
Integration with Processor‐In‐Memory‐and‐
Storage (PIMS)
PIMS programming



Plan for scaling from Theis
 

and Solomon
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Conventional Logic: Reduce the stored energy ½CV2. For conventional FETs, as V 
approaches a small multiple of kT/e, we must accept reduction in switching speed. 
New device concepts, discussed below, may allow more significant reduction in V 
and facilitate the reduction of stored energy towards kT. As thermal voltage 
fluctuations become significant, we must incorporate redundancy and error correction 
in the logic to keep the error rate in bounds. Refrigeration can reduce T, but in a 
power-constrained environment, this only makes economic sense if the total power 
needed to perform the computation is reduced, including the power for refrigeration.

Both from Theis, Thomas N., and Paul M. Solomon. "In Quest of the" Next Switch": Prospects for Greatly 
Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor." Proceedings of the IEEE 98.12 
(2010): 2005-2014.

Since Johnson–Nyquist voltage noise is Gaussian with a standard deviation of Vn , a 
stored logic voltage of m standard deviations, or a stored energy of m2kT, would be 
needed to achieve a reliability of ½Erfc[m/√2]. (Eight standard deviations give an 
error probability of ~10-15.)

perror = ½Erfc[m/√2] ≈
 

exp(-Esignal / kT)



Circuit explanation
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C

C

V

Signal = Esignal = CV2, where C is wire + fanout × Cgate
Noise power is 2fkT
Noise energy Enoise ~ kT/clock cycle
SNR is ~ CV2 / kT
perror = exp(‐Esignal / kT) = exp(‐CV2 / kT)

Timing: 
Assume clock rate ≈

 

1/f

Exponentially 
converging 
signal

Noise can be 
averaged out in 
quadratic 
time

E

Circuit:

(Oversimplification, every node will have a different C and fanout. Does not change conclusion.)



Backup: Alternate explanation
 using channel capacity
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Bandwidth‐independent channel capacity

(Ref: http://www.dip.ee.uct.ac.za/~nicolls/lectures/eee482f/04_chancap.pdf).

C = B log2 (1 + S / (BkT)) = S / (kT) log2 (1 + S / (BkT) BkT/S,

where C is channel capacity (bits/second); B is bandwidth; S is signal power; k is 
Boltzmann’s constant; T is temperature. Note limx 0 (1+x)1/x = e.

C∞

 

= limB ∞ C = (log2e) S / (kT)

In our terms, in a clock period (or any arbitrary time) Nbits = (log2 e) Esignal / (kT)

However Nbits = log2 (1/p) = ln(1/p) / ln 2, where p is the probability of a 0 or 1. 
Rearrange to ln(1/p) / ln(2) = Nbits = Esignal / (kT ln 2) and exponentiate to get

p = exp(-Esignal / kT)

Which is perror if we were expecting a specific value



N is the number of gates with a 
sensitized path to an output of 
the circuit; errors in other gates 
are said to be “masked.”

If industry succeeds in finding the 
“millivolt switch”…
We should be able to power a 
chip at changeable voltage V
This will create esignal = CV2

With C potentially different for 
each node (wire)

This will lead to circuits where

However, the previous equation 
is oversimplified. Every node or 
net in a chip will have a slightly 
different energy efficiency. So say

Computer model to exploit
 energy‐reliability tradeoff
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Energy per 

 
operation esignal

N

 

gates w/sensitized path

out

perror

 

= N

 

exp(‐esignal

 

/ kT)

V
DAC

perror

 

= αN

 

exp(‐β esignal

 

)

m

Logic 
blocks

Reference 
gate
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Limits of logic error correction
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Energy per 

 
operation esignal

N

 

gates w/sensitized path

out

perror

 

= N

 

exp(‐esignal

 

/ kT) pundetected  

 

= 
N

N2

 

exp(‐esignal

 

/ kT)2
≤

 
(could be equal)

fault
Energy per 

 
operation esignal

N gates w/sensitized path

Energy per 

 
operation esignal

N gates w/sensitized path
compare

out

Comparator 

 
energy is 

 
ignored

Which is better, left or right?
Same energy if esignal = 2 esignal
Same probability of undetected 
fault
However, right detects many 
non‐energy fault classes

The “≤” is from errors that create the same output syndrome. Does not affect the exponential.

m m

m



Channel capacity equivalent for logic?
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Shannon‘s channel capacity theorem says error correction can 
be beneficial, but you cannot use it to beat channel capacity 
limits
Previous VG is an example of using error detection 
(correction) for logic...

However, it didn’t work; we tried to beat the limit and failed
Energy is the equivalent to channel capacity
Computing something with a fixed probability of error is equivalent to 
information

This all depends on perror = exp(‐Energy / kT)
A different functional relationship would yield a different result
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Primer on Redundant Residue Number System
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Residue Number System (RNS)
Given a set of relatively prime 
modulim1, m2, m3, m4, e. g. 

199, 233, 194, 239

Any number < m1×m2×m3×m4 can 
be represented by the four 
remainders (residues) upon 
division by mj

Addition and multiplication 
become vector‐wise modular add 
and multiply
Comparison, shifting, conversion 
are residue interacting functions

Redundant RNS (RRNS)
Add extra moduli, m5, m6, e. g.

251, 509

Up to two bad residues can be 
detected
Up to one bad residue can be 
corrected

NOTE: Covers the math, not just 
the storage!

This is the RNS used in Watson, Richard W., and Charles W. Hastings. "Self-checked computation 
using residue arithmetic." Proceedings of the IEEE 54.12 (1966): 1920-1931.
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Example where we gain energy efficiency
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mod 199

mod 233

mod 194

mod 239

mod 251

mod 509

m
od 509

m
od 251

m
od 239

m
od 194

m
od 233

m
od 199

Corresponding

 remainders of 

 result

mod 231

mod 

 

231

Result

 mod 262

B. Redundant Residue Number System

A. Binary multiply

Input

Input

Inputs…

Inputs

Added energy for redundancy in 
part B is about 50%, so energy 
efficiency improves given 
baseline on earlier VG.

This is the RNS used in Watson, Richard W., and Charles W. 
Hastings. "Self-checked computation using residue arithmetic." 
Proceedings of the IEEE 54.12 (1966): 1920-1931.



CTL

CTL

Baseline: Dual core approach
 (won’t help energy)
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Detection:
Memory access 
different

Correction: Rollback 
(idempotency 
argument)

Overhead: 100% on 
core

32-bit ALU

Cache with 
32-bit 
words

ALU

Cache

ECC 
Memory

Compare



CTL

CTL

CTL

CTL

CTL

CTL

Creepy architecture (temporary name)
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ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

Residue-interacting functions

Detection:
Number system 
inconsistency

Correction: The state 
of any node can be 
reconstructed from 
the others

Overhead: 50% on 
ALU and cache; 6×

 on control

Yellow is original 
data; green is check

Memory:

Each slice 8/9 bits wide 
with one residue



Creepy architecture instruction set
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Slices run in lock step (except during error processing)
Slices have two types of state

Local state, like loop indices
“Residue state,” where each slice uses a different modulus

Slices may interact with “residue interacting functions”
Comparing residue numbers
Consistency check a. k. a. error detection
Conversion, division, square root, etc.

Conditional branch
Allowed on local state
Prohibited on “residue state,” but
Allowed on result of residue interaction functions



Creepy architecture error recovery
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Slices run in lock step (except during error processing)
Error detection

If residue consistency check fails
Residue consistency check deemed failed if a processor crashes for 
any reason and fails to participate in a consistency check

Error recovery
On error, five processors will be good and one bad
The five good ones regenerate all state for the failed one
Restart the failed one
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Programming with assertion language
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RRNS structure definition with assertions (ED=error detect; EC=error correct):

struct RRN { int r199:8, r233:8, r194:8, r239:8, r251:8, r509:9; }
assert(ED(...)) error(EC(x,...));

Multiply:

struct RRN mul (RRN a, RRN b) { v, p_u(...), p_d(...), E(...) } {
return RRN (a.r199*b.r199%199, 

a.r233*b.r233%233, 
a.r194*b.r194%194, 
a.r239*b.r239%239, 
a.r251*b.r251%251, 
a.r509*b.r509%509);

}

p_u(...), p_d(...), E(...)

 

are pragmas

 

conveying information on error probabilities 

 and energy consumption to the system
Hans P. Zima, Erik DeBenedictis, Jacqueline Chame, Pedro C. Diniz, Robert F. Lucas, The FailSafe Assertion Language 
Version 8.0, Technical Report, Information Sciences Institute, University of Southern California, May 2015 



Managing the energy‐reliability tradeoff
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+

*

=

a

b c

d +

*

=

a

b c

d

CHK

CHK

A. High v, low error rate: B. Low v, high error rate:Example:
a = b*c+d

Compiler and run time

 system may:
* Evaluate assertions or

 not do so
* Raise or lower power supply
* Use checkpoint/rollback
* Propagate properties

 up the hierarchy, so
only bottom levels

 need to be annotated
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Overview

Let’s make an extremely energy efficient 
system using different methods
Memory: High power but recycled

Adiabatic

Processor: Low power but error correction
Error‐corrected computing



From a different talk
This is an adaptation of a scaling 
rule to memory
Based on adiabatic scaling where 
energy ∝ f2

Let’s plot economic quality of a 
gate or chip:
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Optimal Adiabatic Scaling

Optimal 

 Adiabatic 

 Scaling

Clock rate f

 

Hz

Zetta

 

Gate‐ops

 
per dollar

$purchase + $energy (f 2)
Opslifetime (f)Qchip = 

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

Assume manufacturing costs 
drops to ½ every three years
Top of the ridge rises with time
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Resulting scaling scenario
 (standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran /core

Ncore /A

Pckt

f Ntran Ncore

P/A

1/α 1/α 1/α 1/α 1/α

1/α 1/α 1/α 1 1/α

1/α 1 1 1 1

1/α 1/α 1/α 1 1/α

1/α3 1/α 1/α 1 1/α

1*

N=α2†

1/√N=1/α‡

1

1

α 1 1 1α 1/√N=1/α

α2 1 1α2 1α2

1 1 11 √N=αα

1/α2 1 11/α 1/√N=1/α1/α

1 1α 1§1α2

1α2α3α3 α √N=α

Const 
field Max f Const f Const f, 

Ntran

Multi 
core

Constant V Optimal 
Adiabatic 
Scaling

Theis and Solomon

* Term redefined to be line 
width scaling; 1 means no line 
width scaling
† Term redefined to be the 
increase in number of layers; 
previously was 1 for no scaling 
‡ Term redefined to be heat 
produced per step. Adiabatic 
technologies do not reduce 
signal energy, but “recycle” 
signal energy so the amount 
turned into heat scales down
§

 

Term clarified to be power 
per unit area including all 
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next 
Switch”: Prospects for Greatly 
Reduced Power Dissipation in a 
Successor to the Silicon Field-Effect 
Transistor, Proceedings of the IEEE, 
Volume 98, Issue 12, 2010

New

If C and V stop 
scaling, throughput 
(f Ntran Ncore ) stops 
scaling.

Under optimal adiabatic 
scaling, throughput 
continues to scale even 
with fixed V and C
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Processor‐In‐Memory‐and‐Storage (PIMS)
 Physical implementation vision

From a different project
Storage/Memory

Flash, ReRAM (memristor), STM, 
DRAM

Base layer
PIMS logic

3D
Whole structure is layered

Fast thread CPU
PIMS processors or ALUs

PIMS replication unit

PIMS 3D storage

 
layers A1‐A100

 
configuration

 

and 

 
memory/storage

Stacked PIMS B, C,

 
D, E, F, G, H, I, J

Heat sink

(100 layers, see below)

PIMS interconnect



28

PIMS architecture

Control

Adiabatic 

 
row 

 
access

PIMS memory/storage:
Purple is the 

 
configuration “opcode”

 
Green is memory 

 
contents
Red is communications

 
between ALUs

Inductor

Memory
bank

Source of 

 
loss

Adiabatic memory structure 
Adiabatic memory banks, all 
clocked the same but different 
rows

PIM processors
Each row has multiple ALUs

Programming
Memory has opcodes and data
controlling arithmetic and 
communications on ALUs

ALUs ALUs

ALUs ALUs

ALUsALUsALUs



CTL

CTL

CTL

CTL

CTL

CTL

RRNS architecture connected to PIMS
 (Creepy architecture)
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ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

ALU
Cache

Consistency check & convert to binary

RRNS used for both 
data and memory 
addresses (novel?)

Adiabatic memory; 
OAS scaling rule

Logic at point of 
optimal energy- 
reliability tradeoff

Runs legacy code – 
given augmentation 
with assertion 
language

PIMS memory:
Each slice 8/9 bits wide:

Address bus

Switch
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Tile programming
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0
Timestep 2: a00 1

x1 2 x0 1
y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0
a20 0 a11 0 a02 0

x3 4 x2 3 x1 2 x0 1
y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2
a32 0 a23 5

x3 4 x2 3
y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left 
implemented by dataflow-like spreadsheet 
below.

Note: the yj's are 
updated, so they do 
not all have the same 
value

1st cell 
column 
above, as 
it evolves 
with time

2nd cell 
column 
above, as 
it evolves 
with time

3rd cell, 
and so on

Note on above: this diagram is 
only a spreadsheet, but you 
may think of a row of x's and 
y's as a register that shifts right 
and left each time step; the a's 
do not shift (see arrows).
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x A y
1 2 3 4 1 2 = 25 12 6 17

3
4 5

6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2

x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5

x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')
Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow 
faster than nearest neighbor per step. Sometimes 
dance steps for ladies and gents.

GraphViz:

Tile programming



33

Conclusions I

Semiconductors heading to a non‐abrupt limit
The limit comprises a particular functional 
relationship between energy and errors
Can we develop an error detection and 
correction approach for this relationship?
If we succeed

Estimate 2:1 energy reduction (one generation)
Will fix errors due to Cosmic Rays, weak parts, etc. 
so we may have to do it anyway
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Conclusions II

What is the impact of a 2:1 boost in energy 
efficiency?
In the past, this level of boost would get run 
over by Moore’s Law in 18 months. If it 
delayed your progress by more than 18 
months, it would be a loser
However, it this moves out the endpoint of 
Moore’s Law by 2:1, the benefit will 
accumulate forever
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Conclusions III

The assertion language may be needed sooner
Exascale documents list reliability in the top 
several risk factors
If we have to address reliability in a systematic 
way for Exascale, we might as well do it in a 
way that could be used for power efficiency 
later
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Challenging issues

To save energy, logic error detection requires very light‐
weight circuits. More research will be needed on the circuits.
In a computer, error detection and correction can be done as 
an exception or interrupt. However, this time becomes 
overhead that reduces the amount of useful work done
Other issues could interact with the topics in this presentation

While thermal errors are unavoidable, other error classes could get in 
the way first. Examples: Cosmic Rays, weak parts, aging, device‐to‐
device variance
The methods here could support reliable overclocking, essentially 
recognizing an “excessive overclocking error.” This generalizes to 
using error detection to convert design safety margin to performance

If this approach catches on, hardware design tools and 
software may need enhancement
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Abstract

It is well known that the rise in computer energy efficiency due to Moore’s Law is 
associated with a rise in error rates, but we show how to turn this effect into a benefit. 
Error rates do not rise abruptly, but will grow exponentially as energy is reduced. With 
the energy vs. error rate tradeoff quantified, it is possible to derive management 
strategies. 

Computing with low-energy but unreliable components has been explored elsewhere as 
approximate computing (where some errors pass through to the user) and random 
computing (where errors become random numbers used in algorithms). However, we 
devise a third approach where error correction makes computation reliable without the 
error correction itself consuming more energy than gained.

We will discuss a fault-tolerant architecture tentatively named “creepy,” which uses 
residue arithmetic to correct errors at high error rates while still being energy efficient.

By properly managing errors with the new architecture, it may become possible to utilize 
a final few generations of semiconductor scaling beyond what can be exploited by the 
traditional microprocessor.
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