SAND2016- 3158PE

Sandia
1 Natonal
Laboratories
Erik P. DeBenedictis, Center for Computing Research, Sandia
Hans Zima, Jet Propulsion Laboratory, Caltech
Presentation at Georgia Tech, May 21, 2015

Approved for Unclassified Unlimited Release

Tracking number 275883

@ENERGY NISA B et e e s et e

Future of CMOS o

" |ndustry stuck in local minimum due to leakage current
= Scaling resumes someday to reliability limit (10x-100x energy)

Log energy in units of KT ~ 4zJ

at room temperature
MOSFET total

: Precisel
10,000 kT |eakage the end?
current

100 kT |[Pergate or / =N Reliability limit no/FCC
okt |29/ Reliability™~Reror -’
limit with
ECC R
v 5V 25V 125V

Supply voltage (originally, time as well)

At stake? Maybe one generation

Scaling will not stop
abruptly, but it will be
stopped by an exponential
rise in error rate with
declining energy

But how much energy
efficiency improvement is
possible if we can tolerate
errors? Spreadsheet 2

= NoECC71kT

= ECC scenarios
24 kT — 28 kT

= 2:1 after overhead, +/-

A trillion dollar
question

Sandia
Laboratories

Exascale reliability requirement

100000 Gates-ops per floating point op where an error would cause a wrong answer

1.00E+18 ops/second (definition of Exascale)

60 seconds per minue

60 minutes per hour

24 hours per day

365 days per year
3 years for a computer's lifetime (before it becomes obsolete)

9.46E+30 number of gate operations per lifetime where an error would cause a wrong answer
71.33211 If we have Esignal equal this many kT's, error rate will be inverse of previous line

1000 20000 1.00E+05 1.00E+06
9.46E+27 4.73E+26 9.46E+25 9.46E+24

Say an operation is this many gate-ops
Steps in lifetime (serial and parallel)

RRNS using system in Watson and Hastings

Gate ops per residue (four non-redundant residue 250 5000 25000 250000
perror target for exaflops over lifetime 1 1 1 1
perror per step 1.06E-28 2.11E-27 1.06E-26 1.06E-25
perror per residue; 3 errors in a step must go unde 7.02E-09 1.91E-08 3.26E-08 7.02E-08
Es = this many kTs will meet reliability in line abo\ 24.30 26.30 27.37 28.90

2.94
1.96

2.71
181

2.61
1.74

2.47
1.65

Energy savings
However, we need 6 total residues, not 4

Additional beneficial factors

Fixes Cosmic Ray hits

Fixes weak and aging components

Could support overclocking; i. e. catches an "excessive overclocking" error

1.00E+18
9.46E+12

2.5E+17
1
1.06E-13
7.02E-04
47.33

151
1.00

Outline o

Error correction for logic
Redundant Residue Number System
“Creepy” architecture
Programming (assertion language)

Integration with Processor-In-Memory-and-
Storage (PIMS)

PIMS programming

Sandia
i) farst

Plan for scaling from Theis and Solomon

Conventional Logic: Reduce the stored energy ¥2CV2. For conventional FETSs, as V
approaches a small multiple of kT/e, we must accept reduction in switching speed.
New device concepts, discussed below, may allow more significant reduction in V
and facilitate the reduction of stored energy towards kT. As thermal voltage
fluctuations become significant, we must incorporate redundancy and error correction
In the logic to keep the error rate in bounds. Refrigeration can reduce T, butin a
power-constrained environment, this only makes economic sense if the total power
needed to perform the computation is reduced, including the power for refrigeration.

= 1Erfe[m/N2] = exp(-Eqyny ! KT)

perror signa

Since Johnson—Nyquist voltage noise is Gaussian with a standard deviation of V,, a
stored logic voltage of m standard deviations, or a stored energy of m?kT, would be
needed to achieve a reliability of Y2Erfc[m/V2]. (Eight standard deviations give an
error probability of ~10-15))

Both from Theis, Thomas N., and Paul M. Solomon. "In Quest of the" Next Switch": Prospects for Greatly
Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor." Proceedings of the IEEE 98.12
(2010): 2005-2014.

Sandia
i) farst

Circuit explanation

= Signal = E;,,,, = CV*, where Cis wire + fanout x C_,,,

= Noise power is 2fkT

= Noise energy E__...~ kT/clock cycle

noise

SNRis ~ CV2 / kT
" Derror = exp(-ES,gna,/ kT) = exp(-CV? / kT)

Circuit: Timing:
Assume clock rate ~ 1/f

~ Noise can be

| averaged out in
guadratic

time

%t E
SN et
- Exponentially

\Y
% ' - converging

—T - C signal

(Oversimplification, every node will have a different C and fanout. Does not change conclusion.)

Backup: Alternate explanation UL

using channel capacity

= Bandwidth-independent channel capacity

C =B log,(1 + S/ (BKT)) =S/ (kT) log,(1 + S / (BKT) BKT/S,

where C is channel capacity (bits/second); B is bandwidth; S is signal power; k is
Boltzmann’s constant; T is temperature. Note lim, 4 (1+x)¥* = e.

C,=limg, ,C=(log,e) S/ (KT)
In our terms, in a clock period (or any arbitrary time) Ny, = (109,€) Egigna / (KT)

However N = l0g,(1/p) = In(1/p) / In 2, where p is the probability of a O or 1.
Rearrange to In(1/p) / In(2) = Ny = Egignar / (KT In 2) and exponentiate to get

p= exp('Esignal / kT)

Which is p.,,, if we were expecting a specific value
(Ref: http://lwww.dip.ee.uct.ac.za/~nicolls/lectures/eee482f/04_chancap.pdf).

Sandia
Laboratories

Computer model to exploit) .
energy-reliability tradeoff

= |f industry succeeds in finding the DAC v
“millivolt switch”...
= We should be able to power a N gates w/sensitized path
chip at changeable voltage V m
= This will create e, = CV? } / oyt
= With C potentially different for \
each node (wire) Energy-per Logic
= This will lead to circuits where operation Esgna blocks
Perror =N exp('esignal/ kT) J/ \ gR:tfeerence
= However, the previous equation
is oversimplified. Every node or = Nisthe number of gates with a
net in a chip will have a slightly sensitized path to an output of
different energy efficiency. So say the circuit; errors in other gates
are said to be “masked.”
Perror = N exp(-4 esignal)

Outline o

" Energy-reliability tradeoff
- = Error correction for logic
= Redundant Residue Number System
= “Creepy” architecture
" Programming (assertion language)

" |ntegration with Processor-In-Memory-and-
Storage (PIMS)

= PIMS programming

[[J [d Laboratories
Limits of logic error correction
= Which is better, left or right? N gates w/sensitized path
= Sameenergyife . =2e. m
. gy signal signal } / Ol;Jt
Same probability of undetected i
fault
= However, right detects many Energy.per fault
non-energy fault classes operation e, compare ——*
N gates w/sensitized path N gates w/sensitized path -
D e D—
] >
Comparator
Energy per Energy per energy is
operatione, ., operationeg, ., ,
ignored
N2 exp(-es,.gna,/ kT)?2
Perror = N exp(-esigna,/ kT) < Pundetected =
(could be equal) N

The “<” is from errors that create the same output syndrome. Does not affect the exponential.

Sandia
i) farst

Channel capacity equivalent for logic?

= Shannon’s channel capacity theorem says error correction can
be beneficial, but you cannot use it to beat channel capacity
limits
= Previous VG is an example of using error detection
(correction) for logic...
= However, it didn’t work; we tried to beat the limit and failed
= Energy is the equivalent to channel capacity

= Computing something with a fixed probability of error is equivalent to
information

= This all depends on p,,,,, = exp(-Energy / kT)

= A different functional relationship would yield a different result

Outline

" Energy-reliability tradeoff

" Error correction for logic

= “Creepy” architecture

" Programming (assertion language)

" |ntegration with Processor-In-Memory-and-
Storage (PIMS)

= PIMS programming

Laboratories

Primer on Redundant Residue Number System

Residue Number System (RNS) Redundant RNS (RRNS)

= Given a set of relatively prime = Add extra moduli, m;, mg, e. g.
modulim, m, m;, m, e. g. = 251,509
= 199, 233,194, 239 = Up to two bad residues can be
= Any number < m,xm,xms;xm, can detected
be represented by the four = Up to one bad residue can be
remainders (residues) upon corrected

division by m,
= Addition and multiplication

become vector-wise modular add
and multiply

= NOTE: Covers the math, not just
the storage!

= Comparison, shifting, conversion
are residue interacting functions

This is the RNS used in Watson, Richard W., and Charles W. Hastings. "Self-checked computation
using residue arithmetic." Proceedings of the IEEE 54.12 (1966): 1920-1931.

Outline o

" Energy-reliability tradeoff
" Error correction for logic

= Redundant Residue Number System

" Programming (assertion language)

" |ntegration with Processor-In-Memory-and-
Storage (PIMS)

= PIMS programming

mMI

Example where we gain energy efficiency .
B. Redundant Residue Number System
= Added energy for redundancy in INoUts 3 3 3 3 3 3
part B is about 50%, so energy puts..-. 288 8 8 8 8
efficiency improves given @ g § § E §
baseline on earlier VG.
A. Binary multiply Inputs l
Input
mod 23! mod 509 >
A \ 4
4 A mod 251 e
(mod 239 e
Input mod 194 >
mod 231 < @ Y
mod 233 e Corresponding
mod 199 —» remainders of
- result

Result This is the RNS used in Watson, Richard W., and Charles W.

mod 262 Hastings. "Self-checked computation using residue arithmetic."
Proceedings of the IEEE 54.12 (1966): 1920-1931.

Baseline: Dual core approach
(won’t help energy)

11D

ECC
Memory
’—> Comparef
Cache with Cache
32-bit
words P
—
32-bit ALU ALU

Laboratories

Detection:
Memory access
different

Correction: Rollback
(idempotency
argument)

Overhead: 100% on
core

Sandia
i) farst

Creepy architecture (temporary name)

Each slice 8/9 bits wide

Memory:
Detection:
Number system
Inconsistency
Correction: The state
O O O O O o | of any node can be
2 3 3 2 3 3
> > > > > > reconstructed from
the others
(@) @] @] (@) @] @]
— — — — — —
i i i i i i Overhead: 50% on
=1 | [z 2] Ll L[2] [2] AlUandcache
= = = = = = | ALU and cache; 6x
on control
v v v v v v Yellow is original
Residue-interacting functions data; green is check

Sandia
i) farst

Creepy architecture instruction set

= Slices runin lock step (except during error processing)

Slices have two types of state
= Local state, like loop indices
= “Residue state,” where each slice uses a different modulus

= Slices may interact with “residue interacting functions”
= Comparing residue numbers

= Consistency check a. k. a. error detection
= Conversion, division, square root, etc.

Conditional branch
= Allowed on local state
= Prohibited on “residue state,” but
= Allowed on result of residue interaction functions

Creepy architecture error recovery

= Slices runin lock step (except during error processing)
= Error detection

= |f residue consistency check fails

= Residue consistency check deemed failed if a processor crashes for
any reason and fails to participate in a consistency check

= Error recovery
= On error, five processors will be good and one bad
= The five good ones regenerate all state for the failed one

= Restart the failed one

Sandia
Laboratories

Outline o

" Energy-reliability tradeoff

" Error correction for logic

= Redundant Residue Number System
= “Creepy” architecture

" |ntegration with Processor-In-Memory-and-
Storage (PIMS)

= PIMS programming

Sandia
i) farst

Programming with assertion language

RRNS structure definition with assertions (ED=error detect; EC=error correct):

struct RRN { int r199:8, r233:8, r194:8, r239:8, r251:8, r509:9; }
assert(ED(-...)) error(EC(X,---));

Multiply:

struct RRN mul (RRN a, RRN b) { v, pu(-..), pd(--.), E(--.) } {
return RRN (a-r199*b.r199%199,
a.r233*b.r233%233,
-r194*b.r194%194,
-r239*b.r239%239,
-r251*b.r251%251,
-r509*b . r509%509) ;

QO QD

}

o _u(...), p_d(...), E(...) are pragmas conveying information on error probabilities
and energy consumption to the system

Hans P. Zima, Erik DeBenedictis, Jacqueline Chame, Pedro C. Diniz, Robert F. Lucas, The FailSafe Assertion Language
Version 8.0, Technical Report, Information Sciences Institute, University of Southern California, May 2015

Sandia
i) farst

Managing the energy-reliability tradeoff

Example: A. High v, low error rate: B. Low v, high error rate:
a = b*c+d

Compiler and run time

system may:

* Evaluate assertions or | @ + a CHK
not do so |

* Raise or lower power supply | q s

* Use checkpoint/rollback
* Propagate properties
up the hierarchy, so b C CHK d
only bottom levels
need to be annotated |

Outline o

" Energy-reliability tradeoff

" Error correction for logic

= Redundant Residue Number System
= “Creepy” architecture

" Programming (assertion language)

= PIMS programming

Overview

= Let’s make an extremely energy efficient
system using different methods

= Memory: High power but recycled
= Adiabatic

= Processor: Low power but error correction

= Error-corrected computing

Laboratories

Sandia
i) farst

Optimal Adiabatic Scaling

= From a different talk = Assume manufacturing costs
= This is an adaptation of a scaling drops to % every three years
rule to memory = Top of the ridge rises with time
= Based on adiabatic scaling where 100,000 Optimal
energy oc f2 Zetta Gate4ops Adiabatijc
per dollar Scalmg

= Let’s plot economic quality of a

/ 7\
gate or chip: /////’ \\\“\

10,000 |

OPSiitetime(f)
$purchase + $energy(f 2)

— tyear/3
Where $purchaSe = A 2lyear

Qchip =

1,000

- 2046
2030

2014

OpSjisetime = Bf, and 100+

1,000
17,191

$energy = Cf 2 (A, B, and C constants)

295,521
5,080,218
87,332,616
1,501,310,729

Clock rate f Hz

Resulting scaling scenario h) e,
(standard chart with additional column)

If C and V stop) Under optimal adiabatic
scaling, throughput]E:OISS'[Constant V gg_tlrgal_ scaling, throughput
(F Nyan Neore) StOPS | e Max f | Constf| Constf, Multi | ¢ Iall' atic |/ continues to scale even
scaling. \ N, core caling with fixed V and C
L ate 1l/a lo 1/a 1/a 1/a 1"
" Term redefined to be line
W, Le 1/a 1/a 1/o 1 1/a N=0? width scaling; 1 means no line

\ width scaling
V lo 1 1 1 1 T Term redefined to be the

increase in number of layers;

C 1/o 1/a 1/o 1 1/a previously was 1 for no scaling
* Term redefined to be heat
Uy = %2 CV2 1/a3 1/o 1/o 1 1/o produced per step. Adiabatic
technologies do not reduce
f a 1 1 1 signal energy, but “recycle”
signal energy so the amount
turned into heat scales down
N,,./core o? o? 1 1 . 1€
Term clarified to be power
N /A 1 1 1 o per.unlt area mclgdlng all
core devices stacked in 3D
2
I:)ckt /o 1 1 l/a Ref: T. Theis, In Quest of the “Next
Switch”: Prospects for Greatly
P/A 1 o? 1 1 Reduced Power Dissipation in a
Successor to the Silicon Field-Effect
Transistor, Proceedings of the IEEE,
3 3
F Nyran Noore o a 1 a Volume 98, Issue 12, 2010

< Theis and Solomon » New

Processor-In-Memory-and-Storage (PIMS)
Physical implementation vision

From a different project

(100 layers, see below)

= Storage/Memory
= Flash, ReRAM (memristor), STM, Stacked PIMS B, C,

DRAM D,E,F,GH,IJ

= Base layer PIMS 3D storage
= PIMS logic layers A1-A100
configuration and

= 3D memory/storage

= Whole structure is layered PIMS replication unit
PIMS interconnect

PIMS processors or ALUs
Fast thread CPU

Heat sink

PIMS architecture

= Adiabatic memory structure - ' . & Memory
= Adiabatic memory banks, all inductor X 1 ﬁ?‘ L bank
clocked the same but different) ' '
rows ? ?
; @ Source of
= PIM processors j 3 — e loss
= Each row has multiple ALUs ;- ;-

= Programming

= Memory has opcodes and data
controlling arithmetic and
communications on ALUs

PIMS memory/storage:

Adiabatic .
Purple is the

rOW H H o V24
configuration “opcode

access _
Green is memory
contents

i Red is communications
Control between ALUs

RRNS architecture connected to PIMS rh) et
(Creepy architecture)

PIMS memory: N .

RRNS used for both
data and memory
addresses (novel?)

Adiabatic memory;

> _

8 O O O O o o | OAS scaling rule

o Q Q Q Q Q | Q

' 0 0 0 0 o | 0

o |3 > = = | | - -

fo ® ® a Logic at point of
e @) @) @) @) 10 :

|4 — — — — | optimal energy-
| i i i i liability tradeoff

! ; rell

: > > > > > | > | [Clabiity

| — — — — — | —

; C (- (- C C | (-

; ; | Runs legacy code —
g i i i — — — given augmentation

v v v v v v Wwith assertion
Consistency check & convert to binary language

Outline o

" Energy-reliability tradeoff

" Error correction for logic

= Redundant Residue Number System
= “Creepy” architecture

" Programming (assertion language)

" |ntegration with Processor-In-Memory-and-
Storage (PIMS)

Laboratories

Tile programming

A y
[2[3[4 1 o[of 2= [25] 12] 6] 17
Of O 3 O Vector-matrix multiply on left
0 4 0 5 implemented by dataflow-like spreadsheet
6l 0 O O below.
Timestep 1: Note: the y;'s are
tx 1 updated, so they do
Timesten 2 o . 1Y 0 not all have the same
imestep 2: a
P ix, 2 P, 1 value
f Yo 1 iy 0
Etc. alo 0 a0l 0
tx, 3 tx, 2 tx, 1
fYo 1 ty. 0 ty. 0
a20 0 all 0 a02 0
tx; 4 ix, 3 ix, 2 ix, 1
tyo 1 ty, O fy, O fy; O
a30 6 a2l 4 al2 3 a03 2
tx; 4 Fx, 3 Px, 2 ix, 1
ty, 25 ty, 12 1y, \ 6 My, 2
a3l 0 a22 0 13 é
I1x; 4 tx, 3 \ﬁi X1 ‘%
fyo, 25 Py, 12 fy, 6 fy;” 2
1% cell a32 0 a23 5[Note on above: this diagram is
column tx; 4 tX2 3lonly a spreadsheet, but you
above as 1Y 12 iy, 6 t¥s 17{may think of a row of x's and
it evolves 2™ cell as3 0 y's as a register that shifts right
with time column tx, 4 and left each time step; the a's
above, as ty. 6 1y, 17 do not shift (see arrows).

. rd
it evolves 3" cell,

ith ti and so on
with time Py, 17

Laboratories

Tile programming

[1] 2] 3] 4 1 2= | 25] 12| 6] 17|
3 Arrows indicate data flow; wth no data flow
4 S|faster than nearest neighbor per step. Sometimes
6 dance steps for ladies and gents.
GraphViz:
Step 1. Initializaton/input Zeros

ix, 3 ix, 2 tx, 1 .
\ \ y iy, O

Step 2. Execution and additiogal input
\ a00 1 al2 3
W E (X, W} l
Step 3. Execution only | ¥
a?io\l 2 a30 a03 al12
2

P ys fy. O
w2 (y2) /
Step 4. Execution and output / |
¥ 4 a2 5 a2 a23
ix, 3 i‘% 3

ty, 12 Pys JL7 fys O
fyo 25 Wz w1 (Y
Step 5. Output Ve

iy, 12 iy, 6 ty;, 17

.
i) febora

Conclusions |

= Semiconductors heading to a non-abrupt limit

= The limit comprises a particular functional
relationship between energy and errors

= Can we develop an error detection and
correction approach for this relationship?
= |f we succeed

= Estimate 2:1 energy reduction (one generation)

= Will fix errors due to Cosmic Rays, weak parts, etc.
so we may have to do it anyway

.
i) febora

Conclusions i

= What is the impact of a 2:1 boost in energy
efficiency?
" |n the past, this level of boost would get run

over by Moore’s Law in 18 months. If it

delayed your progress by more than 18
months, it would be a loser

"= However, it this moves out the endpoint of
Moore’s Law by 2:1, the benefit will
accumulate forever

Laboratories

Conclusions i

= The assertion language may be needed sooner

= Exascale documents list reliability in the top
several risk factors

" |f we have to address reliability in a systematic
way for Exascale, we might as well do it in a
way that could be used for power efficiency

later

.
LS

Challenging issues

= To save energy, logic error detection requires very light-
weight circuits. More research will be needed on the circuits.

= |n acomputer, error detection and correction can be done as
an exception or interrupt. However, this time becomes
overhead that reduces the amount of useful work done

= QOther issues could interact with the topics in this presentation

= While thermal errors are unavoidable, other error classes could get in
the way first. Examples: Cosmic Rays, weak parts, aging, device-to-
device variance

= The methods here could support reliable overclocking, essentially
recognizing an “excessive overclocking error.” This generalizes to
using error detection to convert design safety margin to performance
= |f this approach catches on, hardware design tools and
software may need enhancement

Abstract o

It is well known that the rise in computer energy efficiency due to Moore’s Law is
associated with a rise in error rates, but we show how to turn this effect into a benefit.
Error rates do not rise abruptly, but will grow exponentially as energy is reduced. With
the energy vs. error rate tradeoff quantified, it is possible to derive management
strategies.

Computing with low-energy but unreliable components has been explored elsewhere as
approximate computing (where some errors pass through to the user) and random
computing (where errors become random numbers used in algorithms). However, we
devise a third approach where error correction makes computation reliable without the
error correction itself consuming more energy than gained.

We will discuss a fault-tolerant architecture tentatively named “creepy,” which uses
residue arithmetic to correct errors at high error rates while still being energy efficient.

By properly managing errors with the new architecture, it may become possible to utilize
a final few generations of semiconductor scaling beyond what can be exploited by the
traditional microprocessor.

	Error-Corrected Computing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

